集合之间的关系教案

集合之间的关系教案
集合之间的关系教案

1.2.1 集合之间的关系

(一)教学目标;

1.知识与技能

(1)理解集合的包含和相等的关系.

(2)了解使用Venn图表示集合及其关系.

(3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系.

2.过程与方法

(1)通过类比两个实数之间的大小关系,探究两个集合之间的关系.

(2)通过实例分析,获知两个集合间的包含与相等关系,然后给出定义.

(3)从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念.

3.情感、态度与价值观

应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力.

(二)教学重点与难点

重点:子集的概念;难点:元素与子集,即属于与包含之间的区别.

(三)教学方法

在从实践到理论,从具体到抽象,从特殊到一般的原则下,一方面注意利用生活实例,引入集合的包含关系. 从而形成子集、真子集、相等集合等概念. 另一方面注意几何直观的应用,即Venn图形象直观地表示、理解集合的包含关系,子集、真子集、集合相等概念及有关性质.

(四)教学过程

B,如果A中任意一个元素都是

B的元素,称集合A是集合B的

子集,记作A B

?,读作:“A

含于B”(或B包含A)

2.集合相等:

若A B

?,且B A

?,则A=B.

概念的数学定义.

概念深化示例1:考察下列各组集合,并

指明两集合的关系:

(1)A = Z,B = N;

(2)A = {长方形},B = {平行

四边形};

(3)A={x| x2–3x+2=0},B={1,

2}.

1.Venn图

用平面上封闭曲线的部代表集

合.

如果A B

?,则Venn图表示为:

2.真子集

如果集合A B

?,但存在元素

x∈B,且x?A,称A是B的真子

集,记作A

示例1 学生思考并回答.

生:(1)A B

?

(2)A B

?

(3)A = B

师:进一步考察(1)、(2)

不难发现:A的任意元素都在

B中,而B中存在元素不在A

中,具有这种关系时,称A

是B的真子集.

示例3 学生思考并回答.

生:(1)直线x+y=2上的所

有点

(2)没有元素

师:对于类似(2)的集合称

再次感知

子集相等

关系,加深

对概念的

理解,并利

用韦恩图

从“形”

的角度理

解包含关

系,层层递

进形成真

子集、空集

的概念.

A

B

备选训练题

例1 能满足关系{a ,b }?{a ,b ,c ,d ,e }的集合的数目是( A ) A .8个

B .6个

C .4个

D .3个

【解析】由关系式知集合A 中必须含有元素a ,b ,且为{a ,b ,c ,d ,e }的子集,所以A 中元素就是在a ,b 元素基础上,把{c ,d ,e }的子集中元素加上即可,故A = {a ,b },A = {a ,b ,c },A = {a ,b ,d },A = {a ,b ,e },A = {a ,b ,c ,d },A = {a ,b ,c ,e },A = {a ,b ,d ,e },A = {a ,b ,c ,d ,

e },共8个,故应选A.

例2 已知A = {0,1}且B = {x |x A ?},求B .

【解析】集合A 的子集共有4个,它们分别是:?,{0},{1},{0,1}. 由题意可知B = {?,{0},{1},{0,1}}.

例3 设集合A = {x – y ,x + y ,xy },B = {x 2 + y 2,x 2 – y 2,0},且

A =

B ,数x 和y 的值及集合A 、B .

【解析】∵A = B ,0∈B ,∴0∈A .

若x + y = 0或x – y = 0,则x 2 – y 2 = 0,这样集合B = {x 2 + y 2,0,0},根据集合元素的互异性知:x + y ≠0,x – y ≠0.

∴22

220

xy x y x y x y x y

=??

-=-??+=+? (I ) 或22

220xy x y x y x y x y

=??

-=+??+=-? (II )

由(I )得:00x y =??

=?或01x y =??=?或1

0x y =??=? 由(II )得:00x y =??

=?或01x y =??=-?或1

x y =??=? ∴当x = 0,y = 0时,x – y = 0,故舍去.

当x = 1,y = 0时,x – y = x + y = 1,故也舍去.

∴01x y =??

=?或0

1x y =??=-?

, ∴A = B = {0,1,–1}.

例4 设A = {x | x 2 – 8x + 15 = 0},B = {x | ax – 1 = 0},若B A ?,数a 组成的集合,并写出它的所有非空真子集.

【解析】A = {3,5},∵B A ?,所以 (1)若B =?,则a = 0;

(2)若B ≠?,则a ≠0,这时有13a

=或15a

=,即a =13

或a =15

. 综上所述,由实数a 组成的集合为11{0,,}53.

其所有的非空真子集为:{0},1

11111{},{},{0,},{0,},{,}5

3

5

3

53

共6个.

集合间的基本关系教案及练习

1.2集合间的基本关系 1.Venn图 (1)定义:在数学中,经常用平面上封闭曲线的内部代表集合,这种图称为Venn图. (2)适用范围:元素个数较少的集合. (3)使用方法:把元素写在封闭曲线的内部. 2.子集、真子集、集合相等的概念 (1)子集的概念 文字语言符号语言图形语言 对于两个集合A,B,如果集合A中任意 A?B(或B?A) 一个元素都是集合B中的元素,就称集合 A为集合B的子集 集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作A=B. 也就是说,若A?B,且B?A,则A=B. (3)真子集的概念 文字语言符号语言图形语言 如果集合A?B,但存在元素x∈B,且 A B(或 B A) x?A,就称集合A是集合B的真子集 (1)定义:不含任何元素的集合叫做空集,记为?. (2)规定:空集是任何集合的子集. 4.集合间关系的性质 (1)任何一个集合都是它本身的子集,即A?A.

