函数值的大小比较.docx

函数值的大小比较.docx
函数值的大小比较.docx

二次函数、反比例函数比较大小

一、二次函数的大小比较方法:

1、 特殊值代入法:

直接根据题目要求,分别代入具体的数值,再比较大小。

2、 利用函数的增减性:

当各点都在对称轴的一侧时,利用函数的增减性进行比较。

3、 计算各点到对称轴的距离,结合抛物线的开口方向比较大小:(本法适用于各 点在对称轴同侧和异侧的大小比较,尤其是异侧.。)

(1)当抛物线开口向上时(即a>0时),离对称轴距离越远,函数值越大,反之越小。

当抛物线建盛与X 轴有两个交点,两点在对称轴的两侧时,若好〉-£(X1

<-—

+ 勺 v_ 仝(X|<- —y 2

2a 2 2a 2a

【推理:由X 2-( - A)>_ A.Xl 得X 2+X|>-2得呂[如 >一丄;即X2离对称轴距离

2a 2a a 2 2a

较远;由 X2~( — — ) V — — -X|,得 X2+X1 < — 一,得一 - --- < — —,即 X ]离对称轴距

2a 2a a 2 2a

离较远

(2)当抛物线开口向下时(即aVO 时),离对称轴距离越远,函数值越小,反之越大。

当抛物线刃^口向由x 轴有两个交点,两点在对称轴的两侧时,若小[勺〉一 ±(X|

2 2 6?

4、 图象法:

结合具体图象,利用y 轴“上大下小”的特点比较具体各点的函数值的大小。(第一、 二象限的函数值总是大于第三、四象限的函数值)

5、 移点法:

利用抛物线的对称性将各点转化到对称轴的同一侧,再利用函数的增减性比较大小。

二、反比例函数的大小比较方法

<-— y2;若 ------ < 一 b 2a (X|<——

2臼

由于反比例函数图象为双曲线,所以比较大小时,首先应注意利用k 值弄清各 点所处的象限。 1、 同一象限时,利用函数的增减性比较大小。

K>0时,y 随x 的增大而减小;K<0时,y 随x 的增大而减大;

2、 不同象限时,用图象法,利用y 轴“上大下小”的特点进行比较。

第一、二象限的函数值总是大于第三、四象限的函数值。

通常情况下,第1和第2两种方法综合运用。

3、 特殊值代入法:

直接根据题目要求,分别代入具体的数值,再比较大小。

三、试题:

1、(若二次函数y =兀2

- 6无+ c 的图像过4(-1, H ), B (2, >-2),0(3 +运,乃)三点,则X 、儿、>3 大小关系正确的是( )

A.卩>力>〉‘3

B.卩>力>力

C.儿>/>儿

D.

2、点A (2, 丫J 、B (3, Y 2)是二次函数丫=X 2?2X +1的图象上两点,则匕与丫2的大小关 系为 丫1 丫2 (填“〉”、“<”、

3、已知点A (xi ,yi ), B (x 2, y 2)是反比例函数y 壬的图象上的两点,若X1V0VX2,则有

X

B 、y2<0

C 、yi

D 、y 2

y 3)在反比例函数尸2的图象上,则下列结论正确的

X B. y 2>yi>y3 c 、y 3>yi>Y2 y 3>y2>yi 5、若A (xi ,

yi ), B (X2,丫2),C (x 3, y 3)是反比例函数y

二」图彖上的点,且xi

X

X3,则yi 、丫2、丫3的大小关系正确的是()

A 、y 3>yi>y 2 yi>y 2>y3 C 、y 2>yi>y 3 D 、y 3>Y2>yi

6、反比例函数y=— (k#0)的图象如图所示,若点A (xi ,yi )> B

(x 2?

X

y2)、C (x 3, y 3)是这个函数图象上的三点,且xi>x 2>0>x 3,则yi 、 丫

2、Y3的人小关系()

A 、yi<0

A> yi>y 2>y3

A、y3

3

7^若点A (xi,yi), B(X2,y2)在反比例函数y=—的图象上,且xi<0

和0 的大小关系是() A. yi>y2>0 B. yi yi>O>y2 yi

8、反比例函数图象上有三个点(xi,yi),(X2,Y2)?(X3, y3),其中xi

x

则yi,y2? y3的人小关系是()

A、yi

B、y2

C、y3

D、y3

9、已知Pi (xi,yi), P2(X2,y2),P3(X3,Y3)是反比例函数二的图象上的三点,且xi

A、Y3

B、yi

C、y2

D、Y2

7

10、已知反比例函数y=--图象上三个点的坐标分別是A ( -2, yi)、B ( -1, 丫2)、c (2,

X

丫3),能正确反映yi、y2、y3的大小关系的是()

