煤粉颗粒粒度对煤质分析特性与燃烧特性的影响

煤粉颗粒粒度对煤质分析特性与燃烧特性的影响
煤粉颗粒粒度对煤质分析特性与燃烧特性的影响

文章编号:0253-9993(1999)06-0643-05

煤粉颗粒粒度对煤质分析特性与燃烧特性的影响

姜秀民1

,李巨斌1

,邱健荣

2

(1.东北电力学院,吉林 132012;2.华中理工大学,湖北武汉 430074)

摘 要:采用Malvern 公司的马尔文粒度仪测量煤粉颗粒的平均粒度和粒度分布、及Leco 公司

的M AC -500型工业分析仪测量煤粉的工业分析成分,对合山劣质烟煤、晋城贫煤的各4种不同粒径的细化和超细化煤样进行了试验研究,应用库仑滴定法测定了煤粉颗粒粒度对煤质全硫元素分析的影响.结果表明,煤粉颗粒粒度对煤质分析特性有很大的影响,并进一步影响煤粉的热解、着火、燃烧等特性.煤粉颗粒粒度是进行煤质分析与燃烧系统设计的重要物理参数.关键词:颗粒粒度;煤质分析特性;煤粉;燃烧特性中图分类号:TK224.1;TQ533 文献标识码:A

收稿日期:1999-07-06

基金项目:煤燃烧国家重点实验室开放基金(9803)与国家电力公司东北分公司电力工业重点科技基金(96HB -02)项目

目前,微细粒技术已被作为一种新兴的煤粉燃烧技术处于开发研究中.在我国目前的科技文献和工程实践活动中,人们习惯于将极细的粉体如10μm 以下直到亚微米的粉体称为“超细”粉体.在电站煤粉锅炉燃烧方面,把超细化煤粉定义为20μm 以下的煤粉.煤粉的物理结构参量主要包括颗粒粒度、几何形状、颗粒密度、比表面积、孔隙率和孔隙结构等.其中颗粒粒度是最基本的也是最重要的物理参数,它对煤粉颗粒的几何形状、颗粒密度、比表面积、孔隙率和孔隙结构等有重大影响.煤粉的物理结构是决定煤粉颗粒中质量、热量传递速率的重要因素,所以煤的物理结构很大程度上影响煤的着火、燃烧及燃尽等特性.笔者采用英国M alvern 公司的马尔文粒度仪较精确地测量了煤粉试样的平均颗粒粒度及其粒度分布,并结合物理特性参数对煤粉着火、燃烧及燃尽等特性的影响进行分析.还就不同颗粒粒度的煤粉试样在工业分析及全硫分析中表现出来的不同煤质分析特性进行了综合分析.

1 试验设备及试验说明

将一定量的合山劣质烟煤与晋城贫煤经过洗涤、干燥、碾磨后制成分析基煤样,然后各取一定量的两表1 试验煤样的平均颗粒粒度Table 1 Average particle size of testing coal sample

煤种平均粒径/μm 合山煤10.9023.9230.3557.40晋城煤

19.30

31.45

48.85

83.77

种煤经过反复的研磨分别制成4种粒度不同的试验煤样.采用Malvern 公司的马尔文粒度仪测量煤粉颗粒的平均粒度和粒度分布,采用Leco 公司的M AC -500型工业分析仪测量煤粉的工业分析成分,对合山劣质烟煤、晋城贫煤的各4种不同粒径煤样进行了试验研究,还应用库仑滴定法测定了煤粉颗粒粒度对煤质全硫元素分析的影响,结果见表1.

2 试验结果及分析

2.1 颗粒粒度范围对粒度分布的影响

应用英国Malvern 公司的马尔文粒度仪测得晋城与合山两种经自然粉碎煤粉各4种不同粒度煤样的粒

 第24卷第6期煤 炭 学 报

Vol .24 No .6 1999年 12月

JOURNA L OF CHINA COAL SOCIETY

Dec . 1999 

度分布如图1所示

.

图1 晋城与合山煤的颗粒粒度分布

F ig .1 Par ticle size distribution of Jincheng coal and Heshan coal

(a )晋城煤;(b )合山煤

从图1看出:颗粒粒度较小的煤样有较窄的粒度分布.而较小颗粒有较好的反应性,并且更能够响应

流体的运动[1].这就意味着通过煤粉的细化、超细化能够有效地改善煤粉的燃烧特性和炉膛内流动的不均匀性,从而完善煤粉锅炉的燃烧过程,有效地解决电站煤粉锅炉的稳燃问题及低负荷稳燃问题.这一点对于劣质煤和低挥发分煤尤为重要.

合山、晋城各煤样的着火温度(T i )如图2所示.本试验的对象是处于相对静态下的煤粉团,从图2图2 着火温度与颗粒粒度的关系Fig .2 Rela tio ns betw een ignition temperature

and par ticle size of testing coal sample

y 1=426.11142-34.42107exp [-(x -19.3)/10.42052];y 2=436.13282-96.43714exp [-(x -10.9)/8.43147]

可以明显看出,合山、晋城两种煤的4种煤样表现出相同的趋势,即随着煤样粒度的减小,其着火提前,T i 随之降低,尤其是合山(10.90μm )与晋城(19.30μm )两种超细化煤样的此种趋势更加明显.其原因是:煤粉的细化、超细化使得颗粒的比表面积大大增加,从而更加有利于挥发分的析出与煤颗粒的非均相着火.另外,在本文的试验设备和试验条件下,处于相对静态条件下的煤粉团表现出了与煤粉雾试验相近的着火特性.

笔者还对图2进行了曲线拟合,结果发现用一次指数函数y =y 0+ex p [-(x -x 0)/t ]对T i 与颗粒粒度的关系进行拟合,达到了非常好的拟合效果,其具体的拟合公式如图中y 1,y 2所示.从图2不难看出,煤粉的细化、超细化对合山煤着火特性的影响更大,

而对晋城煤的影响虽然也很显著,但相对于合山煤而言则较小.其原因在于:合山煤的挥发分要高于晋城煤,所以在加温过程中合山煤中挥发分的析出更快,而挥发分的析出与着火对煤的着火特性起决定性作用,因此,合山煤着火特性受煤粉颗粒粒径的影响更大. 煤粉气流的着火温度也随着煤粉的细度而变化,煤粉颗粒越小,着火越容易.这是因为在同样的煤粉浓度下,煤粉越细,进行燃烧反应的表面积就会越大,而煤粉本身的热阻却减小,因而在加热时,细煤粉的温升速度要比粗煤粉快,这样就可以加快化学反应速度,更快地达到着火.由此可见,对于难着火的低挥发分煤,细化与超细化会强化它的着火过程.2.2 颗粒粒度对煤质工业分析的影响

采用Leco 公司的MAC -500型工业分析仪分别测定颗粒粒度不同煤样的各种成分见表2.

644

煤 炭 学 报

1999年第24卷

表2 煤样颗粒粒度对工业分析结果的影响

Table 2 The influence of particle size on proximate

analysis of testing coal sample

% 煤种

粒度/μm W ad FC ad V ad A ad

合山煤

57.40

3.0331.441

4.0751.4630.352.9531.0014.4951.5623.922.9130.8114.8551.4310.902.82

29.65

16.11

51.42

晋城煤

83.77

3.0566.0610.8020.0948.852.8171.1011.311

4.7831.452.5570.8311.6614.9619.30

2.69

70.38

11.79

15.14

从对不同颗粒粒度煤样进行工业分析的结果

可以看出:煤样颗粒粒度是进行煤样工业分析时

不可忽视的一个重要参数,合山煤与晋城煤的各个分析成分都体现出与颗粒粒度的一定关系,这是颗粒粒度影响煤微观颗粒结构的一种宏观外在

体现.从这个意义上说,煤粉颗粒粒度可以被视为煤粉的一个宏观的基本状态参数,从它入手可以构建全面的表征煤粉宏观特性与微观特性体系.