(2)对于集合A,B,C,若A?B且B?C,则A?C. 1.集合A={-1,0,1},A的子集中,含有元素0的子集共有() A.2个B.4个 C.6个D.8个 B解析:根据题意,在集合A的子集中,含有元素0的子集有{0},{0,1},{0,-1},{-1,0,1}, 共4个,故选B. 2.已知集合A={x|-1B B.A

《1.2 集合间的基本关系》优秀教案教学设计

《集合间的基本关系》教案 教材分析 类比实数的大小关系引入集合的包含与相等关系,了解空集的含义. 本节内容是在学习了集合的概念、元素与集合的从属关系以及集合的表示方法的基础上,进一步学习集合与集合之间的关系,同时也为下一节学习集合的基本运算打好基础.因此本节内容起着承上启下的重要作用. 教学目标 【知识与能力目标】 1.了解集合之间包含与相等的含义,能识别给定集合的子集; 2.理解子集、真子集的概念; 3.能使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用. 【过程与方法目标】 让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义. 【情感态度价值观目标】 感受集合语言在描述客观现实和数学问题中的意义. 教学重难点 【教学重点】 集合间的包含与相等关系,子集与真子集的概念. 【教学难点】 属于关系与包含关系的区别. 课前准备 学生通过预习,观察、类比、思考、交流、讨论,发现集合间的基本关系. 教学过程 (一)创设情景,揭示课题 复习回顾: 1.集合有哪两种表示方法? 2.元素与集合有哪几种关系? 问题提出:集合与集合之间又存在哪些关系? (二)研探新知 问题1:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?

让学生自由发言,教师不要急于做出判断.而是继续引导学生;欲知谁正确,让我们一起来观察、研探. 投影问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗? (1){1,2,3},{1,2,3,4,5}A B ==; (2)设A 为国兴中学高一(3)班男生的全体组成的集合,B 为这个班学生的全体组成的集合; (3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形 (4){2,4,6},{6,4,2}E F ==. 组织学生充分讨论、交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系: ①一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集. 记作:()A B B A ??或 读作:A 含于B (或B 包含A ). ②如果两个集合所含的元素完全相同,那么我们称这两个集合相等. 教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解.并指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn 图.如图1和图2分别是表示问题2中实例1和实例3的Venn 图. 图1 图2 投影问题3:与实数中的结论“若,,a b b a a b ≥≥=且则”相类比,在集合中,你能得出什么结论? 教师引导学生通过类比,思考得出结论: 若,,A B B A A B ??=且则. 问题4:请同学们举出几个具有包含关系、相等关系的集合实例,并用Venn 图表示. 学生主动发言,教师给予评价.

《集合之间的关系》参考教案

1.2.1 集合之间的关系 (一)教学目标; 1.知识与技能 (1)理解集合的包含和相等的关系. (2)了解使用Venn图表示集合及其关系. (3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系. 2.过程与方法 (1)通过类比两个实数之间的大小关系,探究两个集合之间的关系. (2)通过实例分析,获知两个集合间的包含与相等关系,然后给出定义. (3)从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念. 3.情感、态度与价值观 应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力. (二)教学重点与难点 重点:子集的概念;难点:元素与子集,即属于与包含之间的区别. (三)教学方法 在从实践到理论,从具体到抽象,从特殊到一般的原则下,一方面注意利用生活实例,引入集合的包含关系. 从而形成子集、真子集、相等集合等概念. 另一方面注意几何直观的应用,即Venn图形象直观地表示、理解集合的包含关系,子集、真子集、集合相等概念及有关性质.

(四)教学过程 教学环 节 教学内容师生互动设计意图 创设情境提出问题思考:实数有相关系,大小关系, 类比实数之间的关系,联想集合 之间是否具备类似的关系. 师:对两个数a、b,应有a >b或a = b或a<b. 而对于两个集合A、B它们也 存在A包含B,或B包含A, 或A与B相等的关系. 类比生疑, 引入课题 概念形 成分析示例: 示例1:考察下列三组集合, 并说明两集合内存在怎样的关 系 (1)A = {1,2,3} B = {1,2,3,4,5} (2)A = {新华中学高(一)6 班的全体女生} B= {新华中学高(一)6 班 的全体学生} (3)C = {x | x是两条边相等 的三角形} D = {x | x是等腰三角形} 1.子集: 生:实例(1)、(2)的共同 特点是A的每一个元素 都是B的元素. 师:具备(1)、(2)的两个 集合之间关系的称A是B的 子集,那么A是B的子集怎 样定义呢? 学生合作:讨论归纳子集的 共性. 生:C是D的子集,同时D 是C的子集. 师:类似(3)的两个集合称 为相等集合. 师生合作得出子集、相等两 通过 实例的共 性探究、感 知子集、相 等概念,通 过归纳共 性,形成子 集、相等的 概念. 初步 了解子集、 相等两个 概念.

