高等数学课件:函数的连续性

高等数学课件:函数的连续性
高等数学课件:函数的连续性

1.7函数的连续性

教学目的:理解函数连续性的概念,会判断函数的连续性。掌握连续函数的四则运算,知道

反函数及复合函数的连续性,掌握初等函数的连续性, 知道间断点的概念及分类,会判断其类型。

教学重点:函数连续性的概念, 连续函数的四则运算,知道反函数及复合函数的连续性. 教学内容:

1.6.1函数的连续性 1 函数在一点的连续性

定义1 设函数()y f x =在点0x 的某个邻域0()U x 内有定义,自变量x 在点0x 处有增量

x ?,相应地函数值的增量

00()()y f x x f x ?=+?-

如果0

lim 0x y ?→?=,就称函数()f x 在点0x 处连续,0x 称为函数()f x 的连续点。

函数()f x 在点0x 处连续还可以描述如下。

设函数()y f x =在点0x 的某个邻域0()U x 内有定义,如果0

0lim ()()x x f x f x →=,就称函数

()f x 在点0x 处连续。

左连续及右连续的概念。

如果0

0lim ()()x x f x f x -→=,称函数()f x 在点0x 处左连续;如果0

0lim ()()x x f x f x +→=,称函

数()f x 在点0x 处右连续。由于0

lim ()x x f x →存在的充要条件是0

lim ()lim ()x x x x f x f x -+→→=,因此,根

据函数连续的定义有下述结论:若函数()y f x =在点0x 的某个邻域内有定义,则它在点0x 处连续的充分必要条件是在点0x 处左连续且右连续。 2 区间上的连续函数

如果函数在开区间上每一点都连续,我们称函数在开区间内连续,如果函数开区间内连续,在区间的左端点右连续,右端点左连续,就称函数在闭区间上连续。

例1 证明sin y x =在(,)-∞+∞内连续。

证明 (,)x ?∈-∞+∞,当x 有增量x ?时,对应的函数值的增量

sin()sin 2sin

cos 22x x y x x x x ?????=+?-=+ ???

由于 cos 12x x ??

?

+

≤ ???

, sin 22x x ??≤

所以 02sin

cos 2222x x x y x x ????

?≤?=+≤=? ??

? 当0x ?→时,由夹逼准则得0y ?→,因此sin y x =在点x 处连续,由于x 的任 意性,sin y x =在(,)-∞+∞内连续。

例2 证明x

y a =(0a >1a ≠)在(,)-∞+∞内连续。

证明 (,)x ?∈-∞+∞,当x 有增量x ?时,对应的函数值的增量

(1)x x x x x y a a a a +???=-=-

由于0x →时,1ln x

a x a -:,因此

lim lim (1)lim (ln )0x x x x x x y a a a x a ??→?→?→?=-=?=

因此,x

y a =在点x 处连续,由于x 的任意性,x

y a =在(,)-∞+∞内连续。

1.6.2 函数的间断点

如果函数()y f x =在一点0x 处不连续,就称函数()y f x =在点0x 处间断,0x 称为函数

()f x 的一个间断点。而根据函数连续的定义,函数()y f x =在点0x 处连续必须满足以下三个

条件:

(1) 函数()f x 点0x 处有定义; (2) 0

lim ()x x f x →存在;

(3) 0

0lim ()()x x f x f x →=。

因此,如果上述条件有一个不能满足,则0x 就是函数()f x 的间断点。 下面分别给出上述至少有一条不满足时,函数间断的例子。

情形1 函数()f x 点0x 处无定义,0

lim ()x x f x →存在或不存在

例3 讨论函数sin x

y x

=

在0x =处的间断情况。 sin x y x =

在0x =处无定义,0x =是它的一个间断点。但0sin lim x x x →存在,若将0sin lim

x x

x

→补充为函数在0x =处的函数值,即

sin 0 1 0

x

x y x x ?≠?

=??=?