工业分析中挥发分的含量与煤粉燃烧特性息息相关,对于同一煤种而言,

其与煤粉颗粒粒度

图3 煤样挥发分随颗粒粒度的变化Fig .3 Volatile matter change with par ticle

size of testing coal sample 的关系如图3所示.从图3可以看出,随着煤粉的细化、超细化,煤粉的挥发分呈上升趋势,而且由于合山煤挥发分相对于晋城煤含量较高而且灰分含量大,经细化、超细化后物质解离程度更好,所以增加的趋势更为明显.

挥发分的含量多少是影响煤粉颗粒着火与燃烧特性的一个重要指标.煤粒的着火温度随挥发分的变化规律如图4所示,挥发分升高时,煤粉气流的着火温显著降低,着火热亦随之减小,因此,随着煤粉的细化、超细化,煤粉的挥发分含量升高,可有效地改善其着火与燃烧过程.挥发分对煤粉着火与燃烧过程的

影响还表现在火焰传播速度上,如图5所示.在相同

的气粉比条件下,挥发分升高,煤粉火炬中火焰传播速度显著提高,从而火焰的扩展条件改善,着火速度

提高,燃烧的稳定性增强[2]

.

图4 煤粒着火温度与挥发分的关系Fig .4 Relations between volatile matter and ig nition temperature of testing coal

sample

图5 挥发分对火焰传播速度的影响F ig .5 The influence of volatile ma tter on

flame propagation rate

2.3 颗粒粒度对煤质全硫元素分析的影响

笔者还应用库仑滴定法测定了煤粉颗粒粒度对煤质全硫元素分析的影响,结果如图6所示.以合山30.35μm 及晋城48.85μm 两个煤样为例,应用型号为Leco CHN 600元素分析仪测得C ,H ,N 三种元素,然后应用全硫分析仪测出S 元素的含量,O 元素的含量则由差减法得出.所得元素分析结果见表3.

645

第6期姜秀民等:煤粉颗粒粒度对煤质分析特性与燃烧特性的影响

图6 合山与晋城煤颗粒粒度对全硫分析的影响

Fig .6 T he influence of particle size on total sulfur analy sis of Heshan and Jincheng testing coal sample 表3 合山30.35μm 及晋城48.85μm 煤样的元素分析Table 3 Ultimate analysis of Heshan 30.35μm and

Jincheng 48.85μm testing coal sample

% 

煤 样 w (C ad )w (H a d )w (O ad )w (N ad )w (S ad )合山(30.35)33.451.974.640.644.79晋城(48.85)

77.73

2.33

1.11

0.99

0.25

图6(a )为合山煤的全硫分析结果,本试验所选取的是合山高硫煤;图6(b )

为晋城煤的全硫分析结果.可以看出,合山煤随着颗粒粒度的减小全硫分增加较

大,而晋城煤则相对较小.以合山57.40μm 与合山10.90μm 为例,后者比前者的全硫分增加2.34%.可以说,由于合

山煤中灰分含量高,经煤粉细化、超细化使得合山煤中含无机硫的矿物质有更大的解离度,所以全硫分析中硫元素的析出随着颗粒粒度的减小有较大程度的增加.

3 结 论

(1)经自然粉碎的煤粉,颗粒粒度较小的煤样有较窄的粒度分布.而较小颗粒有较好的反应性,并且更能够响应流体的运动,这就意味着通过煤粉的细化、超细化能够有效地改善煤粉的燃烧特性和炉膛内流

动的不均匀性,从而完善煤粉锅炉的燃烧过程,有效地解决电站煤粉锅炉的稳燃问题及低负荷稳燃问题.这一点对于劣质煤和低挥发分煤尤为重要.

(2)随着煤样粒度的减小,其着火提前,着火温度随之降低,尤其是两种超细化煤样此种趋势更加明显.煤粉的细化、超细化使得颗粒的比表面积大大增加,从而更加有利于挥发分的析出与煤颗粒的非均相着火.另外,在本文的试验设备和试验条件下,处于相对静态条件下的煤粉团表现出了与煤粉雾试验相近的着火特性.

(3)煤粉经细化、超细化后物质解离程度更好,挥发分呈上升趋势.由于合山煤挥发分相对于晋城煤含量较高而且灰分含量大,所以增加的趋势更为明显.燃料性质中对煤粉着火过程影响最大的是挥发分含量,挥发分升高时,煤粉气流的着火温度显著降低,着火热亦随之减小,因此煤粉的细化、超细化,使煤粉的挥发分含量升高,可有效地改善其着火与燃烧过程.挥发分对煤粉着火与燃烧过程的影响还表现在火焰传播速度上,在相同的气粉比条件下,挥发分升高,煤粉火炬中火焰传播速度显著提高,从而火焰的扩展条件改善,着火速度提高,燃烧的稳定性增强.

(4)随着煤粉的细化、超细化,煤中含无机硫的矿物质的解离度更大,所以全硫分析中硫元素的析出随着颗粒粒度的减小有所增加.(5)煤样颗粒粒度是进行煤样工业分析时不可忽视的一个重要参数,是影响煤微观颗粒结构的一种宏观外在体现,从它入手可以构建全面表征煤粉的宏观特性与微观特性体系.

646

煤 炭 学 报

1999年第24卷

参考文献:

[1] 孙学信,陈建原.煤粉燃烧物理化学基础[M ].武汉:华中理工大学出版社,1991[2] 范从振.电厂锅炉原理[M ].北京:水利电力出版社,1984

作者简介:

姜秀民(1956-),男,辽宁昌图人,教授,国际能源基金会国际顾问委员会委员.长期从事煤的清洁高效燃烧理论与技术的研究工作,在循环流化床燃烧理论与技术及油页岩、泥炭、低热值褐煤,生物质燃料的燃烧理论及应用研究方面取得了一系列成果.完成国家科技攻关项目2项,省部级重点科研项目及应用研究项目30余项.将科研成果应用于生产实践开发出的4种新型循环流化床锅炉获国家级节能产品证书.获省部级科技成果奖5项,国家发明与实用新型专利6项.在国内外公开发表学术论文60余篇.

The influence of particle size on compositions analyzing

and combustion characteristics of pulverized coal

JIANG Xiu -min 1

,LI Ju -bin 1

,QI U Jian -rong

2

(1.Northeast Institute of Electric Power Engineer ing ,Jilin 132012,Ch ina ;2.Huaz hong University o f Science an d Technology ,Wuhan

430074,C h ina )

A bstract :Experimental investigation and theoretical analy zing has proved that there are great influence of parti -cle size on compositions analyzing characteristics ,and till further influence py roly sis ,ig nitability ,combustion and burnout characteristics .Pulverized coal particle size is a very im portant physical parameter fo r compositions analy zing characteristics and its combustion system design .Experimental investigatio ns are based on four differ -ent particle size coals taken from Heshan and Jincheng respectively ,their particle size analysis by M alvern grain structure analy sis apparatus ,their proximate analy sis by MAC -500meter ,their total surfer analysis by coulometry titration .

Key words :particle size ;coal compositions analyzing characteristics ;pulverized coal ;combustio n characteristics