A、yi>y2>y3

B、yi>y3>y2

C、y2>yi>y3

D、y2>Y3>yi

■ k? - 1

11、已知点(-1, Y1), (2, y2), (3, y3)在反比例函数y二一-一的图象上.下列结论

x

中正确的是() A、yi>y2>y3 B、yi>y3>y2 c、y3>yi>y2 D、y2>Y3>yi

12、己知:点A (xi,yi)> B(X2,丫2)、C (x3,『3)是函数y= - —?象上的三点,且

xi<0

X

y3的大小关系是()

A、yi

B、y2

C、y3

D、无法确定

13、设A(-2, y2), C(2, %)是抛物线丁 = -(x+lF+o上的三点,则刃,y2,

%的人小关系为()

A.必〉力>%

B. > y3 > y2 c.力〉力>〉1 D. %>必>儿

14、已知二次函数y= - —X2 - 7x+—,若自变量X分别取X1,X2,X3,且0'

则对应的函数值yi,y2, y3的大小关系正确的是()

A. yi>y2>y3

B. yi

C. y2>y3>yi

D. y2

15> 已知点A (xi,yi)、B(X2,y2)在二次函数y= (x - 1)2+1 的图象上,,若xi>X2>l, 则yi ___ 2 (填"V"或S.

2

16、反比例函数y =-图象上的两上点为(x b yi), (x2, y2),且xKd则下列关系成立的是()

A. yi>y2

B. yi

C. yi=y2 D?不能确定

17、已知二次函数y二处?+加+(中,其函数y与自变量x之间的部分对应值如下表所示:

兀?-0123 ???

)' … 5 2 1 2 …

点A (兀[,X )、B (兀2,儿)在惭数的图象上,则当o V兀[<1, 2 力 C.必<)〉2 D.必冬力

18、设A(-2, y t), B(l, y2), C(2,风)是抛物线『=-(无+厅+^上的三点,则必,y2,

的大小关系为()

A?)'1>力>% B? y, > y3 > y2 C.儿 > 力> X D- %>)[>%

19>已知二次函数y= - -^x2 - 7x+-^,若自变量x分别取X|, x?, x3,且0Vx】

对应的函数值W,y2f y3的大小关系正确的是()

A. y1>y2>y3

B. yi

C. y2>y3>yi

D. y2

20、若二次函数y=x2 - 6x+c 的图象过A(?l, y「),B (2, y2), C ( 3+V2, y3),则yi,y2,y3 的大小关系是()A. yi>y2>y3 B. yi>y3>Y2 c. y2>yi>y3 D. y3>yi>Y2

21、已知一元二次方程x2+bx - 3=0的一根为-3,在二次函数y=x2+bx - 3的图象上有三点(V])、(一号,卩2)、(£,卩3),yi、y?、丫3的大小关系是()

A. yi

B. y2

C. y3

D. yi

22> 已知点A (xi,yi)> B (x2, y2)在二次函数y二(x - 1)2+1 的图象上,若XI>X2>L 则yi ___ 2(填“>”、y”或T)?

23、点A (2, yi)、B (3, y2)是二次函数y=x2-2x+l的图象上两点,则yi与y2的大小

关系为yi ______ 2(填">〃、"<〃、"=")?

24、在函数y =丄的图象上有三个点的坐标分别为(1, % )、(丄,y2( -3 , y3),函

兀 2

数值),|、『2、『3的大小关系是()

A?yi

25、若A(Q,b), B(d — 2, c)两点均在函数y =-的图象上,且dvO,则b与c的大小关系为( )

A. b> c

B. b

C. b = c D?无法判断

2

26.如图,一次函数y,=x-l与反比例函数y?二一的图像

x

交于点A(2,1),B(—1, —2),则使y严2的x的取值范围是

( )

A. x>2

B. x>2 或一1 vxvO

C.— l

D. x>2 或x<— 1

27 >若A(x}, /)、B(X2,%)在函数y=丄的图彖上,则当西、吃

满足

____________________________________________________

时,

2x

(答案不唯一,X\

2=-3等均可)

1 o m

28>在反比例函数y = ------------- 的图象上有两点A(x P刃),Bg

y2) t当x, < 0< 时,

x

有X < >2,则m的収值范围是( )

A. m < 0

B. 772 >0

C.

1

m< — D.