则函数在处就变成0x =连续的了。

例4 讨论函数tan y x =在2

x π

=

处的间断情况。

tan y x =在2

x π=处无定义,2

x π=

是它的一个间断点。2

lim tan x x π

不存在,但

2

lim tan x x π

=∞。

例5 讨论函数1

sin

y x

=在0x =处的间断情况。 1

sin y x

=在0x =处无定义,因此,0x =是函数的一个间断点。0x →时,函数值在1-与1

+之间无限次地振荡,因此01

limsin x x

→不存在。

图1.6.2

情形2 函数()f x 点0x 处有定义,但0

lim ()x x f x →不存在

例6 讨论函数 2 0()0 01 0 x x f x x x x ?

==??+>?

的连续情况.

0lim ()0x f x -

→=,0

lim ()1x f x +

→=。该函数在0x =的左、右极限都存在,但不相等,因此0

lim ()x f x →不存在,0x =是它的一个间断点。

情形3 函数()f x 在点0x 处有定义,且0

lim ()x x f x →存在,但0

0lim ()()x x f x f x →≠。

例7 1sin 0() 2 0

x x f x x

x ?

≠?

=??=? 该函数在0x =有定义,且0

1

lim sin

x x x

→存在(=0),但不等于(0)f 。若将(0)f 改为其极限值,即

11sin 0

()0 0

x x f x x

x ?

≠?=??=? 则函数在0x =处就变成连续的了。

如果该函数在0x 点的左、右极限都存在,则称0x 是函数()y f x =的第一类间断点;否则称0x 是函数()y f x =的第二类间断点。在第一类间断点中,若左、右极限相等,则称该间断点为函数的可去间断点,如,例3和例7中0x =都是函数的可去间断点;若左、右极限不相等,则称该间断点为函数的跳跃间断点,如例6中的间断点是函数的跳跃间断点。在第二类间断点

中,又有无穷间断点和振荡间断点。若0

lim ()x x f x →=∞,称0x 是函数()y f x =的无穷间断点,

如例4中2

x π=

是tan y x =的无穷间断点,例5中0x =是1

sin

y x

=的震荡间断点。 有些函数除了一点连续外,其他点处均间断。例如

, rational

()0, irrational x x f x x ?=?

?

仅在0x =处连续,其他点均间断。 1.6.3 连续函数的运算

1 函数和、差、积、商的连续性

定理1.6.1 设函数()f x 和()g x 在点0x 处连续,则

()()f x g x ±,()()f x g x ?,

()

()

f x

g x (当0g()0x ≠时)都在0x 处连续。 根据连续函数的定义和极限运算法则,立即可以得到证明。 因为sin x 与cos x 在(,)-∞+∞内均连续,根据定理1.6.1,sin tan cos x x x =,cos cot sin x

x x

=在其定义域内都连续。 2 反函数的连续性

定理 1.6.2 设函数()y f x =在区间x I 上单调增加(或减少)且连续,则它的反函数

1()x f y -=存在并且在相应的区间{(),}y x I y y f x x I ==∈上单调增加(或减少)且连续。

3 复合函数的连续性

定理 1.6.3 如果()x ?在0x 处连续,()f u 在00()u x ?=处连续,则复合函数

()()[()]y f x f x ??==o 在0x 处连续。

对于由连续函数()y f u =,()u x ?=复合而成的连续函数[()]y f x ?=,有

0lim [()][lim ()][()]x x x x f x f x f x ???→→==,即极限符号和函数符号f 可以交换顺序。

例8

证明 幂函数y x μ

=在0x >时连续。

证明 ln ln x x y x e e μ

μμ===可以看成是由函数u

y e =与ln u x μ=复合而成。由于0

x >时,函数ln u x μ=连续,而函数u

y e =在整个数轴上连续,因此,由复合函数的连续性定理,函数y x μ

=在0x >时连续。

1.6.4 初等函数的连续性

基本初等函数在其定义域内是连续的。一切初等函数在其定义区间(定义域内的区间)内是连续的。

例9 求0ln(1)

lim

x x x

→+。

解 11

000ln(1)

lim

lim ln(1)ln lim(1)ln 1x x x x x x x x e x

→→→+=+=+==。 例10 求 01

lim

.x x e x

→- 解 令1,x

e y -= 则()ln 1.x y =+当0x →时,0.y →

所以

()()100011

lim lim lim 1.ln 1ln 1x x y y y

e y x y y →→→-===++ 同理可证 01

lim

ln .x x a a x

→-=

例11 求1

23lim .21x x x x +→∞+??