647

第6期姜秀民等:煤粉颗粒粒度对煤质分析特性与燃烧特性的影响

生物质燃料的燃烧特性

生物质燃料的燃烧特性 目前,生物质最主要的利用方式就是生物质燃烧。研究生物质燃料的组成成分,了解其燃烧特点,有利于进一步科学、合理地开发利用生物质能。从刘建禹、翟国勋等[20]对生物质燃料特性的研究可以发现,生物质燃料与化石燃料相比存在明显的差异。从化学的角度上看,生物质属于碳氢化合物,含固定碳少。生物质燃料中含碳量最高的也仅50%左右,相当于褐煤中的含碳量。因此,生物质燃料不抗烧,热值较低;若生物质燃料中含氢量变多,挥发分就明显增多。生物质燃料中的碳元素多数和氢元素结合成小分子的碳氢化合物,燃烧需要长时间的干燥,在一定的温度下热分解而析出挥发物。所以,生物质燃料易被引燃,燃烧初期,烟气量较大;生物质燃料含氧量明显地多于煤炭,它使得生物质燃料热值低,但易于引燃;生物质燃料的密度小于煤炭,其质地较疏松,特别是农作物秸杆和一些粪类,因此生物质燃料易于燃烧和燃尽,但其热值较低,发热量小,灰烬中残留的焦碳量少于燃烧煤炭;生物质燃烧排放烟气中硫氧化物和氮氧化物含量较少,故对环境的污染将小于燃烧煤炭等化石燃料,燃烧时无需设置控制气体污染装置,从而降低了成本,这也是生物质优于化石燃料的一方面[22]。生物质燃料的燃烧过程主要分为挥发份的燃烧和残余焦炭的燃。 本文有宇龙机械整理。 4 烧,其主要燃烧过程的特点是[23]: (1)生物质水分含量较多,燃烧需要较长时间的干燥,产生的烟气量较大,排烟造成热损失较高; (2)生物质燃料的密度较小,结构比较疏松,燃烧时受风面积大,较易造成悬浮燃烧,容易产生一些黑絮; (3)由于生物质热值低,发热量小,在锅炉内比较难以稳定的燃 烧; (4) 由于生物质挥发份含量高,燃料着火温度较低,一般在250℃ ~350℃温度下挥发份就大量析出并开始剧烈燃烧,此时若空气供应量不足,将会增大燃料的化学不完全燃烧损失; (5)挥发份析出燃尽后,受到灰烬包裹和空气渗透困难的影响,焦炭颗粒燃烧速度缓慢、燃尽困难,如不采取适当的必要措施,将会导致灰烬中残留较多的余碳,增大机械不完全燃烧损失。 生物质燃烧利用现状 涂装生物质燃烧机第一品牌-淳元将陆续为你带来行业新资讯。 生物质是全球应用最广泛的可再生能源,自从远古时代人类开始使用这种能源。人们主要是将生物质进行燃烧,其产生的热能可以用于做饭,取暖等日常生活;或者将生物质进行厌氧发酵生产沼气,也可以用来替代生物质能源,尤其是在发展中国家[20]。我国是一个发展中的农业大国 ,生物质资源十分丰富,每年农作物秸秆产量达几亿吨。生物质是唯一可转化成可替代常规液态石油燃料和其他化学品的烧,其主要燃过程的特点是[23]:(1)生物质水分含量较多,燃烧需要较长时间的干燥,产生的烟气量较大,排烟造成热损

粒度特性曲线和粒度特性方程

粒度特性曲线和粒度特性方程 [导读] 表示碎散物料的粒度组成,除了用表格形式表示外,还可以用图形或曲线表示。而且由曲线表示比表格更清楚。因曲线为连续的,所以可求出任意级别的产率。通常,以横坐标表示颗粒的粒度,纵坐标表示物料中各粒级(或累积)产率。这种按筛分试验结果绘制的粒度分布曲线,叫粒度特性曲线。 1.累积粒度特性曲线 若以纵坐标列出的是正累积产率,横坐标表示颗粒的粒度,则可得到正累积粒度特性曲线。同理,横坐标不变,纵坐标列出的是负累积(又称筛下累积)产率,则可得到负累积粒度特性曲线。表1为某筛分试验结果,图1为累积粒度特性曲线。由图1可见,正负累积粒度特性曲线是对称的,而且相交于产率为50%处。 图1 累积粒度特性曲线 累积粒度特性曲线的优点是绘制简便,缺点是在细粒级一端刻度太窄小,因此,曲线细粒级一端误差较大。 2.半对数粒度特性曲线

若横坐标以各粒级尺寸的对数值标刻度,纵坐标表示累级产率,如图2所示,所得图形称半对数累积粒度特性曲线。此曲线可以克服细粒级部分狭窄的缺点,但粗级部分又压缩得较大。 图2 半对数累积粒度特性曲线 3.全对数粒度特性曲线 纵坐标与横坐标均采用对数表示(如图3)称全对数累积粒度特性曲线。采用全对数法,大部分曲线可以直线化,从而可求出粒度分布的方程式。这种方法有利于研究碎散物料的分布规律。 图3 全对数累积粒度特性曲线 4.粒度特性方程 数学方程式亦可用来描述粒度的分布,虽然这些方程式都是经验关系式,但也能在不同程度上表示出碎散物料的粒度分布。 在选矿领域内,常用来描述碎矿、磨矿产品的粒度特性的方程有下面两种: (1)A.M.高登-C.E.安德列耶夫-R.舒曼粒度特性方程式。 (2)R.罗逊-E.拉姆勒粒度特性方程式。 (3)是三位学者分别提出了粒度特性方程式,他们是应用全对数坐标绘制筛分分析曲线;得到的一种经验公式。此公式可写为: 式中γ—筛下产物的负累积产率(%);

煤粉燃烧反应动力学参数的试验研究

第20卷第3期2000年8月 幼力工程 POWERENGINEERING v01.20No,3 Iune2000-703 ?藏工技术? 文章缩号:1000—6761(2:000)03一04 煤粉燃烧反应动力学参数的试验研究 朱群益,李瑞扬,秦裕琨,孙恩召 (哈尔演工业走学,哈尔滨150001) 摘要:采用热天平,在20c/mEn的升温速成下,对12种蛛的燃烧反应蔚力学参数进行了试验研究,得到表面反应速率系敷InKs与1/T问的关系曲线量嚣段线性分布,苒分霹点温度与由燃烧特性曲绒所彳萼删的着戈温度厦最大燃烧速率时应的温度相一致。此外.遇蛙计算得到了活化能E与蜮的组成成分间的觉化热肆厦E争撅率因子K两者问的关系曲线。鹰1D袁1拳3 主题词;锅炉;煤粉燃烧;秘力学参数}热天警;研究 串圉分类号:TK229。6”文献耩浚碣;A 0赘言 煤粉燃烧特性对锅炉的设计和运行肴饕爨要的影响,在影响煤粉着火与燃烧的诸多因素中,煤的反应性无疑是最重要的因素之一。煤粉燃烧特饿的试验方法多种多样,其中热天平得到了广泛的廨用。热天平的试验结果与坩埚形状、试样檄、升温速度等试验条件有关,本文采用适合予臆用热爱平研究煤粉燃烧特性时的“零维燃烧摸划”(即当试样层厚度3(mm)与试样粒径d,(pm)之毖a/d。≤l,3~1。5×101时,试样层内簌浓魔努枣均匀。燃烧特性试验结果与试撵量无关尹】,瓣攥耪燃斑反应囊力学参鼗进舞了一些试验辑瓷。1试验设备殛试验条谗 试验采用日本产RIKAGU8150型热爰平,气体流动型式如图l所示,试样支架为TG浆,坩蛹为圆柱形,直径为1.0cm,高为0.3cm,采用虹外线加热炉。为筒化试验结果的分析,试验肘兜以100℃/rnin将试样升至105℃,在此温度下憾漱一段时间,一般当恒温时间超过3min后,试样不再失重,此时试样重量为干燥基重量,记为G(rag>。试验中≮为4~5mg,而后试样在20C/n:lin拜瀑速度下进行燃烧试验,气体为空气,常 籁穰霜鬻:1998o,s31 捧誊麓舟:来群矗(196z~),男,谆±学位,t983年挚熊予 跨馨姿王韭丈学。主要扶事撵糖燃燕技末粒舞蠹与鑫翔 方蕊的研完工作。压,流量为150ml/min。奉交舞瓣攥撵酌残努分拆如表1。试样箨势粒径为71~9舡m,墩簿零平均值,砌平均粒径d,为80.5,urn。 墨1气肄褥动型式 2理渣分辑 蟮蜗及试样麓瑶示于冒2。擞摄“零缎燃烧模型”,假设: (1)试样粒子为同一宣径的球形颗粒,采用等密度缩核模型,即燃烧过程中试样颗髓数不变,随着燃烧的进行,未燃核直径逐渐缩小。不考虑裹灰对燃烧的影响。 (2)燃烧只发生在颗粒表面,威腕逋率的计算以颗粒未燃核外表面积为准。 (3)试样层内各处氧分压分布均龆。 (4)表面反应产物为CO。。 试嚣惑静燃烧速率qg/s霹表示为; q--St墨+P:(1) q一0。375m。.(2)  万方数据

各种橡胶基本特性(精)