示范教案(11集合的含义与表示)

模块纵览 课标要求 1.知识与技能 认识和理解集合、映射、函数、幂函数、指数函数、对数函数等概念,认识和理解它们的有关性质和运算.具有一定的把函数应用于实际的能力. 2.过程与方法 通过背景的给出,通过经历、体验和实践探索过程的展现,通过数学思想方法的渗透,让学生体会过程的重要,并在过程中学习知识,同时领会一定的数学思想和方法. 3.情感、态度与价值观 教育的根本目的是育人.通过对本模块内容的教学,使学生在学习和运用知识的过程中提高对数学学习的兴趣,并在初中函数的学习基础上,对数学有更深刻的感受,提高说理、批判和质疑精神,形成锲而不舍追求真理的科学态度和习惯,树立良好的情感态度和价值观. 内容概述 本模块共三章:第一章集合与函数概念;第二章基本初等函数(Ⅰ);第三章函数的应用. 本模块为了用集合与对应的语言刻画函数概念,先在第一章给出集合的有关概念、表示、关系和运算等;然后从函数实例出发深化函数概念及其表示,并研究映射概念;进而又给出了函数的性质:单调性、最值、奇偶性,这也是对函数的深化;接下来再回到特殊的函数——几个基本初等函数,继续认识函数,本模块重点涉及了指数函数、对数函数、幂函数;最后专门给出了函数在数学和实际中的一些应用实例,使函数的价值得到体现,也是进一步巩固函数的概念,更加强了数学应用. 概括地说,本模块的核心内容是“函数”.函数是描述现实世界最重要、最常用的数学模型,是贯穿整个高中数学的纽带,是学生进一步学习的准备,是未来公民的必需,因此,整个模块以函数作为中心,以函数思想作为指导思想. 本模块无论是数还是形都用函数观点来研究,研究它们的变化及其规律.对方程的认识和研究,也是从函数出发,把它与两个函数相结合,把它的解看成两个函数图象的交点的横坐标.这里把函数作为整体来认识,方程则被看成是包含于函数的局部. 教学建议 教师,对数学应该有自己深入的想法,只有教师深入了才能有教学的浅出;教师,对于教学也应该有自己的想法,唯其有自己的想法,才能发挥自己的特长,教出具有独到想法的学生. 1.抓住核心,重点突破 由于函数是本模块的重点和核心,因此教师要重视函数的教学,向学生贯彻函数的数学思想,逐步让学生掌握学会函数,更会用函数的思想去解决数学和实际问题.函数概念的教学要从实际背景和定义两个方面帮助学生理解函数的本质,教学中可引导学生联系生活常识,尝试列举具体函数,构建函数的一般定义.要注意:①构成函数的要素和相同函数的含义,②函数的三种表示法的联系、区别与适用性,③分段函数的意义,④映射的概念和判断.教学中应强调对函数概念本质的理解,在求函数定义域、值域时,要控制难度. 2.用课本教,而非教课本 《普通高中数学课程标准》是在《基础教育课程改革纲要(试行)》的指导下编写的,是数学学科教育目标的具体化,体现数学学科对学生最起码的要求,是编制高考大纲的依据,是数学教学和培养学生数学素质的主要依据,具有指导性.《普通高中数学课程标准》的目标是包含“双基”在内的三维发展目标:知识与技能,过程与方法,情感、态度与价值观.在这种教学过程中,课本仅仅是一种学习工具,是课程标准的具体化,课本内容仅仅是帮助学生实现三维发展目标的一种载体,并不要求学生将课本内容全部掌握.由于高中数学课本版本的多样化,高考数学

人教A版精编数学必修1学案:1.1.2集合间的基本关系课堂导学案(含答案)

1.1.2 集合间的基本关系 课堂导学 三点剖析 一、集合间的关系 【例1】判断下列各式是否正确. (1)2?{x|x≤2}; (2)2∈{x|x≤2}; (3){2}{x|x≤2}; (4)?∈{x|x≤2}; (5)??{x|x≤2}; (6){a,b,c,d}?{e,f,b,d,g}. 思路分析:要注意元素与集合之间、集合与集合之间关系符号的不同,绝对不能混淆. 解:根据元素与集合、集合与集合之间的有关规定,(1)(4)(6)不正确,(2)(3)(5)正确. 温馨提示 一般来说,元素与集合之间应该用“?”或“∈”;而“?,”应该出现于集合与集合之 间;?作为特殊集合应遵从??A,?A(非空).但这不是绝对的,选择的关键在于具体 分析二者的关系.例{1,2}∈{{1,2},{1}},而?∈{?,1},?{?,1}都是对的. 二、运用集合间的关系解题 【例2】 {a,b}?A{a,b,c,d,e},求所有满足条件的集合A. 思路分析:从子集、真子集的概念着手解答. 解:因为{a,b}?A,所以,A中必有元素a,b. 因为,A是{a,b,c,d,e}的真子集,所以,A中元素可以有2个,3个,4个三种情形.具体为:{a,b};{a,b,c};{a,b,d};{a,b,e};{a,b,c,d};{a,b,c,e};{a,b,d,e}共7个. 温馨提示 1.按顺序摆,做到不重不漏. 2.正确地把集合语言表述的问题“翻译”成普通数学语言. 【例3】集合A={1,3,a},B={a2},且B A,求实数a的取值集合. 思路分析:在利用B A这一条件时要注意对a进行讨论. 解:由于B={a2}A={1,3,a}, 因此,①a2=1,得a=1(不合题意舍去)或a=-1; ②a2=3得a=±3; ③a2=a得a=1(不合题意舍去)或a=0. 综上,实数a的取值集合为{-1,3,-3,0}. 温馨提示 1.分类讨论思想是很重要的思想方法,注意掌握分类方法;