1

m> —

高三数学专项训练:函数值的大小比较

高三数学专项训练:函数值的大小比较 一、选择题 1,则c b a ,,的大小关系是( ). A. b c a >> B. b a c >> C. c b a >> D. c a b >> 2 .设2 lg ,(lg ),a e b e c === ( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 3.设a b c ,,分别是方程的实数根 , 则有( ) A.a b c << B.c b a << C.b a c << D.c a b << 4.若13 (1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( ) A .a > B 、c a b >> C 、b a c >> D 、b c a >> 9.若)1,0(∈x ,则下列结论正确的是( ) A B C D 10.若0m n <<,则下列结论正确的是( ) A .22m n > B C .22log log m n > D

《函数的最大(小)值与导数》教案完美版

《函数的最大(小)值与导数》教案 §1.3.3 函数的最大(小)值与导数(1) 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习引入: 1.极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 2.极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 3.极大值与极小值统称为极值 注意以下几点: (ⅰ)极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f . (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点. 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值. 5. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f (x ) 在这个根处无极值. 二、讲解新课: 1.函数的最大值和最小值

函数的值域和最值教案

函数的值域和最值教案 【教学目标】1.让学生了解求函数值域(最值)常用的方法; 2.让学生了解各种方法的适用题型,并能灵活运用各种方法解函数的值域. 【教学重点】直接法、利用函数单调性求值域(最值)、数形结合法 【教学难点】判别式法和数形结合方法的使用 【例题设置】例1(强调定义域的重要性),其它例题主要指出各种方法适用的题型及 注意点. 【教学过程】 第一课时 〖例1〗已知函数3()2log f x x =+(19x ≤≤),求函数22()[()]()g x f x f x =+的最值. 错解:令3log [0,2]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+- ∴当0t =时,min ()6g x =;当2t =时,max 2()()|22t g x g x ===. 错因分析:当2t =时,9x =,2(9)[(9)](81)g f f =+无意义.产生错误的原因主要是忽略了定义域这个前提条件. 正解:由2 1919 x x ≤≤??≤≤?,得()g x 的定义域为[1,3],3log [0,1]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+- ∴当0t =时,min ()6g x =;当1t =时,max 2()()|13t g x g x ===. ★点评:1.求函数的值域(最值)同样得在定义域上进行; 2.运用换元法解题时,一定要注意元的取值范围,这步较容易被忽略; 3.配方法是求“二次函数类”值域的基本方法,形如2()()()F x af x bf x c =++的函数的值域问题,均可用此法解决.该法常与换元法结合使用. 〖例2〗 求下列函数的值域: ⑴ 121 21 x x y ++=+; 法一:(直接法)1212(21)11 2212121 x x x x x y +++-===-+++ 由20x >,211x +>,1 0121 x < <+,故12y <<,即原函数的值域为(1,2)

《函数的单调性和最大(小)值》教学设计【高中数学人教A版必修1(新课标)】

《函数的单调性与最大(小)值》教学设计 第一课时函数的单调性 通过观察一些函数图像的特征,形成增(减)函数的直观认识。再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义。掌握用定义证明函数单调性的步骤。函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。 【知识与能力目标】 1、结合具体函数,了解函数的单调性及其几何意义; 2、学会运用函数图像理解和研究函数的性质; 3、能够应用定义判断函数在某区间上的单调性。 【过程与方法目标】 借助二次函数体验单调性概念的形成过程,领会数形结合的思想,运用定义进行判断推理,养成细心观察,严谨论证的良好的思维习惯。 【情感态度价值观目标】 通过直观的图像体会抽象的概念,通过交流合作培养学生善于思考的习惯。 【教学重点】 函数单调性的概念。 【教学难点】 判断、证明函数单调性。 从观察具体函数图像引入,直观认识增减函数,利用这定义证明函数单调性。通过练习、交流反馈,巩固从而完成本节课的教学目标。

(一)创设情景,揭示课题 德国有一位著名的心理学家艾宾浩斯,对人类的记忆牢固程度进行了有关研究。他经过测试,得到了以下一些数据: 以上数据表明,记忆量y 是时间间隔t 的函数。艾宾浩斯根据这些数据描绘出了著名的“艾宾浩斯遗忘曲线”, 如图: 思考1:当时间间隔t 逐渐增大你能看出对应的函数值y 有什么变化趋势?通过这个 试验,你打算以后如何对待刚学过的知识? 思考2:“艾宾浩斯遗忘曲线”从左至右是逐渐下降的,对此,我们如何用数学观点进行解释? (二)研探新知 观察下列各个函数的图像,并说说它们分别反映了相应函数的哪些变化规律:

高考题:函数值比较大小

在康成 ----无所不能 1.设 232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是 A (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 4.(全国Ⅰ卷理8文10)设a=3log 2,b=In2,c=1 2 5-,则 C A. a> B .b a c >> C .c a b >> D .b c a >> 15.(湖南卷文6)下面不等式成立的是( A ) 23log 5< B .3log 5log 2log 223<< 2<0< B . 4 1 log 52 a ,log log a a z = C ) A .x y z >> B .z y x >> C .y x z >> D .z x y >> 18.(全国Ⅱ卷理4文5)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a ≠,的图象如图所示,则a b ,满足的关系是( A ) A .101a b -<<< B .101b a -<<< C .101b a -<<<- D .1101a b --<<<