1.3 、应用范围:主要用于制作耐油橡胶制品,广泛用于制造密封件、垫片、垫圈等模制品和压出制品,各种橡胶胶辊、耐油胶管、工业用品和粘合剂等等。 2. 羧基丁腈橡胶(XNBR 2.1 :基本特性: 2.1.1 硫化速度比丁腈胶快,易焦烧。 2.1.2 纯胶配合显示高的拉伸强度。 2.1.3 硫化胶的耐热性、耐磨性好。 2.1.4 与酚酫树脂相容性好。 2.2 、应用范围:主要用于胶管、密封件、垫圈、油封、各种模型制品和粘合剂等。

3 、丁腈橡胶 - 聚氯乙烯共混胶(NBR/PVC 3.1 、基本特性: 3.1.1 耐臭氧和耐天候老化性能比通常丁腈橡胶显著提高。 3.1.2 比通常丁腈橡胶提高了耐燃性。 3.1.3 耐磨耗、耐油性、耐化学药品等性能比通常丁腈橡胶有所改善。 2.1.4 提高了压出、压延工艺性能。 2.1.5 可任意着色制作艳色制品。 2.1.6 低温特性、弹性降低,压缩变形增大。 2.1.7 比通常的聚氯乙烯改善了低温特性、耐油性、伸长率等。 3.2 应用范围:主要用于电线电缆护套,油管和燃油管外层胶,皮辊和皮圈,汽车模压零件,微孔海绵,发泡绝热层,安全靴和防护涂层等。 4 、氢化丁腈橡胶(HNBR 4.1 、基本特性 4.1.1 氢化丁腈橡胶虽经氢化饱和,但仍然保持原丁腈的特性。具有拉伸结晶性,因而强度较高。 4.1.2 有良好的耐热和耐臭氧、耐天候老化性能以及耐化学酸碱性能。 4.1.3 良好的耐技术液体(包括含腐蚀添加物的油类的溶胀性能。 4.1.4 良好的机械性能,即使在温升条件下仍保持相当水平。 4.1.5 在极有害的条件下,有显著的耐磨耗性能。

粒度相关解释

粒度测试是通过特定的仪器和方法对粉体粒度特性进行表征的一项实验工作。粉体在我们日常生活和工农业生产中的应用非常广泛。如面粉、水泥、塑料、造纸、橡胶、陶瓷、药品等等。在的不同应用领域中,对粉体特性的要求是各不相同的,在所有反映粉体特性的指标中,粒度分布是所有应用领域中最受关注的一项指标。所以客观真实地反映粉体的粒度分布是一项非常重要的工作。下面具体讲一下关于粒度测试方面的基知识和基本方法。 一、粒度测试的基本知识 1、颗粒:在一尺寸范围内具有特定形状的几何体。这里所说的一尺寸一般在毫米到纳米之间,颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒。 2、粉休:由大量的不同尺寸的颗粒组成的颗粒群。 3、粒度:颗粒的大小叫做颗粒的粒度。 4、粒度分布:用特定的仪器和方法反映出的不同粒径颗粒占粉体总量的百分数。有区间分布和累计分布两种形式。区间分布又称为微分分布或频率分布,它表示一系列粒径区间中颗粒的百分含量。累计分布也叫积分分布,它表示小于或大于某粒径颗粒的百分含量。 5、粒度分布的表示方法: ①表格法:用表格的方法将粒径区间分布、累计分布一一列出的方法。 ②图形法:在直角标系中用直方图和曲线等形式表示粒度分布的方法。 ③函数法:用数学函数表示粒度分布的方法。这种方法一般在理论研究时用。如著名的Rosin-Rammler分布就是函数分布。 6、粒径和等效粒径: 粒径就是颗粒直径。这概念是很简单明确的,那么什么是等效粒径呢,粒径和等效粒径有什么关系呢?我们知道,只有圆球体才有直径,其它形状的几何体是没有直径的,而组成粉体的颗粒又绝大多数不是圆球形的,而是各种各样不规则形状的,有片状的、针状的、多棱状的等等。这些复杂形状的颗粒从理论上讲是不能直接用直径这个概念来表示它的大小的。而在实际工作中直径是描述一个颗粒大小的最直观、最简单的一个量,我们又希望能用这样的一个量来描述颗粒大小,所以在粒度测试的实践中的我们引入了等效粒径这个概念。 等效粒径是指当一个颗粒的某一物理特性与同质的球形颗粒相同或相近时,

煤粉特性及自燃爆炸的条件

1煤粉特性及自燃爆炸的条件 煤粉发生自燃和爆炸是由于煤的特性在加工成煤粉后所具有的特性以及煤粉所处的环境条件所决定的。 1.1煤粉的流动性 它的尺寸一般为0~50微米,其中20~50微米的颗粒占多数。干的煤粉能吸附大量的空气,它的流动性很好,就像流体一样很轻易在管道内输送。由于干的煤粉流动性很好,它可以流过很小的空隙。因此,制粉系统的严密性要好。 1.2煤粉的自燃与爆炸 积存的煤粉与空气中的氧长期接触氧化时,会发热使温度升高,而温度的升高又会加剧煤粉的进一步氧化,若散热不良时会使氧化过程不断加剧,最后使温度达到煤的燃点而引起煤粉的自燃。在制粉系统中,煤粉是由输送煤粉的气体和煤粉混合成的云雾状的混合物,它一旦碰到火花就会使火源扩大而产生较大的压力(2~3倍大气压),从而造成煤粉的爆炸。 影响煤粉爆炸的因素很多,如挥发分含量,煤粉细度,气粉混合物的浓度,温度湿度和输送煤粉的气体中氧的成分比例等。 一般说来挥发分含量VR<10%(无烟煤),是没有爆炸危险的。而VR>25%的煤粉(如烟煤等),很轻易自燃,爆炸的可能性也很大。 煤粉越细越轻易自燃和爆炸,粗煤粉爆炸的可能性较小。例如烟煤粒度大于 0.1毫米几乎不会爆炸。因此,挥发分大的煤不能磨得过细。 煤粉浓度是影响煤粉爆炸的重要因素。实践证实,最危险得浓度在 1.2~ 2.0kg/m3,大于或小于该浓度时爆炸的可能性都会减小。在实际运行中一般是很难避免危险浓度的。制粉设备中沉积煤粉的自燃性往往是引爆的火源。气

粉混合物温度越高,危险性就越大。煤粉爆炸的实质是一个强烈的燃烧过程,是在 0.01~ 0.15s的瞬间大量煤粉忽然燃烧产生大量高温烟气因急速膨胀而形成的压力波以及高速向外传播而产生的很大的冲击力和声音。 潮湿煤粉的爆炸性较小,对于褐煤和烟煤,当煤粉水分稍大于固有水分时一般没有爆炸危险。 2制粉系统爆炸原因分析 引爆点主要在轻易长期积煤或积粉的位置,制粉系统处于封闭状态,引爆的火源主要是磨煤机入口积煤,细粉分离器水平段入口管积粉,粗粉分离器积粉自燃,根据制粉系统的运行工况和爆炸情况分析,主要原因如下。 2.1煤粉细度,风粉浓度及燃煤成分 煤粉爆炸的前期往往是自燃。一定浓度的风粉气流吹向自燃点时。不仅加剧了自燃,而且会引起燃烧,而接触到明火的风粉气流随时都会产生爆炸。造成流动煤粉爆炸的主要原因是风粉气流中的含氧量,煤粉细度,风粉混合物的浓度和温度。 煤粉越细,爆炸的危险性就越大。粗煤粉爆炸的可能性就小些,当煤粉粒度大于 0.1mm时几乎不会爆炸。当煤粉浓度大于3~4kg/m3 (空气)或小于 0.32- 0.47kg/m3 时不轻易引起爆炸。因为煤粉浓度太高,氧浓度太小;而煤粉浓度太低,缺少可燃物。只有煤粉浓度为