高中数学集合间的基本关系教案3 新课标 人教版 必修1(A)

集合间的基本关系 教材分析:类比实数的大小关系引入集合的包含与相等关系 了解空集的含义 课 型:新授课 教学目的:(1)了解集合之间的包含、相等关系的含义; (2)理解子集、真子集的概念; (3)能利用Venn 图表达集合间的关系; (4)了解与空集的含义。 教学重点:子集与空集的概念;用Venn 图表达集合间的关系。 教学难点:弄清元素与子集 、属于与包含之间的区别; 教学过程: 一、引入课题 1、复习元素与集合的关系——属于与不属于的关系,填以下空白: (1)0 N ;(2 ;(3)-1.5 R 2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题) 二、新课教学 (一) 集合与集合之间的“包含”关系; A={1,2,3},B={1,2,3,4} 集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ; 如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。 记作:)(A B B A ??或 读作:A 包含于(is contained in )B ,或B 包含(contains )A 当集合A 不包含于集合B 时,记作 A B 用Venn 图表示两个集合间的“包含”关系 )(A B B A ??或 (二) 集合与集合之间的 “相等”关系; A B B A ??且,则B A =中的元素是一样的,因此B A = 即 ?? ????=A B B A B A 练习 结论: 任何一个集合是它本身的子集 (三) 真子集的概念 若集合B A ?,存在元素A x B x ?∈且,则称集合A 是集合B 的真子集(proper subset )。 记作:A B (或B A ) 读作:A 真包含于B (或B 真包含A ) ?

(完整版)集合的表示方法教案

1.1.2 集合的表示方法 【学习要求】 1. 掌握集合的两种常用表示方法(列举法和描述法). 2. 通过实例能选择自然语言、图形语言、集合语言(列举法或描述法)来描述不同的具体问题,感受集合语言的意义 和作用. 【学法指导】 通过由用自然语言描述数学概念到用集合语言描述数学概念的抽象过程,感知用集合语言思考问题的方法;体会将实际问题数学化的过程. 填一填:知识要点、记下疑难点 1. 列举法:把集合中的元素一一列举出来,写在花括号“{} ”内表示集合的方法?当集合中的元素较少时, 用列举法表示方便. 2. 描述法:一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不 具有性质p(x),则性质p(x)叫做集合A的一个特征性质,于是集合A可以用它的特征性质p(x)描述{x € l|p(x)}. 问题1用列举法能表示不等式x —7<3的解集吗?为什么? 答不能?由不等式x—7<3,得x<10,由于比10小的数有无数个,用列举法是列举不完的,所以不能用列举法. 问题2不等式x —7<3的解集我们可以用集合所含元素的共同特征来表示,那么不等式x —7<3的解集中所含元素的共同特征是什么? 答元素的共同特征为x € R,且x —7<3,即x<10. 问题3由奇数组成的集合中,元素的共同特征是什么? 答共同特征为x = 2k + 1(k € Z) ? 问题4用集合元素的共同特征来表示集合就是描述法,你能给描述法下个定义吗?什么类型的集合适合用描述法表示? 答描述法:在集合I中,属于集合A的任意一个元素 x都具有性质p(x),而不属于集合A的元素都不具有 性质p(x),则性质p(x)叫做集合A的一个特征性 质,于是集合 A可以用它的特征性质p(x)描述为{x € I| p(x) }.描述 法多用于集合中的元素有无限多个的无限集或元素个数较多的有限集. 问题5不等式x2—3x>2的解集如何用描述法表示? 答表示为{x € R|x —3x>2}. 2 问题6在实数集R中取值时,“€ R'常常省略不写,那么不等式x —3x>2的解集又将如何表示? 答{x|x 2—3x>2}. 2 2 . . 问题7集合{(x , y)|y = x + 1}与集合{y|y = x + 1}是同一个集合吗?为什么? 答不是?因为集合{(x , y)|y = x2+ 1}是点集,集合{y|y = x2+ 1}= {y|y > 1}是数集. 例2用描述法表示下列集合: (1) {—1,1}; (2) 大于3的全体偶数构成的集合; (3) 在平面a内,线段AB的垂直平分线. 分析用描述法表示集合,关键在于找到集合的特征性质. 解(1){x||x| = 1}; ⑵{x|x>3 ,且x= 2n, n€ N}; (3){点P€ 平面a |PA= PB}. 小结在用描述法表示集合时,首先考虑元素是什么,再考虑元素必须满足的条件. 跟踪训练2用特征性质描述法表示下列集合: (1) 正偶数集; (2) 被3除余2的正整数集合; (3) 坐标平面内坐标轴上的点集; (4) 坐标平面内在第二象限内的点所组成的集合; (5) 坐标平面内不在第一、三象限的点的集合. 解:(1){x|x = 2n, n €N +}; (2) {x|x = 3n+ 2, n€ N};