函数的最值问题教案

知识点单调性的应用,最值问题 使学生理解函数的最值是在整个定义域上来研究的,是函数单调性的应用. 教学目标 通过渗透数形结合的思想方法,掌握求函数最值的方法. I ■ ■ 教学重点函数最大(小)值的定义和求法. 教学难点如何求一个具体函数的最值. 函数的最大(小)值的定义,是借助于二次函数及其图像引出的,概念的出现仍然是遵循特殊到一般的原则?鉴于学生对于二次函数已经有了一个初步的了解,因此本节课多从学生接触过的二次函数入手,这样能使学生容易找到最高点和最低点?但这只是感性上的认识,要培养学生能用数学语言描述函数最值的概念,通过对概念的辨析,真正让学生理解最值概念的内涵,同时,在做题时多培养学生画图的能力,体会到数形结合的魅力 【知识导图】 教学过程 「、导入 【教学建议】 导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状^态。 导入的方法很多,仅举两种方法: ①情境导入,比如讲一个和本讲内容有关的生活现象; ②温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学 生建立知识网络。 提供一个教学设计供讲师参考: ⑴由于某种原因,2019年北京奥运会开幕式时间由原定的7月25日推迟到8月8 日, 请查阅资料说明做出这个决定的主要原因

⑵通过查阅历史资料研究北京奥运会开幕式当天气温变化情况. 课上通过交流,可以了解到开幕式推迟主要是天气的原因, 北京的天气到8月中旬,平 均气温、平均降雨量和平均降雨天数等均开始下降, 比较适宜举办大型国际体育赛事. 下图 是北京市某年8月8日一天24小时内气温随时间变化的曲线图. 问题:观察图形,能 息? 预案:(1)当天最高温 多少以及何时达到; (2) 在某时刻 (3) 某些时段 时 段温度降低. 在生活中,我们关心很多数据的变化规律, 了解这些数据的变化规律, 对我们的生活是 很有帮助的. 问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 设计意图:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小?从而引入 最大值、最小值的概念. 二、知识讲解 【教学建议】通过前面的引导,得到函数最值的定义,建议老师在引导学生得到最大值的定 义以后,可以让学生来类比写出最小值的定义: 前提 设函数y = f (x)的定义域为1,如果存在实数 M 满足 条件 ① 对于任意X",都有f (x)兰M ; ② 存在x^ I ,使得f (x 0) = M ① 对于任意x",都有f (X) A M ; ② 存在x ^e I ,使得f(xj = M 结论 M 为最大值 M 为最小值 考点数图I 数的意点大值P 的坐标 (x,y)的意义:横坐标x 是自变量的取值,纵坐标y 是自变 量为x 时对应的函数值的大小. (1)图象上最高点的纵坐标是所有函数值中的最大值,即函数的最大值. 得到什么信 度、最低温度是 的温度; 温度升高,某些

最大值与最小值教案

班级:高二( )班 姓名:____________ 教学目标: 1.使学生理解函数的最大值和最小值的概念,掌握可导函数f (x )在闭区间上所有点(包括端点a ,b )处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 教学重点: 利用导数求函数的最大值和最小值的方法. 教学过程: 一、问题情境 1.问题情境.函数极值的定义是什么? 2.探究活动.求函数f (x )的极值的步骤. 二、建构数学 1.函数的最大值和最小值. 观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象. 图中)(1x f ,35(),()f x f x 是极小值,24(),()f x f x 是极大值. 函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x . 一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明: (1)在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值. 如函数x x f 1)(=在),0(+∞内连续,但没有最大值与最小值; (2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的; (3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个. 2.利用导数求函数的最值步骤: 由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了. 设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:

函数大小比较问题

一、两幂值比大小的方法: (1)同底数的两幂值比大小时,利用指数函数的单调性可直接比较大小; (2)底、指都不同的两幂值比大小时,可借用中间值间接比较大小,也可利用函数图象的位置关系来比较大小。 例2 :比较下列各组中各数的大小. (1)0.40.3与0.40.2;(2)-0.75-0.1与-0.750.1 (3)()1/5与()3/4;(4)()-2/3与()-3/2 解:(1)考察指数函数y=0.4x,∵0<0.4<1,此函数为减函数,而0.3>0.2,∴0.40.3<0.40.2 (2)∵0<0.75<1,-0.1<0.1,∴0.75-0.1>0.750.1,故-0.75-0.1<-0.750.1. 另解:分别画出函数y=()x和y=()x的图象,图象中A 点的纵坐标为()1/5,B点的纵坐标为()3/4,C点的纵坐标为()1/5 由于A点高于C点,C点又高于B点,所以()1/5>()3/4 (4)∵()-2/3>()0=1, ()-3/2<()0=1,∴()-2/3>()-3/2 二、两对数值比大小的方法:

(1)同底数的两对数值比大小时,利用对数函数的单调性可直接比较大小; (2)同真数的两对数值比大小时,可换底后比较大小,也可利用同类函数图象的高低比大小; (3)底与真数都不同的两对数值比大小时,可以借用中间值间接比较大小,也可利用函数图象的 位置关系来比较大小。 例3:比较下列各组中两个对数值的大小. (1)log0.20.5, log0.20.3; (2) log23, log1.53 (3) log59, log68 ; (4) log1/50.3, log20.8 . 解:(下面的解答由师生共同完成) (2)考察指数函数y=log0.2x,∵0<0.2<1, 此函数为减函数,而 0.5>0.3,∴log0.20.5< log0.20.3 (3)log23=, log1.53=,∵lg3>0,lg2>lg1.5>0,∴log23< log1.53 另解:分别画出函数y=log1.5x,y=log2x的图象,x>1以后y=log1.5x的图象 在y=log2x的图象的上方。当x=3时A点高于B点,因为A点纵坐标为log1.53,B点纵坐标为log23,所以log23< log1.53

函数的最大值和最小值教案

函数的最大值和最小值教案 1.本节教材的地位与作用 本节主要研究闭区间上的持续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f是闭区间[a,b]上的持续函数,那么f在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等严重的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为严重的意义. 2.教学重点 会求闭区间上持续开区间上可导的函数的最值. 3.教学难点 高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不烂熟,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法. 4.教学关键 本节课突破难点的关键是:理解方程f′=0的解,包含有指定区间内全部可能的极值点. 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: .知识和技能目标 理解函数的最值与极值的区别和联系.

进一步明确闭区间[a,b]上的持续函数f,在[a,b]上必有最大、最小值. 掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 了解开区间内的持续函数或闭区间上的不持续函数不一定有最大、最小值. 理解闭区间上的持续函数最值存在的可能位置:极值点处或区间端点处. 会求闭区间上持续,开区间内可导的函数的最大、最小值. 3.情感和价值目标 认识事物之间的的区别和联系. 培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. 提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. 【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用. 本节课在帮助学生回顾肯定了闭区间上的持续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的持续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行合适的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学. 【学法指导】 对于求函数的最值,高三学生已经具备了优良的知识基础,剩下的问题就是有没有一种更大凡的方法,能运用于更多更繁复函数的求最值问题?教学设计中注意激发起学生剧烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

关于比较一次函数的函数值与二次函数的函数值大小之我见

关于比较一次函数的函数值与二次函数的函数值大小之我见 多力昆·阿布都热西提 2014.6.3

关于比较一次函数的函数值与二次函数的 函数值大小之我见 多力昆·阿布都热西提 在初中数学中,一次函数的图像和二次函数的图像的复杂的和潜在的概念现象大部分的师生分析问题陷入困惑。数学教师对这一点的忽略引起了学生对这个容的探究精神的欠缺。 数学没有明确概念,解决问题一定会受阻,如果概念里模糊,问题与学过知识之间的技术处理一定会失败。我认为,一次函数的图像与二次函数的图像之间的函数值的大小问题应该分层次分析。 下面,我来分析二次函数的图像与一次函数的图像之间存在的模糊问题的看法。 1、在同一个平面直角坐标中,二次函数y 1 = ax2+bx+c和一次函 数y 2 =ax+b的函数值的大小问题 (1)判断二次函数的图像与一次函数的图像的关系,如果二次函 数y 1 = ax2+bx+c的图像与一次函数的图像相交,则函数值相等,即 y 1= y 2 。 由上可得:ax2+bx+c=ax+b。 整理得:ax2+(b-a)x+c-b=0。 检验:Δ=b2—4ac=(b—a)2—4a(c—b) 第一:当Δ>0时,二次函数的图像与一次函数相交于不同的两个点。

设交点的坐标为(x 1,y 1 ),(x 2 ,y 2 ), 在y= ax2+bx+c中,当a>0(x 1< x 2 )时,x 1 y 1 , 当x> x 2或x< x 1 时,y 2 < y 1 (图1)在y= ax2+bx+c中,当a<0(x 1 < x 2)时,x 1 y 2 。当x> x 2 或x< x 1 时,y 2 > y 1 。(图2) 图1 图2 在图1中,在直线x= x 1与直线x= x 2 之间,一次函数的图像在 二次函数的上方,即,y 1> y 2 在直线x= x 1 的右边与直线x= x 2 的右 边,一次函数的图像在二次函数的下方,即y 1> y 2 。 在图2,在直线x= x 2 之间,二次函数的图像在一次函数的图像, 即:y 1> y 2 。在直线x= x1的左边与直线x= x2的右边,一次函数的 图像在二次函数的图像上方,即y2> y1。 第二,当Δ=0时,一次函数的图像与二次函数的图像有一个交 点,此时,设交点的坐标为(x 0,y ),在y 1 =ax2+bx+c,当a>0时, 在x= x 0的条件下,y 1 > y 2 ,(图3)。在x≠ x 的条件下,y 1 > y 2 ,(图 4)。