橡胶制品十五种常见试验测试项目和标准

橡胶制品十五种常见试验测试项目和标准 1.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTMD2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 ASTM D5289-1995(2001)橡胶性能—使用无转子流变仪测量硫化作用的试验方法 DIN53529-4:1991橡胶—硫化特性的测定——用带转子的硫化计测定交联特性。 2.橡胶拉伸性能 GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法 JISK6251:1993硫化橡胶的拉伸试验方法 DIN 53504-1994硫化橡胶的拉伸试验方法。 3.未硫化橡胶门尼粘度 GB/T1232.1—2000未硫化橡胶用圆盘剪切粘度计进行测定—第1部分:门尼粘度的测定 GB/T1233—1992橡胶胶料初期硫化特性的测定—门尼粘度计法 ISO289-1:2005未硫化橡胶——用剪切圆盘型黏度计—第一部分:门尼黏度的测定 ISO289-2-1994未硫化橡胶——用剪切圆盘型黏度计测定—第二部分:预硫化特性的测定ASTMD1646-2004橡胶粘度应力松驰及硫化特性(门尼粘度计)的试验方法 JISK6300-1:2001未硫化橡胶-物理特性-第1部分:用门尼粘度计测定粘度及预硫化时间的方法。 4.压缩永久变形性能 GB/T 7759-1996硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定 ISO815:1991硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定 ASTM D395-2003橡胶性能的试验方法压缩永久变形 JIS K6262:1997硫化橡胶及热塑性橡胶压缩永久变形试验方法。

生物质燃料燃烧特性

生物质燃料燃烧特性 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

生物质燃料燃烧特性 生物质由C、H、O、N、S等元素组成,是空气中CO2、水和阳光通过光合作用的产物,且有挥发份高,炭活性高、S、N含量低(%%,%--3%,)灰分低(%%)等特点,生物质燃料中可燃部分主要为纤维素、半纤维素、木质素、按质量计量,纤维素占40%--50%,半纤维素20%--40%,木质素占10%--20%。 由于与化石燃料特性不同,生物质燃料的燃料机理、反应速度及燃料产物成分与化石燃料的相比都有较大的差别。生物质燃料的燃烧过程主要分为挥发份的析出,燃烧和残余焦炭的燃烧、燃尽两个独立阶段。其燃烧过程的特点: ①水分含量多,燃料需要较高的干燥温度和较长的干燥时间,产生的烟气体积较大,排烟损失较高。 ②燃料的密度小,结构松散,迎风面积大,易吹起,悬浮段燃 烧份额较大。 ③发热量低,灰熔点低,炉内温度水平低,组织稳定的燃烧比 较困难。 ④由于挥发份高,燃料着火温度较低,一般在250—350℃温度下挥发份便大量析出并开始剧烈燃烧,此时若空气量不足,会增大化学不完全燃烧损失。 ⑤会犯分析出燃尽后,受到灰烬包裹和空气渗透困难的影响,焦炭颗粒燃尽困难,燃烧过度缓慢,如不采取适当的必要措施,将会导致灰烬中残留较多的余碳,增大机械不完全燃烧损失。 ⑥秸秆等部分生物质燃料含氯量较高,因此需要对床层部分结构和运行工况加以特殊考虑,防止其对床层部分的腐蚀。 由此可见,生物质燃烧设备的设计和运行方式的选择应从不同种类生物质燃料特性出发才能保证生物质燃料设备运行的经济性和可靠性,提高生物质开发利用的效率。

煤炭燃烧特性指标

煤炭燃烧特性指标 几乎所有的煤炭特性指标都与煤炭的燃烧特性是相关的,反之,也没有一个能完全、全面表征煤炭燃烧特性的指标。与此同时,不同的煤炭特性指标对于煤炭燃烧特性的重要性,也随着煤炭燃烧方式的不同而异,并具有相当的差别。作为影响煤炭燃烧特性或者说过程最明显的指标是煤炭的挥发份和粘结性或者说膨胀系数。前者表征着煤炭在燃烧过程中的以气相完成的份额和其对后续固相燃烧过程的影响;后者则关系到煤炭颗粒因形态、尺寸和反应表面积的变化而使其自身的燃烧特性受到的影响。而前者和后者有时又是具有密切联系的。与煤炭燃烧特性有关的还有挥发份的释出特性、焦炭的反应性、煤炭的热稳定值、重度等,以及煤炭在堆放过程中的风化、自燃特性和可磨度。 煤炭颗粒在受热过程中的熔融软化、胶质体和半焦的形式几乎所有的烟煤在受热升温的过程中与挥发份释出的同时,都会出现胶质体,呈塑性和颗粒的软化现象。煤炭颗粒间的粘结就是因颗粒胶体间的相互粘结而产生的,因此煤炭的粘结性也就于其所呈现胶体的条件相关。当一个按一定升温速度,经历着受热过程的煤炭颗粒进行观察时,考虑到在此受热过程中热量总是从表面传向颗粒核心的,在同一时间内表面温度也总高于核心。可以发现不同的烟煤,在表面温度达到320~350℃以前,颗粒的形态变化一般觉察不到,只

有煤化程度低的气煤才可观察到表面开始有挥发份气体释出。在温度到350~420℃时,可以观察到在颗粒表面出现了一层带有气泡的液相膜,表面上也逐渐失去原来的棱角,这层膜就是胶质体。当温度为500~550℃时,一方面因颗粒内部温度升高,使胶质体层向内层发展,以及外部的胶质体层因挥发份释出被蒸干转化为半焦,即从表面到中心由半焦壳、胶质体和原有的煤三层所构成,但这种形态所保持的时间是短暂的。随着受热的继续,胶质体的发展和体积的膨胀,半焦外壳出现裂口,胶质体流出。其后是胶质体向颗粒中心区域的发展,流出的胶质体被蒸干转变为半焦,直到整个颗粒都经历胶质体和半焦的形成。整个的过程如图3-2-2所示:试验证明软化温度越低的煤种,挥发份开始释出的时间越早。因此软化温度Tp(对于不同的烟煤表面开始出现液相膜的温度)和再固化温度TK(呈现最大塑性的温度TMAX以及被蒸干再次呈固体形状的温度)都是表明煤炭流变特性的指标,同样也间接表明了于煤炭燃烧特性密切相关的问题。 Ⅰ软化开始阶段Ⅱ开始形成半焦的阶段Ⅲ煤粒强烈软化和半焦破 裂阶段

筛分粒径分布实验报告

筛分粒径分布实验报告 篇一:筛分分析-实验指导书 粒度分布通常是指某一粒径或某一粒径范围的颗粒在整个粉体中占多大的比例。它可用粒度分布表格、粒度分布图和函数形式表示颗粒群粒径的分布状态。颗粒的粒度、粒度分布及形状能显著影响粉末及其产品的性质和用途。例如.水泥的凝结时间、强度与其细度有关;陶瓷原料和坯釉料的粒度及粒度分布影响着许多工艺性能和理化性能;磨料的粒度及粒度分布决定其质量等级等。为了掌握生产线的工作情况和产品是否合格,在生产过程中必须按时取样并对产品进行粒度分布的检验,粉碎和分级也需要测量粒度。 粒度测定方法有多种,常用的有筛析法、沉降法、激光法、小孔通过法、吸附法等。本实验用筛析法测粉体粒度分布。筛析法是最简单的也是用得最早和应用最厂泛的粒度测定方法、利用筛析方法不仅可以测定粒度分布,而且通过绘制累积粒度特性曲线,还可得到累积产率50%时的平均粒度。 一、实验目的意义 本实验的目的: ①了解筛析法测物体粒度分布的原理和方法; ②根据筛分析数据绘制粒度累积分布曲线和频率分布曲线。 二、实验原理 筛析法是让粉体试样通过一系列不同筛孔的标准筛,将其分离成若