高中数学 1.2.1 集合之间的关系学案三 新人教B版必修1

1.2.1集合之间的关系 教学目的:1、使学生掌握子集、真子集、空集、两个集合相等等概念,会写出一个集合的所有子集。 2、能过与不等式类比学习集合间的基本关系,掌握类比思想的应用。 教学重难点:重点是掌握集合间的关系,难点是子集与真子集的区别。 教学过程: 一、复习提问 1、元素与集合之间有什么关系?a与{a}有什么区别? 2、集合的表示方法有几种?分别是什么? 二、新课 5<7 例1、A={1,2,3},B={1,2,3,4,5} 或7>5 特点:A有的元素,B都有,即集合A的任何一个元素都是集合B的元素。 称为:集合A是集合B的子集。 记作:A?B,或B?A。 例2、A为高一(2)班女生的全体组成的集合,B为这个班学生的全体组成的集合。 特点:A有的元素,B都有,即集合A的任何一个元素都是集合B的元素。 定义:一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A是集合B的子集(subset)。 记作:A?B,或B?A。用Venn图表示(右上图)。 5=5 例3、设C={x|x是两条边相等的三角形},D={x|x是等腰三角形} a≤b 特点:集合C中的任何一个元素都是集合D中的元素,集合D中的任何一

且b ≥a 个元素都是集合C 中的元素,即C ?D ,或D ?C 。 则a=b 所以,C=D 。 定义:如果集合A 是集合B 的子集(A ?B),且集合B 是集合A 的子集(B ?A),此时 集合A 与集合B 的元素是一样的,因此,集合A 与集合B 相等,记作:A=B 定义:若集合A ?B ,但在在元素x ∈B ,且x ?A ,我们称集合A 是集合B 的真子集 B ,或B A 记作:A 例1中,集合A 是集合B 的真子集。例2呢? 方程x 2+1=0没有实数根,所以方程x 2+1=0的实数根组成的集合中没有元素。 定义:我们把不含任何元素的集合叫做空集,记为?,并规定:空集是任何集合的子 集。 两个结论:(1)任何一个集合是它本身的子集,即A ?A 。 (2)对于集合A 、B 、C ,如果A ?B ,且B ?C ,那么A ?C 类比:a

高中数学必修一集合的含义及其表示教案

第一章 集合与函数概念 1.1集合 1.1.1 集合的含义及其表示 教学目的:(1)初步理解集合的概念,知道常用数集及其记法; (2)初步了解“属于”关系的意义; (3)初步了解有限集、无限集、空集的意义; 教学重点:集合的含义与表示方法; 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。 教学过程: 一、问题引入: 我家有爸爸、妈妈和我; 我来自燕山中学; 省溧中高一(1)班; 我国的直辖市。 分析、归纳上述各个实例的共同特征,归纳出集合的含义。 二、建构数学: 1.集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set )。集合常用大写的拉丁字母来表示,如集合A 、集合B …… 集合中的每一个对象称为该集合的元素(element ),简称元。集合的元素常用小写的拉丁字母来表示。如a 、b 、c 、p 、q …… 指出下列对象是否构成集合,如果是,指出该集合的元素。 (1)我国的直辖市; (2)省溧中高一(1)班全体学生;(3)较大的数 (4)young 中的字母; (5)大于100的数; (6)小于0的正数。 2.关于集合的元素的特征 (1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。 (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。 (3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。 3.集合元素与集合的关系用“属于”和“不属于”表示; (1)如果a 是集合A 的元素,就说a 属于A ,记作a ∈A (2)如果a 不是集合A 的元素,就说a 不属于A ,记作a ?A (“∈”的开口方向,不能把a ∈A 颠倒过来写) 4.有限集、无限集和空集的概念: 5.常用数集的记法:(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N (2)正整数集:非负整数集内排除0的集记作N *或N + {} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {} ,,, 210±±=Z (4)有理数集:全体有理数的集合记作Q , {}整数与分数 =Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应 的=R

《集合间的基本关系》教学设计(精品)

集合间的基本关系 (一)教学目标; 1.知识与技能 (1)理解集合的包含和相等的关系. (2)了解使用Venn图表示集合及其关系. (3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系. 2.过程与方法 (1)通过类比两个实数之间的大小关系,探究两个集合之间的关系. (2)通过实例分析,获知两个集合间的包含与相等关系,然后给出定义. (3)从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念. 3.情感、态度与价值观 应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力. (二)教学重点与难点 重点:子集的概念;难点:元素与子集,即属于与包含之间的区别. (三)教学方法 在从实践到理论,从具体到抽象,从特殊到一般的原则下,一方面注意利用生活实例,引入集合的包含关系. 从而形成子集、真子集、相等集合等概念. 另一方面注意几何直观的应用,即Venn图形象直观地表示、理解集合的包含关系,子集、真子集、集合相等概念及有关性质. (四)教学过程

图表示为: =2}. }.