?+??

解 ()21211

221

232lim lim 12121x x x x x x x x x +++?+→∞

→∞

+??

?

?=+ ?

?++??

??

()212212lim ln 121211ln .x x x x x e e

e e +→∞?

?+?????+ ???++???????

===

例 12 设

()()0

lim 1,lim ,x x x x u x v x →→==∞

则()

()

()()

0lim 1lim .x x u x v x v x x x

u x e

→-????→=

证明 ()

()

()

[]

()()()ln 11ln v x v x v x u x u x u x e

e

??+-??

==

()()()()()1

1

1ln 11.u x v x u x u x e

-??-+-??????

=

所以

()

()

()()()()()1

1

lim 1ln 11lim u x x x v x u x u x v x x x u x e

-→??-+-??????

→=

()()

lim 1.x x u x v x e

→-????=

注 x →∞时,上述命题也成立。

例13 求22

cot 0

lim(13tan )

x

x x →+。

解 属于1∞型极限。由例12 得 2220

lim(13tan 1)cot 2

cot 30

lim(13tan )

x x x

x

x x e

e →+-?→+==。

例14 讨论函数()111x x

f x e

-=

-的连续性,若有间断点,判断其类型。

解 ()f x 的定义域为()()(),00,11,,-∞+∞U U ()f x 在其定义区间内连续。0,1x x ==是

()f x 的间断点,下面判断其类型。

()10

11lim lim

.1x x x

f x e

→→-==∞-

所以0x =是()f x 的第二类间断点中的无穷间断点。

()()11

1

11

11

11lim lim 0,111lim lim 1.10

1x x x

x x x

f x e

f x e

--

+

+

→→-→→-==-===--

所以1x =是()f x 的第一类间断点中的跳跃间断点。

作业

1.求下列极限 (1)()

0ln 1lim

x ax x

→+

(2)3lim 1n

x x x →∞+?? ?+??

(3)()

1

sin 0

lim 1sin x

x x →+

(4)2

1sin lim

cos x x

x π→

-

(8)

0x →

2.指出下列函数在给定点处是否连续?若不连续,指出间断点的类型。

(1)()sin ,01, 0x

x f x x x ?≠?

=??=?

于0x =处

(3)()1

1, 0, 0 1

1sin 0

x e x f x a x x x x ??+

==???+>?

于0x =处

3.若()f x 在x a =处连续,则()f x 也在a 点连续。 5.设()2

2cos , , x x c f x ax b x c

≤?=?+>?当当 其中,b c 是已知常数。试选择a ,使()f x 为连续函数。

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

大一高数第一章--函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

关于大学高等数学函数极限和连续

关于大学高等数学函数极 限和连续 Last revision on 21 December 2020

第一章 函数、极限和连续 § 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ? ? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D内严格单调增加( ); 若f(x1)>f(x2), 则称f(x)在D内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x∈(-∞,+∞) 周期:T——最小的正数 4.函数的有界性: |f(x)|≤M , x∈(a,b) ㈢基本初等函数 1.常数函数: y=c , (c为常数) 2.幂函数: y=x n , (n为实数) 3.指数函数: y=a x , (a>0、a≠1) 4.对数函数: y=log x ,(a>0、a≠1) a 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x∈X 2.初等函数:

高三数学Word版教案第78课时 函数的极限和连续性

高三数学Word版教案第课时函数的极限和连续性 课题:函数的极限和连续性 教学目标:了解函数极限的概念;掌握极限的四则运算法则;会求某些数列与函数的极限;了解函数连续的意义;理解闭区间上连续函数有最大值和最小值的性质 (一)主要知识及主要方法: 函数极限的定义: 当自变量取正值并且无限增大时,如果函数无限趋近于一个常数,就说当趋向于正无穷大时,函数的极限是,记作:,或者当时,;当自变量取负值并且绝对值无限增大时,如果函数无限趋近于一个常数,就说当趋向于负无穷大时,函数的极限是. 记作或者当当时, 如果且,那么就说当趋向于无穷大时,函数的极限是,记作:或者当时,. 常数函数: (),有. 存在,表示和都存在,且两者相等所以中的既有,又有的意义,而数列极限中的仅有的意义. 趋向于定值的函数极限概念:当自变量无限趋近于()时,如果函数无限趋近于一个常数,就说当趋向时,函数的极限是,记作.特别地,;. . 其中表示当从左侧趋近于时的左极限,

表示当从右侧趋近于时的右极限. 对于函数极限有如下的运算法则: 如果,,那么, , . 当是常数,是正整数时:, 这些法则对于的情况仍然适用. 函数在一点连续的定义: 如果函数在点处有定义,存在, 且,那么函数在点处连续. 函数在内连续的定义:如果函数在某一开区间内每一点处连续,就说函数在开区间内连续,或是开区间内的连续函数. 函数在上连续的定义:如果在开区间内连续,在左端点处有,在右端点处有就说函数在闭区间上连续,或是闭区间上的连续函数. 最大值:是闭区间上的连续函数,如果对于任意,≥,那么在点处有最大值. 最小值:是闭区间上的连续函数,如果对于任意,≤,那么在点处有最小值. 最大值最小值定理 如果是闭区间上的连续函数,那么在闭区间上有最大值和最小值. 极限问题的基本类型:分式型,主要看分子和分母的首项系数; 指数型(和型),通过变形使得各式有极限; 根式型(型),通过有理化变形使得各式有极限; 根的存在定理:若①函数在上连续,②,则方程至少有一根在区

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

高考数学难点-函数的连续及其应用

难点33函数的连续及其应用 函数的连续性是新教材新增加的内容之一.它把高中的极限知识与大学知识紧密联在一起.在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点.本节内容重点阐述这一块知识的知识结构体系. ●难点磁场 (★★★★)已知函数f (x )=?????≤<-≤≤-+-<)51( )1(log )11( )1()1( 32 x x x x x x (1)讨论f (x )在点x =-1,0,1处的连续性; (2)求f (x )的连续区间. ●案例探究 [例1]已知函数f (x )=242+-x x ,(1)求f (x )的定义域,并作出函数的图象; (2)求f (x )的不连续点x 0; (3)对f (x )补充定义,使其是R 上的连续函数. 命题意图:函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映.因而画函数图象去直观反映题目中的连续性问题也就成为一种最重要的方法. 知识依托:本题是分式函数,所以解答本题的闪光点是能准确画 出它的图象. 错解分析:第(3)问是本题的难点,考生通过自己对所学连续函数 定义的了解.应明确知道第(3)问是求的分数函数解析式. 技巧与方法:对分式化简变形,注意等价性,观察图象进行解答. 解:(1)当x +2≠0时,有x ≠-2 因此,函数的定义域是(-∞,-2)∪(-2,+∞) 当x ≠-2时,f (x )=2 42+-x x =x -2,其图象如上图 (2)由定义域知,函数f (x )的不连续点是x 0=-2. (3)因为当x ≠-2时,f (x )=x -2,所以)2(lim )(lim 2 2-=-→-→x x f x x =-4.因此,将f (x )的表达式改写为f (x )=?? ???-=--≠+-2)( 4)2( 242x x x x 则函数f (x )在R 上是连续函数. [例2]求证:方程x =a sin x +b (a >0,b >0)至少有一个正根,且它不大于a +b . 命题意图:要判定方程f (x )=0是否有实根.即判定对应的连续函数y =f (x )的图象是否与x 轴有交点,因此根据连续函数的性质,只要找到图象上的两点,满足一点在x 轴上方,另一点在x 轴下方即可.本题主要考查这种解题方法. 知识依托:解答本题的闪光点要找到合适的两点,使函数值其一为负,另一为正. 错解分析:因为本题为超越方程,因而考生最易想到画图象观察,而忽视连续性的性质在解这类题目中的简便作用 .