示范教案(单调性与最大(小)值第课时)

示范教案(1.3.1 单调性与最大(小)值 第2课时) 导入新课 思路1.某工厂为了扩大生产规模,计划重新建造一个面积为10 000 m 2的矩形新厂址,新厂址的长为x m ,则宽为x 10000m ,所建围墙ym ,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y 最短? 学生先思考或讨论,教师指出此题意在求函数y=2(x+ x 10000),x>0的最小值.引出本节课题:在生产和生活中,我们非常关心花费最少、用料最省、用时最省等最值问题,这些最值对我们的生产和生活是很有帮助的.那么什么是函数的最值呢?这就是我们今天学习的课题.用函数知识解决实际问题,将实际问题转化为求函数的最值,这就是函数的思想,用函数解决问题. 思路 2.画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①f(x)=-x+3;②f(x)=-x+3,x ∈[-1,2]; ③f(x)=x 2+2x+1;④f(x)=x 2+2x+1,x ∈[-2,2]. 学生回答后,教师引出课题:函数的最值. 推进新课 新知探究 提出问题 ①如图1-3-1-11所示,是函数y=-x 2-2x 、y=-2x+1,x ∈[-1,+∞)、y=f(x)的图象.观察这三个图象的共同特征. 图1-3-1-11 ②函数图象上任意点P(x,y)的坐标与函数有什么关系? ③你是怎样理解函数图象最高点的? ④问题1中,在函数y=f(x)的图象上任取一点A(x,y),如图1-3-1-12所示,设点C 的坐标为(x 0,y 0),谁能用数学符号解释:函数y=f(x)的图象有最高点C ? 图1-3-1-12 ⑤在数学中,形如问题1中函数y=f(x)的图象上最高点C 的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义? ⑥函数最大值的定义中f(x)≤M 即f(x)≤f(x 0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征? ⑦函数最大值的几何意义是什么?

高考题:函数值比较大小

1.设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 A (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 C A. a> B .b a c >> C .c a b >> D .b c a >> 15.(湖南卷文6)下面不等式成立的是( A ) A .322log 2log 3log 5<< B .3log 5log 2log 223<< C .5log 2log 3log 232<< D .2log 5log 3log 322<< 16(江西卷文4)若01x y <<<,则( C ) A .33y x < B .log 3log 3x y < C .44log log x y < D .1 1()()44 x y < 17.(辽宁卷文4)已知01a << ,log log a a x =,1 log 52 a y = , log log a a z =,则( C ) A .x y z >> B .z y x >> C .y x z >> D .z x y >> 18.(全国Ⅱ卷理4文5)若1 3 (1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a ≠,的图象如图所示,则a b ,满足的关系是( A ) A .1 01a b -<<< B .101b a -<<< C .1 01b a -<<<- D .1 101a b --<<<

函数大小比较

㈠ 与幂函数αx y =有关的大小比较 ⑴ 两个幂函数的指数相同(底数为负数时须先化为正数),利用幂函数的单调性判定大小; ⑵ 两个幂函数的指数不同,能化为同指数的,利用幂函数的单调性判定大小,不能化为同指数的,利用中间数0来比较大小; 幂函数αx y =的性质: ⑴ 在),0(∞上,0>α时是增函数,0<α时是减函数: ⑵ 1>x 时,指数大的图象在上方,10<α时,图象过(0,0),(1,1),0<α时,图象过(1,1)。 ㈡ 与指数函数x a y =有关的大小比较 ⑴ 两个指数函数的底数相同指数不同时,利用指数函数的单调性判定大小; ⑵ 两个指数函数的底数不同指数相同时,可根据图象与底数的关系进行比较; ⑶ 两个指数函数的底数和指数都不同时,可引进第3个数(如0,1)分别与之比较,通过常数传递比较大小。 指数函数的性质: ⑴ 1>a 时,x a y =是增函数,10<a 时,a 越大图象上升越快,10<a 时,x y a log =是增函数,10<a 时,010,01?>y x y x ,10<?<<y x y x ; ⑶ x y a log =的图象过(1,0)点,),0(,∞∈∈x R y 。 对数的性质:N a a N a a a ===log ,1log ,01log ,零和负数没有对数。 对数运算公式: ⑴ N M MN a a a log log )(log += ⑵ N M N M a a a log log )(log -= ⑶ M n M a n a log log = ⑷ 换底公式:)1,0,1,0(,log log log ≠>≠>=c c a a a N N a a a ⑸ a b b a log 1log = ⑹ )1,0,1,0(,log log ≠>≠>=b b a a b n m M a m a n