备选训练题 例1 能满足关系{a ,b }?{a ,b ,c ,d ,e }的集合的数目是( A ) A .8个 B .6个 C .4个 D .3个 【解析】由关系式知集合A 中必须含有元素a ,b ,且为{a ,b ,c ,d ,e }的子集,所以A 中元素就是在a ,b 元素基础上,把{c ,d ,e }的子集中元素加上即可,故A = {a ,b },A = {a , b , c },A = {a ,b , d },A = {a ,b , e },A = {a ,b ,c ,d },A = {a ,b ,c ,e },A = {a ,b ,d ,e },A = {a ,b ,c ,d ,e },共8个,故应选A. 例2 已知A = {0,1}且B = {x |x A ?},求B . 【解析】集合A 的子集共有4个,它们分别是:?,{0},{1},{0,1}. 由题意可知B = {?,{0},{1},{0,1}}. 例3 设集合A = {x – y ,x + y ,xy },B = {x 2 + y 2,x 2 – y 2,0},且A = B ,求实数x 和y 的值及集合A 、B . 【解析】∵A = B ,0∈B ,∴0∈A . 若x + y = 0或x – y = 0,则x 2 – y 2 = 0,这样集合B = {x 2 + y 2,0,0},根据集合元素的互异性知:x + y ≠0,x – y ≠0. ∴22 220 xy x y x y x y x y =?? -=-??+=+? (I ) 或22 220xy x y x y x y x y =?? -=+??+=-? (II ) 由(I )得:00x y =?? =?或01x y =??=?或1 0x y =??=? 由(II )得:00x y =?? =?或01x y =??=-?或1 0x y =??=? ∴当x = 0,y = 0时,x – y = 0,故舍去. 当x = 1,y = 0时,x – y = x + y = 1,故也舍去. ∴01x y =?? =?或0 1x y =??=-? , ∴A = B = {0,1,–1}. 例4 设A = {x | x 2 – 8x + 15 = 0},B = {x | ax – 1 = 0},若B A ?,求实数a 组成的集合,并写出它的所有非空真子集. 【解析】A = {3,5},∵B A ?,所以

集合的概念和表示方法2 教案

第二课时 续5 集合的表示方法 引入课题 课本4P 思考 (2)描述法 由不等式73x -<的解集 引入描述法概念 描述法... :用集合所含元素的共同特征表示集合的方法,一般形式为{|}x I P ∈,其中x 代表元素,I 是x 的取值范围,P 是x 的共同特征. (说明:有的书上用冒号或分号代替竖线,如{73}x x -<:或{73}x x -<;) 如:{}|10A x R x =∈<;{}|2,B x Z x k k Z =∈=∈;{}|5,C x x x Q =>-∈ 例题 注意:①“代表元素”,是表示这个集合元素的一般符号,ⅰ如表示数集时,我们可选用,,,x y a L 作为代表元素;表示点集时,可选用数对(),x y 作为代表元素;ⅱ集合与它的代表元素所采用的字母无关,只与代表元素的形式有关.如{}|10x R x ∈<,也可表示为{}|10y R y ∈<,{}|10a R a ∈<. ②“取值范围”,对于代表元素的取值范围,如果从上下文的关系来看是明确的,则可以省略.如{}|10x R x ∈<可表示为{}|10x x <; ③“共同特征”,即代表元素满足的条件、具备的属性,如不等式73x -<的解都具备的条件是10x <,则其解集表示为{}|10x x <. 强调:描述法表示集合应注意集合的代表元素,如(){}2,|32x y y x x =++、{}2|32y y x x =++与{} 2|32x y x x =++有什么不同,只要不引起误解,集合的代表元素也可省略,例如:{}整数 (即{}|x x 是整数),即代表整数集Z . 辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数},这种写法{实数集},{}R 也是 错误的. 探究集合的表示方法

人教版数学高一-集合间的基本关系 教案

课题:§1.2集合间的基本关系 教材分析:类比实数的大小关系引入集合的包含与相等关系 了解空集的含义 课 型:新授课 教学目的:(1)了解集合之间的包含、相等关系的含义; (2)理解子集、真子集的概念; (3)能利用Venn 图表达集合间的关系; (4)了解与空集的含义。 教学重点:子集与空集的概念;用Venn 图表达集合间的关系。 教学难点:弄清元素与子集 、属于与包含之间的区别; 教学过程: 一、引入课题 1、复习元素与集合的关系——属于与不属于的关系,填以下空白: (1)0 N ;(2 ;(3)-1.5 R 2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣 布课题) 二、新课教学 (一) 集合与集合之间的“包含”关系; A={1,2,3},B={1,2,3,4} 集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ; 如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。 记作:)(A B B A ??或 读作:A 包含于(is contained in )B ,或B 包含(contains )A 当集合A 不包含于集合B 时,记作A B 用Venn )(A B B A ??或 (二) A B B A ??且,则B A =中的元素是一样的,因此B A = 即 ??????=A B B A B A 练习 结论: 任何一个集合是它本身的子集 (三) 真子集的概念 若集合B A ?,存在元素A x B x ?∈且,则称集合A 是集合B 的真子集(proper ?