干个粒级,分别称重,求得以质量百分数表示的粒度分布。筛析法适用约20μm~100㎜之间的粒度分布测量。如采用电成形筛(微孔筛),其筛孔尺寸可小至5μm,甚至更小。 筛孔的大小习惯上用“目”表示,其含义是每英寸(2.54cm)长度上筛孔的数目。也有用l㎝长度上的孔数或1㎝筛面上的孔数表示的,还有的直接用筛孔的尺寸来表示。筛分法常使用标准套筛,标准筛的筛制按国际标准化组织(ISO)推荐的筛孔为1㎜的筛子作为基筛,也可采用泰勒筛,筛孔尺寸为0.074mm作为基筛。 筛析法有干法与湿法两种,测定粒度分布时,一般用干法筛分;湿法可避免很细的颗粒附着在筛孔上面堵塞筛孔。若试样含水较多,特别是颗粒较细的物料,若允许与水混合,颗粒凝聚性较强时最好使用湿法。此外,湿法不受物料温度和大气湿度的影响,还可以改善操作条件,精度比干法筛分高。所以,湿法与干法均被列为国家标准方法,用于测定水泥及生料的细度等。 筛析法除了常用的手筛分、机械筛分、湿法筛分外,还用空气喷射筛分、声筛法、淘筛法和自组筛等,其筛析结果往往采用频率分布和累积分布来表示颗粒的粒度分布。频率分布表示各个粒径相对应的颗粒百分含量(微分型);累积分布表示小于(或大于)某粒径的颗粒占全部颗粒的百分含量与该粒径的关系(积分型)。用表格或图形来直观表示颗粒粒径的频率分布和累积分布。 筛析法使用的设备简单,操作方便,但筛分结果受颗粒形状的影响较大,粒度分布的粒级较粗,测试下限超过38μm时,筛分时间长,

生物质燃料燃烧特性

生物质燃料燃烧特性 Prepared on 22 November 2020

生物质燃料燃烧特性 生物质由C、H、O、N、S等元素组成,是空气中CO2、水和阳光通过光合作用的产物,且有挥发份高,炭活性高、S、N含量低(%%,%--3%,)灰分低(%%)等特点,生物质燃料中可燃部分主要为纤维素、半纤维素、木质素、按质量计量,纤维素占40%--50%,半纤维素20%--40%,木质素占10%--20%。 由于与化石燃料特性不同,生物质燃料的燃料机理、反应速度及燃料产物成分与化石燃料的相比都有较大的差别。生物质燃料的燃烧过程主要分为挥发份的析出,燃烧和残余焦炭的燃烧、燃尽两个独立阶段。其燃烧过程的特点: ①水分含量多,燃料需要较高的干燥温度和较长的干燥时间,产生的烟气体积较大,排烟损失较高。 ②燃料的密度小,结构松散,迎风面积大,易吹起,悬浮段燃 烧份额较大。 ③发热量低,灰熔点低,炉内温度水平低,组织稳定的燃烧比 较困难。 ④由于挥发份高,燃料着火温度较低,一般在250—350℃温度下挥发份便大量析出并开始剧烈燃烧,此时若空气量不足,会增大化学不完全燃烧损失。 ⑤会犯分析出燃尽后,受到灰烬包裹和空气渗透困难的影响,焦炭颗粒燃尽困难,燃烧过度缓慢,如不采取适当的必要措施,将会导致灰烬中残留较多的余碳,增大机械不完全燃烧损失。 ⑥秸秆等部分生物质燃料含氯量较高,因此需要对床层部分结构和运行工况加以特殊考虑,防止其对床层部分的腐蚀。 由此可见,生物质燃烧设备的设计和运行方式的选择应从不同种类生物质燃料特性出发才能保证生物质燃料设备运行的经济性和可靠性,提高生物质开发利用的效率。

采用FLUENT软件研究旋流煤粉燃烧器燃烧特性

2005 Fluent 中国用户大会论文集 采用FLUENT软件研究旋流煤粉燃烧器燃烧特性 由长福 (清华大学热能工程系,北京 100084) 摘要:本文FLUENT软件研究了实际电站锅炉单个双调风旋流燃烧器附近区域的煤粉燃烧过程。并分别研究了内二次风旋流强度,外二次风风率,一次风风率和三次风风率等因素对燃烧性能的影响。各工况计算结果表明,总体上在燃烧器出口处形成了高温区和高煤粉浓度区,燃烧器出口一定距离后的炉内温度呈逐渐上升趋势,炉膛温度分布均匀。中心高温区出现迟的工况,后期分级燃烧充分。表明该燃烧器具有高效稳燃和变工况运行稳定的性能。 关键词:旋流燃烧器;数值计算;燃烧性能 引 言 当前国内使用的电站锅炉,80%是四角切圆煤粉燃烧锅炉,不到10%采用旋流燃烧锅炉[1]。和四角切圆煤粉锅炉相比,旋流燃烧器锅炉是一种新型的锅炉,结构复杂得多。已有较多学者采用数值模拟方法研究旋流燃烧器燃烧性能的例子[1-4],这些例子的计算结果都详细预报了由于测量困难而不能充分获得的炉膛内部的温度场,速度场,燃烧产物各组分的浓度分布和污染物的分布,其中文献[2]和[3]还与实验数据比较,比较结果表明,模拟结果与锅炉热态试验数据吻合情况较好,为数值模拟的更广应用提供了依据。 简图如图1 燃烧器中心通一股直流的三次风,风量较小。 针对该燃烧器的结构,本文研究了内二次风的旋流强度,二次风的配比,一次风和中心风的风率对燃烧性能的影响。 作者:由长福(1969),男(汉族),黑龙江,副教授,博士,清华大学热能工程系

1 计算方法 1.1 计算对象和网格生成 计算域为单个旋流燃烧器附近的区域,大致为两个燃烧器之间的水冷壁和炉膛。根据旋流燃烧器出口附近的流场特性,采用二维轴对称结构模拟该区域。在计算区域的出口采用了倾斜一定角度的斜面以避免由于回流产生的压力计算不准确。 由于要计算旋转流动,为了得到较好的收敛结果,对燃烧器喉部壁面附近、水冷壁附近进行了网格细分。计算区域和网格划分采用GAMBIT 生成,如图2所示。 1.2 数学模型和边界条件 使用FLUENT 为计算平台。气相湍流模型采用的是可实现κ-ε模型(Realizable κ-ε模型[1])。Realizable κ-ε模型能较好地模拟旋流的原因是湍流粘性系数μT 和ε方程考虑了角变形率即旋涡流动的影响[5]。 采用了混合分数概率密度函数(PDF)模型模拟煤粉燃烧。煤粉挥发份的释放采用了单倍速率模型;煤粉颗粒的跟踪采用随机轨道模型;辐射模型采用P1模型。 煤粉颗粒以surface 方式从一次风口喷入炉膛,速度与一次风同。煤粉颗粒的粒径范围为70~200μm ,取10组不同粒径的煤粉颗粒,粒径分布满足Rosin-Rammler 分布公式。 各次风口的速度边界条件采用方便定义旋转速度的Components 方式。水冷壁热边界条件定水冷壁面温度为5500C 。计算域的上边界采用壁面应力为零的壁面边界条件,热边界条件热流为零。出口采用表压力为0的压力边界条件。 1.3工况设计和煤质特性 分别计算各影响因素的不同工况来考察燃烧器变工况运行的性能,进而得到较优的燃烧工况,各计算工况见表1。计算所用的富兴煤是低硫高热值的烟煤,燃煤的工业分析和元素分析的干燥无灰基数据见表2,干燥无灰基数据将用于PDF 模型的计算。 图2 燃烧器出口计算域及网格划分

九年级:物理教案-燃料及其热值

初中物理新课程标准教材 物理教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 物理教案 / 初中物理 / 九年级物理教案 编订:XX文讯教育机构

物理教案-燃料及其热值 教材简介:本教材主要用途为通过学习物理知识,可以让学生培养自己的逻辑思维能力,对事物的理解认识也会有一定的帮助,本教学设计资料适用于初中九年级物理科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 教学目标 知识目标 (1)知道在燃烧过程中燃料的化学能转化为内能; (2)知道什么是燃料的燃烧值和单位,会查燃料燃烧值表. 能力目标 会计算某种燃料完全燃烧放出的燃料. 情感目标 结合有效利用燃料的途径,使学生懂得节约和充分利用能源的重要意义. 教学建议 教材分析 本节有两部分,“燃料的热值”从生产和生活的一些现象出发,说明了现代社会中使用的能源主要是内能,且由燃料燃烧得到.又提供了科学资料,列举了几种燃料的热值,并给