(整理)函数的连续性及其应用

函数的连续性及其应用 函数的连续性是新教材新增加的内容之一.它把高中的极限知识与大学知识紧密联在一起.在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点.本节内容重点阐述这一块知识的知识结构体系. ●难点磁场 (★★★★)已知函数f (x )=?????≤<-≤≤-+-<)51( )1(log )11( )1()1( 32 x x x x x x (1)讨论f (x )在点x =-1,0,1处的连续性; (2)求f (x )的连续区间. ●案例探究 [例1]已知函数f (x )=2 42+-x x , (1)求f (x )的定义域,并作出函数的图象; (2)求f (x )的不连续点x 0; (3)对f (x )补充定义,使其是R 上的连续函数. 命题意图:函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映.因而画函数图象去直观反映题目中的连续性问题也就成为一种最重要的方法. 知识依托:本题是分式函数,所以解答本题的闪光点是 能准确画出它的图象. 错解分析:第(3)问是本题的难点,考生通过自己对所学 连续函数定义的了解.应明确知道第(3)问是求的分数函数解析式. 技巧与方法:对分式化简变形,注意等价性,观察图象 进行解答. 解:(1)当x +2≠0时,有x ≠-2 因此,函数的定义域是(-∞,-2)∪(-2,+∞) 当x ≠-2时,f (x )=242+-x x =x -2, 其图象如上图 (2)由定义域知,函数f (x )的不连续点是x 0=-2. (3)因为当x ≠-2时,f (x )=x -2,所以)2(lim )(lim 2 2-=-→-→x x f x x =- 4.

函数的连续性在高等代数中的应用

函数的连续性在高等代数中的应用 摘要:数学分析和高等代数是大学数学专业非常重要的基础课程,这两门课程的一些问题如果只是从学科内部出发很难解决,而运用另一门学科的知识解决,问题就变得简单易行. 关键词:连续函数;行列式;矩阵;二次型 Applications of Continuity of Function in Advanced Algebra Zhou Yuxia (College of Mathematics and the Information Science, Northwest Normal University, Lanzhou 730000) Abstract: The mathematical analysis and advanced algebra are very important foundation courses of university mathematics special ?eld,some of the problems of both courses within the discipline, if only from the start are dif-?cult to resolve but used of the knowledge of other disciplines to solve, the problem becomes very easy. Key words: continuous function; matrix; determinant; quadratic form 本文记号说明:const: 常数;A T : 矩阵A的转置;A*:矩阵A的伴随矩阵; f(x) C(a,b):f(x)在(a,b)上连续.

高等数学课件:函数的连续性

高等数学课件:函数的连续性 1.7函数的连续性 教学目的:理解函数连续性的概念,会判断函数的连续性。掌握连续函数的四则运算,知道反函数及复合函数的连续性,掌握初等函数的连续性, 知道间断点的概念及分类,会判断其类型。 教学重点:函数连续性的概念, 连续函数的四则运算,知道反函数及复合函数的连续性. 教学内容: 1.6.1函数的连续性 1 函数在一点的连续性 xUx()xx定义1 设函数在点的某个邻域内有定义,自变量在点处有增量 yfx,()000 ,相应地函数值的增量 ,x ,,,,,yfxxfx()() 00 xx如果,就称函数fx()在点处连续,称为函数fx()的连续点。 lim0,,y00,,x0 x函数fx()在点处连续还可以描述如下。 0 xUx()设函数yfx,()在点的某个邻域内有定义,如果,就称函数 lim()()fxfx,000xx,0 xfx()在点处连续。 0 左连续及右连续的概念。 xlim()()fxfx,lim()()fxfx,如果,称函数fx()在点处左连续;如果,称函000,,xx,xx,00