集合间的基本关系学案

集合间的基本关系 学习目标︰了解集合之间包含与相等两关系的含义,能识别给定集合的子集;理解子集、真子集的概念;能利用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用;了解空集的含义 学习重点:集合间的包含与相等关系,子集与其子集的概念. 学习难点:难点是属于关系与包含关系的区别. 学习过程 一、课前准备(预习教材,找出疑惑之处) 复习1:集合的表示方法有 、 、 . 请用适当的方法表示下列集合. (1)10以内3的正倍数;(2)1000以内3的倍数. 复习2:用适当的符号填空. (1) 0 N ;2 Q ; -1.5 R. (2)设集合2{|(1)(3)0}A x x x =--=,{}B b =,则1 A ;b B ;{1,3} A. 二、新课导学 学习探究 探究:比较下面几个例子,试发现两个集合之间的关系: {3,6,9}A =与*{|3,333}B x x k k N k ==∈≤且; 1}x |{x >=C 与5}x |{x >=D {|(1)(2)0}E x x x x =--=与{0,1,2}F =. 新知:子集、相等、真子集、空集的概念. ① 如果集合A 的任意一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset ),记作:()A B B A ??或,读作:A 包含于(is contained in )B ,或B 包含(contains)A. 当集合A 不包含于集合B 时,记作B A ? ② 在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图. 用Venn 图表示两个集合间的“包含”关系为:()A B B A ??或 子集性质:(1)任何一个集合是 的子集;即:A?A; (2)若B A ?,C B ?,则 。 ③ 集合相等:对于两个集合A 与B ,如果集合A 是集合B 的子集(B A ?),且集合B 是集合A 的子集(B A ?),此时集合A 与集合B 的元素是一样的,因此,称集合A 与集合B 。记作:A =B ;若A B B A ??且,则A B = ④ 真子集:若集合A B ?,存在元素x B x A ∈?且,则称集合A 是集合B 的真子集(proper subset ),记作:A B (或B A ),读作:A 真包含于B (或B 真包含A ) ⑤ 空集:不含有任何元素的集合称为空集(empty set ),记作:?;规定:空集是任何集合的子集,是任何非空集合的真子集. ⑥集合间的基本关系 (1)任何集合是 的子集,即A A ;对于集合A,B,C,若C B B A ??,,那么A C ; (2)含n 个元素的集合,其子集的个数 ,真子集的个数 ,非空真子集的个数 ⑦知识拓展︰如果一个集合含有n 个元素,那么它的子集有2n 个,真子集有21n -个 课内自测: 1.用适当符号填空:(1){,}a b {,,}a b c ,a {,,}a b c ;(2)? 2{|30}x x +=,? R ; (3)N {0,1},Q N ;(4){0} 2{|0}x x x -=;(5)2 ___{10}xR x φ∈+=; (6)20___{0}x x =;(7)2{2,1}__{320}x x x -+= (8){(2,4)} {(x ,y )|y =2x} 2.下列关系正确的有 (1){,}={b ,a }a b ;(2){,}{,}a b b a ?;(3){}φφ=;(4){0}φ=;(5){0}φ?;(6)0{0}∈;(7)0φ∈;

集合的概念教学设计

集合的概念及相关运算教学设计 一、教材分析 1.知识来源:集合的概念选自湖南教育出版社必修一中第一章集合与函数概念的第一小节; 2. 知识背景:作为现代数学基础的的集合论,集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学中一些冗长的文字语言.高中数学课程只将集合作为一种语言来学习,作为一种数学简单符号来探究。通过本节课的学习,是阶段性的要求,学生将领悟集合的抽象性及其具体性,学会使用最基本的集合语言去表示有关的数学对象,逐渐发展运用数学语言进行交流的能力。 3.知识外延:集合相关知识的学习对于接下来函数的学习至关重要,高中函数的概念将建立在集合间关系的基础上的。 二、学情分析 1.学生心理特征分析:集合为高一上学期开学后的第一次授课知识,是学生从初中到高中的过渡知识,存在部分同学还沉浸在暑假的懒散中,从而增加了授课的难度。再者,与初中直观、具体、易懂的数学知识相比,集合尤其是无限集合就显得抽象、不易理解,这会给学生产生一定的心理负担,对高中数学知识的学习产生排斥心理。因此本节授课方法就显得十分重要。 2.学生知识结构分析:对于高一的新生来说,能够顺利进入高中知识的学习,基本功还是较扎实的,有良好的学习态度,也有一定的自主学习能力和探究能力。对集合概念的知识接纳和理解打下了良好的

基础,在教学过程中,充分调动学生已掌握的知识,增强学生的学习兴趣。 三、教学目标 (一)知识与技能目标 1.了解集合的含义与表示,理解集合间的基本关系,掌握集合的基本运算。能从集合间的运算分析出集合的基本关系,同时对于分类讨论问题,能区分取交还是取并. 2.学会在具体的问题中选择恰当的集合表示方法,理解集合有限和无限的特征,理清“元素和集合关系”和“集合与集合关系”符号的区别,不混淆。 3.学会正确使用集合补集思想,即为“正难则反”的思想。 (二)过程与方法目标 1.通过学生自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化. 2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合的本质. 3. 学生通过集合概念的学习,应掌握分类讨论思想、化简思想以及补集思想等。 (三)情感态度与价值观目标 1.在学生自主整理知识结构的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的能力。 2.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的