出了热值的定义和单位,本处要求学生能做简单的计算. “有效利用燃料”直接联系实际介绍了燃料燃烧利用的情况,并分析现代的大型锅炉,说明了提高利用率的方法,最后结合具体数据介绍了提高燃料的利用率的实际意义.教法建议 引入新课的方法,可以由学生联系生产和生活的实际来举例分析,而知道在现代社会中,使用能量主要还是从燃料燃烧中获得的内能. “燃料的热值”,学生观察和分析教材的或教师提供的科技资料,学习热值的概念,并用简单的数学方法,会进行有关的热值计算. “有效利用燃料”,教师分析,使学生知道燃料实际很难完全燃烧,只有一部分被利用,引出了使用效率问题,可以用画比例图的方法让学生深入理解炉子的效率.接着学生阅读资料(课本上的或教师提供的)得出提高锅炉的效率和燃料的利用率的方法.本部分内容可以学生小组讨论.对于提高燃料利用率,也是采用提供学生学习资料,学生可以课下收集相关内容学习,提高学生信息收集和处理能力.学生从学习中体会到可持续发展的思想.教学设计方案 燃料及其热值 【课题】燃料及其热值

常见生物质颗粒燃料的规格参数及性能指标

生物质颗粒燃料的规格参数及性能指标

根据外形尺寸,致密生物质颗粒可分成颗粒与压块两类。颗粒是指压缩而成的圆柱状生物质小段,其最大直径一般是25mm。压块可以是圆柱形的,也可以是方形的或者其他形状的,其直径应大于25mm,长度不能超过直径的5倍。 根据瑞典的标准,生物质颗粒被分成3级,其中第1级最好。

生物质颗粒燃料的介绍 生物质能源指由植物的光合作用固定于地球上的太阳能,通过生物链转化为地球生物物质形态,经过加工为社会生活提供原料的能源。 生物质颗粒燃料是以木屑、竹屑、树枝等为原料,经过专业机械、特殊工艺,无任何化学添加剂,高压低温压缩成型的颗粒状燃料。生物质颗粒燃料发热量高,清洁无污染,是替代化石能源的高科技环保产品。 生物质颗粒燃料在燃烧时所释放出的CO2大体上相当于其生长时通过光合作用所吸收的CO2,所以生物质颗粒的温室气体CO2为零排放。 生物质燃料属于可再生能源。只要有阳光存在,绿色植物的光合作用就不会停止,生物质能源就不会枯竭,温室气体保持动态平衡。没有任何的环境污染问题。 生物质颗粒燃料的加工程序如下:原料粉碎–原料筛选–烘干–高温压制成型–冷却–包装。 生物质颗粒燃料结合我公司研发的生物锅炉或燃烧器可替代现有煤、油、气、电等化石能源和二次能源,为工业蒸汽锅炉、热水锅炉、室内取暖壁炉等提供系统改造工程。在现有最节能的前提下,为使用单位节约能源消耗成本30%以上。 服务对象有:有供热需求的工厂企业(电镀、五金、喷涂、陶瓷、制衣印染、铝型材加工、制鞋底厂等)、星级酒店宾馆、大型综合性医院、高档写字楼、大学等的锅炉改造。 根据原材料不同,目前颗粒产品分为:杉木颗粒、松颗粒和秸杆颗粒。经过国际权威检测机构SGS公司专业检测,木质颗粒燃料全部产品所 1:

各种塑料燃烧特性

各种塑胶燃烧特性: 序号非透明塑料比重(G/CM)软化温度燃烧性自熄性火焰颜色燃烧味燃烧时特性 1.ABS 104 很容易非黄火带烟橡胶甜味软化变黑,起泡" 2.HDPE 120 容易非黄顶蓝火腊味溶时有着火漏滴 3.HIPS 75 容易非黄火带黑烟花香味溶化,起泡" 4.LOPE 容易非黄顶蓝火腊味溶时有着火漏滴 5.PA6 220 容易是黄边蓝火烧头发味溶时泡沫 6.PBT 225 容易大都是白光带烟有气味溶时有着火漏滴 7.PTEPC 260 容易是黄火有气味溶时有着火漏滴 8.POM 不容易非淡蓝火刺鼻,引起泪水溶时有着火漏滴" 9.PP 79-113 容易非黄顶蓝火腊昧溶时有着火漏滴 10.PPO 容易非黄火带烟甜花香乌黑残余物 11.PPS 282 因难是无火硫磺味烧黑起泡 12.UPVC 66-92 不很容易是黄火酸味软化变黑 序号透明塑料比重软化温度烧烧性自熄性火焰颜色燃烧味燃烧时特性 "13 GPPS 78-86 容易非黄火带黑烟花香味熔化,起泡" "14 PC 不很容易是黄火带烟电木味软化起泡,炭化" 15 PETPA 230 容易是光黄火甜酸味变黑有着火漏滴 16 PMMA 60-88 容易非黄顶蓝火带烟水果味溶化起泡 17 SAN 66-96 容易非黄火带烟花甜味变黑有泡 其它特性; 序号料名烘料温度(0C)烘料时间(hr)适当模温(0C)可塑化料温(0C)密度(g/cm3)收缩率(%)热变形温度(0C) 1.PVC(S) 60~70 1~2 50~70 140~180 / (~) N-A 2.PVC(H) 60~70 1~2 50~70 150~180 ()() N-A 3.LDPE 70~80 1~2 20~50 160~240 ()(~) 35-50 4.HDPE 70~100 1~2 20~70 200~280 ()(~) 40-75

第一节 粒度组成分析试验

第一节粒度组成分析试验 一、实验目的 1.掌握筛分分析法测定物料的粒度组成的试验方法。 2.了解煤的粒度组成和各粒级产物的质量特性。 3.学习筛分数据的处理及分析方法,利用筛分试验结果绘制物料粒度特性曲线。 二、试验原理 在煤炭分选加工的过程中,筛分是一种最古老、应用最广泛的粒度组成分析方法。筛分试验是指按操作规定将原料煤通过规定的各种大小不同筛孔的筛子而分成各种不同的粒度级别,然后分别测定各粒级的数量(产率, )和质量(如水分、灰分、硫分、发热量等),它主要是根据物料是否通过筛子的筛孔来进行的。 筛分试验根据处理物料粒度的不同分为原煤筛分(大于0.5mm,采用大筛分的方法测定物料粒度组成)和粉煤筛分(小于0.5mm,采用标准套筛测定粉煤粒度组成)。 三、筛分试验 (一)原煤筛分试验 1.试验仪器设备 (1)称量设备:用最大称量为500kg(或200 kg)、100 kg、20 kg、10 kg、 和5 kg的台秤或案秤各一台。台秤或案秤最小刻度值应符合表9-1规定。每次过秤的物料质量不得少于台秤或案秤最大称量的1/5。例如用5kg秤称取煤样时,煤样量不得小于1kg。 表9-1 (2)筛子:筛子的孔径一定要符合标准。 煤样可按下列筛孔尺寸:100mm、50 mm、25 mm、13 mm、6 mm、3 mm、0.5 mm。 ①孔径为25mm及以上的用圆孔筛,筛板厚度约为1~3mm。圆孔筛的冲孔应呈正三角形排列。 ②孔径为25mm以下的采用金属丝编织的方孔筛。筛分前应进行检查,确保