利用函数单调性比大小-第二章总结

【第二章计算题类型】 计算: (1)2lg2+lg31+12lg0.36+13lg8; (2)23×612×332. (3)lg2·lg 52 +lg0.2·lg40. (利用函数单调性比大小)★常考类型★ 1-1.设120.7a =,120.8b =,c 3log 0.7=,则( ). A. c > B. b a c >> C. c a b >> D. b c a >> 1-3.设a =log 132,b =log 13 3,c =? ????120.3,则( ) A .a成立的x 的取值范围是( ). A. 3(,)2+∞ B. 2(,)3+∞ C. 1(,)3+∞ D.1 (,)3 -+∞ 1-5.设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与 最小值之差为1 2,则a =( ). B. 2 C. D. 4 1-6. 函数y=log a x 在[2,4]上的最大值比最小值大1,求a 的值。 1-7. 若a>0且a ≠1,且log a 4 3<1,则实数a 的取值范围是( )。 A.043或01 1-8. 若实数a 满足log a 2>1,则a 的取值范围为________. 【恒过定点问题★常考类型★】 2-1.函数y =a x +1(a >0且a ≠1)的图象必经过点( ). A.(0,1) B. (1,0) C.(2,1) D.(0,2) 2-2. 若a >0且a ≠1,则函数y =a x -1-1的图像一定过点___。 2-3.函数y= log a (x+1)-2(a>0,且a≠1)的图象恒过定点 。 2-4. 已知函数y =3+log a (2x +3)(a >0且a ≠1)的图象必经 过点P ,则P 点坐标________. 2-5. 函数f (x )=log a (3x -2)+2(a >0且a ≠1)恒过定点_______。 (幂函数的解析式求值)★常考类型★ 3-1.如果幂函数()f x x α=的图象经过点,则(4)f 的值等于( ). A. 16 B. 2 C. 116 D. 12 3-2. 幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 (指数型函数应用题——人口计算) 4-1. 世界人口已超过56亿,若千分之一的年增长率,则两年增长的人口可相当于一个( ).

函数的最大值与最小值 说课稿 教案 教学设计

函数的最大值与最小值 一、教学目标:理解并掌握函数最大值与最小值的意义及其求法.弄请函数极值与最值的区别 与联系.养成“整体思维”的习惯,提高应用知识解决实际问题的能力. 二、教学重点:求函数的最值及求实际问题的最值. 教学难点:求实际问题的最值.掌握求最值的方法关键是严格套用求最值的步骤,突破难 点要把实际问题“数学化”,即建立数学模型. 三、教学过程: (一)复习引入 1、问题1:观察函数f (x )在区间[a ,b ] 的极大值、极小值和最大值、最小值. 2、问题2:观察函数f (x )在区间 [a ,b ]的极大值、极小值和最大值、最小值. (见教材P30面图1.3-14与1.3-15) 3、思考:⑴ 极值与最值有何关系? ⑵ 最大值与最小值可能在何处取得? ⑶ 怎样求最大值与最小值? 4、求函数y = 44313+-x x 在区间[0, 3]上的最大值与最小值. (二)讲授新课 1、函数的最大值与最小值 一般地,设y =f (x )是定义在[a ,b ]上的函数,在[a ,b ]上y =f (x )的图象是一条连续不断的曲线,那么它必有最大值与最小值。 函数的极值是从局部考察的,函数的最大值与最小值是从整体考察的。 2、求y =f (x )在[a ,b ]上的最大值与最小值,可分为两步进行: ⑴ 求y =f (x )在(a ,b )内的极值; ⑵ 将y =f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值. 例1.求函数y =x 4-2x 2+5在区间[-2, 2]上的最大值与最小值. 解: y'=4x 3-4x =4x (x +1)(x -1)令y'=0,即 4x (x +1)(x -1)=0, 解得x =-1,0,1.当x 变化时,y',y 的变化情况如下表: 故 当x =±2时,函数有最大值13,当x =±1时,函数有最小值4. 练习 例2.求函数y =5363423+-+x x x 在区间[-2, ∞+]上的最大值与最小值. 例3. 求函数]4,0[,2)(∈+=x x x x f 的最大值和最小值.

高三数学教案函数的最大值和最小值(第1课时

2006年江西省高中青年教师优质课比赛参赛教案§3.8 函数的最大值和最小值(第1课时)江西省临川第一中学游建龙(344100) 二OO六年九月十三日 E-mail:lcyz_yjl@https://www.360docs.net/doc/ff13841101.html,