集合的概念和表示方法教学设计

1集合的概念和表示方法教材分析 集合概念的基本理论,称为集合论.它是近、现代数学的一个重要基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其反映的数学思想,在越来越广泛的领域中得到应用.在小学和初中数学中,学生已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,有了一定的感性认识.这节内容是初中有关内容的深化和延伸.首先通过实例引出集合与集合元素的概念,然后通过实例加深对集合与集合元素的理解,最后介绍了集合的常用表示方法,包括列举法,描述法,还给出了画图表示集合的例子.本节的重点是集合的基本概念与表示方法,难点是运用集合的两种常用表示方法———列举法与描述法正确表示一些简单的集合. 教学目标 1.初步理解集合的概念,了解有限集、无限集、空集的意义,知道常用数集及其记法. 2.初步了解“属于”关系的意义,理解集合中元素的性质. 3.掌握集合的表示法,通过把文字语言转化为符号语言(集合语言),培养学生的理解、化归、表达和处理问题的能力. 任务分析 这节内容学生已在小学、初中有了一定的了解,这里主要根据实例引出概念.介绍集合的概念采用由具体到抽象,再由抽象到具体的思维方法,学生容易接受.在引出概念时,从实例入手,由具体到抽象,由浅入深,便于学生理解,紧接着再通过实例理解概念.集合的表示方法也是通过实例加以说明,化难为易,便于学生掌握. 教学设计 一、问题情境 1.在初中,我们学过哪些集合? 2.在初中,我们用集合描述过什么? 学生讨论得出:

在初中代数里学习数的分类时,学过“正数的集合”,“负数的集合”;在学习一元一次不等式时,说它的所有解为不等式的解集. 在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合. 3.“集合”一词与我们日常生活中的哪些词语的意义相近? 学生讨论得出: “全体”、“一类”、“一群”、“所有”、“整体”,…… 4.请写出“小于10”的所有自然数. 0,1,2,3,4,5,6,7,8,9.这些可以构成一个集合. 5.什么是集合? 二、建立模型 1.集合的概念(先具体举例,然后进行描述性定义) (1)某种指定的对象集在一起就成为一个集合,简称集. (2)集合中的每个对象叫作这个集合的元素. (3)集合中的元素与集合的关系: a是集合A中的元素,称a属于集合A,记作a∈A; a不是集合A中的元素,称a不属于集合A,记作a A. 例:设B={1,2,3},则1∈B,4B. 2.集合中的元素具备的性质 (1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的. (2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的. 例:若集合A={a,b},则a与b是不同的两个元素. (3)无序性:集合中的元素无顺序.

集合间的基本关系试题(含答案)

一、选择题 1.对于集合A ,B ,“A ?B ”不成立的含义是( ) A . B 是A 的子集 B .A 中的元素都不是B 的元素 C .A 中至少有一个元素不属于B D .B 中至少有一个元素不属于A [答案] C [解析] “A ?B ”成立的含义是集合A 中的任何一个元素都是B 的元素.不成立的含义是A 中至少有一个元素不属于B ,故选C. 2.集合M ={(x ,y )|x +y <0,xy >0},P ={(x ,y )|x <0,y <0}那么( ) A .P M B .M P C .M =P D .M P [答案] C [解析] 由xy >0知x 与y 同号,又x +y <0 ∴x 与y 同为负数 ∴??? x +y <0xy >0等价于????? x <0y <0∴M =P . 3.设集合A ={x |x 2=1},B ={x |x 是不大于3的自然数},A ?C ,B ?C ,则集合C 中元素最少有( ) A .2个 B .4个 C .5个 D .6个 [答案] C [解析] A ={-1,1},B ={0,1,2,3}, ∵A ?C ,B ?C , ∴集合C 中必含有A 与B 的所有元素-1,0,1,2,3,故C 中至少有5个元素. 4.若集合A ={1,3,x },B ={x 2,1}且B ?A ,则满足条件的实数x 的个数是 ( ) A .1 B .2 C .3 D .4 [答案] C

[解析] ∵B ?A ,∴x 2∈A ,又x 2≠1 ∴x 2=3或x 2=x ,∴x =±3或x =0.故选C. 5.已知集合M ={x |y 2=2x ,y ∈R }和集合P ={(x ,y )|y 2=2x ,y ∈R },则两个集合间的关系是( ) A .M P B .P M C .M =P D .M 、P 互不包含 [答案] D [解析] 由于两集合代表元素不同,因此M 与P 互不包含,故选D. 6.集合B ={a ,b ,c },C ={a ,b ,d };集合A 满足A ?B ,A ?C .则满足条件的集合A 的个数是( ) A .8 B .2 C .4 D .1 [答案] C [解析] ∵A ?B ,A ?C ,∴集合A 中的元素只能由a 或b 构成.∴这样的集合共有22=4个. 即:A =?,或A ={a },或A ={b }或A ={a ,b }. 7.设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },则( ) A .M =N B .M N C .M N D .M 与N 的关系不确定 [答案] B [解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得 M ={…-34,-14,14,34,54…}, N ={…0,14,12,34,1…}, ∴M N ,故选B. 解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4 +12=k +24(k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B. [点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若

相关文档
最新文档