筛孔无变形、无破损。 ③人工筛分时,筛框可用木材制做,规格为:筛面尺寸为650m m×450mm;筛框高度120~140mm;手把长250mm左右。 ④有条件的应采用经过检验的筛分机械进行筛分。 2.试验煤样 (1)筛分试验煤样采取方法应符合有关标准规定。 (2)筛分煤样总质量应根据粒度组成的历史资料和一些特殊要求确定。 一般为:设计选煤厂的煤样不少于10t,矿井生产煤样不少于5t,不做浮沉试验时不少于2.7t。选煤厂原料煤及其产品煤样按粒度上限确定:粒度上限为300mm不少于6t,粒度上限为100不少于2t,粒度上限为50mm不少于1t。 (3)13~0mm煤样可缩分到质量不小于100kg,其中3~0mm煤样可缩分到质量小于20kg。 (4)筛分煤样应是空气干燥状态。 (5)收到煤样后,筛分试验应当在3d之内进行。 3.试验步骤 (1)筛分程序:筛分操作一般从最大筛孔向最小筛孔进行。如煤样中大粒度含量不多,可先用13mm 或25mm筛孔的筛子筛分,然后对筛上物和筛下物,分别从大的筛孔向小的筛孔逐级进行筛分。各粒级产物应分别称量。 (2)筛分试验时往复摇动筛子,速度要均匀,移动距离为300mm左右,直到筛净为止。每次筛分新加入的煤量应保证筛分操作完毕时筛上煤粒能与筛面接触。 (3)如煤样潮湿又急需筛分,可按以下步骤进行: ①采取外在水分煤样,并称量煤样总质量。 ②用筛孔为13mm的筛子筛分,+13mm的煤样晾至空气干燥状态后,再用13mm筛子复筛。然后对+13mm 煤样称量并进行各粒级筛分和称量,-13mm 煤样掺入到-13mm 的湿煤样中。 ③-13mm 湿煤样,采取外在水分煤样,称量后缩取不少于100kg( 晾至空气干燥状态称量,然后进行13~0mm 各粒级的筛分并称量。 (4)为保证筛分试验结果的准确可靠,必要时,应检查各粒级是否筛净。检

煤粉特性及自燃爆炸的条件

煤粉特性及自燃爆炸的条件 煤粉为可燃物质,乙类火灾危险品,粉尘具燃爆性,着火点在300℃~500℃之间,爆炸下限浓度34 g/m3~47g/m3(粉尘平均粒径:5μm~10μm)。高温表面堆积粉尘(5mm厚)的引燃温度:225℃~285℃,云状粉尘的引燃温度580℃~610℃。 煤粉在运输过程中,经外界的干扰如设备运转的震动、碰撞或风作用悬浮到空气形成粉尘,如场所内作业人员防护用品佩带不全,很容易引起尘肺病等职业病危害。当煤粉在空气中达到一定浓度,在外界高温、碰撞、摩擦、振动、明火、电火花的作用下会引起爆炸,爆炸后产生的气浪会使沉积的粉尘飞扬,造成二次爆炸事故。煤尘爆炸与其在空气中的含量及含氧浓度有关,烟煤在110-2000mg/m3。能形成爆炸性混合物,空气中煤尘含量在300-400 mg/m3爆炸威力最大,这是因为混合物中煤尘与空气的比例适中,煤粉能充分燃烧。煤粉爆炸后不仅产生冲击波伤人和破坏建筑物,同时产生大量的一氧化碳,使人中毒死亡。煤尘的燃烧爆炸特特性见表1。 表1 煤尘的燃烧爆炸特性 煤粉尘种类 引燃温度(℃) 高温表面积尘 引燃温度(℃) 云状粉尘 爆炸下限 (g/m3) 粉尘粒径 (μm) 褐煤粉 260 -49D68 2D3 有烟煤粉 235 595 41D57 5D11 无烟煤粉 >430 >600 -100D130 贫煤粉 285 680 34D45 5D7

1、煤粉的流动性 它的尺寸一般为0~50微米,其中20~50微米的颗粒占多数。干 的煤粉能吸附大量的空气,它的流动性很好,就像流体一样很轻易在管 道内输送。由于干的煤粉流动性很好,它可以流过很小的空隙。因此, 制粉系统的严密性要好。 2、煤粉的自燃与爆炸 积存的煤粉与空气中的氧长期接触氧化时,会发热使温度升高,而 温度的升高又会加剧煤粉的进一步氧化,若散热不良时会使氧化过程不 断加剧,最后使温度达到煤的燃点而引起煤粉的自燃。在制粉系统中, 煤粉是由输送煤粉的气体和煤粉混合成的云雾状的混合物,它一旦碰到 火花就会使火源扩大而产生较大的压力(2~3倍大气压),从而造成煤 粉的爆炸。 影响煤粉爆炸的因素很多,如挥发分含量,煤粉细度,气粉混合物 的浓度,温度湿度和输送煤粉的气体中氧的成分比例等。 2.1、一般说来挥发分含量VR<10%(无烟煤),是没有爆炸危险的。而VR>25%的煤 粉(如烟煤等),很轻易自燃,爆炸的可能性也很大。 2.2、煤粉越细越轻易自燃和爆炸,粗煤粉爆炸的可能性较小。例如烟煤粒度大于 0.1毫米几乎不会爆炸。因此,挥发分大的煤不能磨得过细。 2.3、煤粉浓度是影响煤粉爆炸的重要因素。实践证实,最危险得浓度在 1.2~ 2.0kg/m3,大于或小于该浓度时爆炸的可能性都会减小。在实际运行中一般是很难避 免危险浓度的。制粉设备中沉积煤粉的自燃性往往是引爆的火源。气粉混合物温度 越高,危险性就越大。煤粉爆炸的实质是一个强烈的燃烧过程,是在0.01~0.15s 的瞬间大量煤粉忽然燃烧产生大量高温烟气因急速膨胀而形成的压力波以及高速向 外传播而产生的很大的冲击力和声音。

各种橡胶特性(精)

1 、丁腈橡胶(NBR 基本特性: 1.1、因含有极性腈基,对非极性或弱极性的矿物油、动植物油、液体燃料和溶剂等有较高的稳定性。耐油性是其最大的特长, 丙烯含量愈高耐油性愈好。 1.2 、耐热性优于天然橡胶、丁苯橡胶、氯丁橡胶,可在空气中 120 ℃下长期使用。 1.3 、气密性较好,仅次于丁基橡胶。 1.4 、耐寒性、耐低温性较差,丙烯腈含量愈高,耐寒愈差。 1.5 、因是非结晶性橡胶,生胶强度较低,须配入补强剂,提高结合丙烯腈量有助于增高强度和耐磨性,但弹性下降。 1.6 、丁腈胶的介电性能差一点,属于半导体橡胶。 1.7 、胶料的耐油性和永久变形的平衡,耐油性与电性能的平衡是重要的。 应用范围:主要用于制作耐油橡胶制品,广泛用于制造密封件、垫片、垫圈等模制品和压出制品,各种橡胶胶辊、耐油胶管、工业用品和粘合剂等等。 2 、丁基橡胶(IIR 基本特性 2.1 最大的特性是气体特定过性小,气密性好。 2.2 回弹性小,在较宽温度范围内(-30-+ 50 ℃均不大于 20% ,因而具有吸收振动和冲击能量的特性。 2.3 耐热老化优良,且有良好的耐臭氧老化、耐天候老化和对化学稳定性以及耐电晕性能与电绝缘性好。

2.4 耐水性好、水渗透率极低,因而适于做绝缘材料。 2.5 缺点是:硫化速度慢;粘合性和自粘性差;与金属粘合性不好;与不饱和性橡胶相容性差,不能并用。但可与乙丙橡胶和聚乙烯等共混并用。 应用范围:主要用于制造汽车轮胎内胎、汽车部件,硫化用胶囊、水胎、风胎,胶带、胶管、电线、电缆、包覆胶, 各种机械制品, 振动隔离件, 建筑用防水片材, 密封及填缝材料, 贮罐衬里,蜡添加剂和聚烯烃改性剂等。 3、三元乙丙橡胶(EPDM 基本特性: 3.1 三元乙丙橡胶的相对密度也小(0.85-0.86 ,仍具有二元乙丙橡胶的耐臭氧性、耐候性、耐热性和耐化学稳定性等特性。 3.2 可采用硫磺促进剂硫化体系硫化,也可以用有机过氧化物交联,而制得高强度的制品。 3.3 耐低温性好,电绝缘性能也好。 3.4 配合时有容纳高量填料和油类的承受能力。 3.5 可与不饱和橡胶、低不饱和橡胶和塑料相容并用。 3.6 由于硫化胶表面良好具有高的物性,适于制作发泡制品。 3.7 未硫化橡胶粘合性差。 应用范围:主要用于汽车工业、电线电缆工业、建筑和防水材料、工业橡胶制品、民用制品,与其它橡胶和塑料树脂等并用或共混,以及制作添加剂等等。 4 、硅橡胶(SILICONE 基本特性:

相关文档
最新文档