§3.8 函数的最大值和最小值 【教材分析】 1.本节教材的地位与作用 本节是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使用料最省、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,对于完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义. 2.教学重点 会求闭区间上连续开区间上可导的函数的最值. 3.教学难点 确定函数最值的方法,并会求函数的最值. 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: 1.知识和技能目标 (1)理解函数的最值与极值的区别和联系. (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值. (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 (1)了解开区间内的连续函数不一定有最大、最小值. (2)会求闭区间上连续,开区间内可导的函数的最大、最小值. 3.情感和价值目标 (1)认识事物之间的的区别和联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. 【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用. 本节课引导学生自己通过观察函数的图象,归纳、总结出最大值、最小值求解的方法与步骤,让学生自己主动地获得知识,老师只是进行适当的引导,而不是进行全部的灌输.【学法指导】 对于求函数的最值,高三学生已经具备了良好的知识基础,剩下问题是有没有一种更一般的方法,能运用于更多更复杂的函数求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发

函数值的大小比较

二次函数、反比例函数比较大小 一、二次函数的大小比较方法: 1、特殊值代入法: 直接根据题目要求,分别代入具体的数值,再比较大小。 2、利用函数的增减性: 当各点都在对称轴的一侧时,利用函数的增减性进行比较。 3、计算各点到对称轴的距离,结合抛物线的开口方向比较大小:(本法适用于各点在对称轴同侧和异侧的大小比较,尤其是异侧。) (1)当抛物线开口向上时(即a>0时),离对称轴距离越远,函数值越大,反之越小。 当抛物线开口向上与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1<y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1>y 2 【推理:由x 2-(a b 2- )>a b 2--x 1得x 2+x 1>a b -得221x x +>a b 2-;即x 2离对称轴距离较远;由x 2-(a b 2- )<a b 2--x 1,得x 2+x 1<a b -,得221x x +<a b 2-,即x 1离对称轴距离较远.】 (2)当抛物线开口向下时(即a <0时),离对称轴距离越远,函数值越小,反之越大。 当抛物线开口向下与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1>y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1<y 2,推理同(1) 4、图象法: 结合具体图象,利用y 轴“上大下小”的特点比较具体各点的函数值的大小。(第一、二象限的函数值总是大于第三、四象限的函数值) 5、移点法: 利用抛物线的对称性将各点转化到对称轴的同一侧,再利用函数的增减性比较大小。

《函数的最大与最小值》教案(优质课)

《函数的最大与最小值》教案 【教学目标】: 1、使学生掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值; 2、使学生掌握用导数求函数的极值及最值的方法 【教学重点】:掌握用导数求函数的极值及最值的方法 【教学难点】:提高“用导数求函数的极值及最值”的应用能力 【教学过程】 一、复习: 1、() ___________/ =n x ;2、[]_____________)()(/ =±?x g x f C 3、求y=x 3—27x 的 极值。 二、新课 在某些问题中,往往关心的是函数在一个定义区间上,哪个值最大,哪个值最小 观察下面一个定义在区间[]b a ,上的函数)(x f y =的图象 发现图中____________是极小值,_________是极大值,在区间[]b a ,上的函数 )(x f y =的最大值是______,最小值是 _______ x

在区间 []b a ,上求函数 )(x f y =的最大值与最小值 的步骤: 1、函数 )(x f y =在),(b a 内有导数... ;. 2、求函数 )(x f y =在),(b a 内的极值 3、将.函数)(x f y =在),(b a 内的极值与)(),(b f a f 比较,其中最大的一个为最大值 ,最小的一个为最小值 三、例题 例1、求函数5224+-=x x y 在区间[]2,2-上的最大值与最小值。 解:先求导数,得x x y 443/-= 令/y =0即0443=-x x 解得1,0,1321==-=x x x 导数/y 的正负以及)2(-f ,)2(f 如下表 从上表知,当2±=x 时,函数有最大值13,当1±=x 时,函数有最小值4 在日常生活中,常常会遇到什么条件下可以使材料最省,时间最少,效率最高等问题,这往往可以归结为求函数的最大值或最小值问题。 例2 用边长为60CM 的正方形铁皮做一个无盖的水箱,先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成,问水箱底边的长取多少时,水箱容积最大,最大容积是多少?

高考题函数值比较大小

高考题函数值比较大小 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

1.设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是 A (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 4.(全国Ⅰ卷理8文10)设a=3log 2,b=In2,c=1 25-,则 C A. a> B .b a c >> C .c a b >> D .b c a >> 15.(湖南卷文6)下面不等式成立的是( A ) A .322log 2log 3log 5<< B .3log 5log 2log 223<< C .5log 2log 3log 232<< D .2log 5log 3log 322<< 16(江西卷文4)若01x y <<<,则( C )

A .33y x < B .log 3log 3x y < C .44log log x y < D .11()()44 x y < 17.(辽宁卷文4)已知01a <<,log log a a x =1log 52a y =, log log a a z =,则( C ) A .x y z >> B .z y x >> C .y x z >> D .z x y >> 18.(全国Ⅱ卷理4文5)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a ≠,的图象如图所示,则a b ,满足的关系是( A ) A .101a b -<<< B .101b a -<<< C .101b a -<<<- D .1101a b --<<<

相关文档
最新文档