x数fx()lim()lim()fxfx,在点处右连续。由于lim()fx存在的充要条件是,因此,根0,,xx,xxxx,,000 xx据函数连续的定义有下述结论:若函数yfx,()在点的某个邻域内有定义,则它在点处00 x连续的充分必要条件是在点处左连续且右连续。 0 2 区间上的连续函数 如果函数在开区间上每一点都连续,我们称函数在开区间内连续,如果函数开区间内连续,在区间的左端点右连续,右端点左连续,就称函数在闭区间上连续。 yx,sin(,),,,,例1 证明在内连续。 x,,,,,,x(,)证明,当有增量时,对应的函数值的增量,x ,,xx,,,,,,,,,yxxxxsin()sin2sincos ,,22,, ,,xx,x,,sin,由于, cos1x,,,,222,, ,,,xxx,,所以 02sincos2,,,,,,,yxx,,222,, 45 xx当时,由夹逼准则得,因此在点处连续,由于的任 ,,y0yx,sin,,x0 意性,在内连续。 yx,sin(,),,,, xya,例2 证明()在内连续。 (,),,,,a,0a,1 x证明,当有增量时,对应的函数值的增量,,,,,,x(,),x xxxxx,,,,,,,,yaaaa(1) x由于时,,因此 axa,1lnx,0 xxx, limlim(1)lim(ln)0,,,,,,yaaaxa000,,,,,,xxx xxya,ya,xx因此,在点处连续,由于的任意性,在内连续。 (,),,,, 1.6.2 函数的间断点

大一微积分公式

有关高等数学计算过程中所涉及到的数学公式(集锦) 一、0 101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m --→∞?=??+++? =??? (系数不为0的情况) 二、重要公式(1)0sin lim 1x x x →= (2)()1 0lim 1x x x e →+= (3 ))1n a o >= (4 )1n = (5)lim arctan 2x x π→∞= (6)lim tan 2 x arc x π →-∞=- (7)lim arc cot 0x x →∞ = (8)lim arc cot x x π→-∞ = (9)lim 0x x e →-∞ = (10)lim x x e →+∞ =∞ (11)0 lim 1x x x + →= 三、下列常用等价无穷小关系(0x →) sin x x tan x x a r c s i n x x arctan x x 2 11c o s 2 x x - ()ln 1x x + 1x e x - 1l n x a x a - ()11x x ? +-? 四、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-??= ??? 五、基本导数公式 ⑴()0c '= ⑵1 x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2 tan sec x x '= ⑹()2 cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1 ln x x '=

大一高等数学公式(精华整理的)

高等数学公式 1导数公式: 2基本积分表: 3三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

关于高等数学函数的极限与连续习题及答案

关于高等数学函数的极 限与连续习题及答案 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所 以()x f 与()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x

高三数学教案:第四节函数的连续性及极限的

第四节 函数的连续性及极限的应用 1.函数在一点连续的定义: 如果函数f (x )在点x =x 0处有定义, lim x x →f (x )存在,且 lim x x →f (x )=f (x 0),那么函数f (x )在点x =x 0处连续. 2..函数f (x )在点x =x 0处连续必须满足下面三个条件. (1)函数f (x )在点x =x 0处有定义; (2)0 lim x x →f (x )存在; (3)0 lim x x →f (x )=f (x 0),即函数f (x )在点x 0处的极限值等于这一点的函数值. 如果上述三个条件中有一个条件不满足,就说函数f (x )在点x 0处不连续.那根据这三个条件,我们就可以给出函数在一点连续的定义. 3.函数连续性的运算: ①若f(x),g(x)都在点x 0处连续,则f(x)±g(x),f(x)?g(x),)()(x g x f (g(x)≠0)也在 点x 0处连续。 ②若u(x)都在点x 0处连续,且f(u)在u 0=u(x 0)处连续,则复合函数f[u(x)]在点x 0处连续。 4.函数f (x )在(a ,b )内连续的定义: 如果函数f (x )在某一开区间(a ,b )内每一点处连续,就说函数f (x )在开区间(a ,b )内连续,或f (x )是开区间(a ,b )内的连续函数. f (x )在开区间(a ,b )内的每一点以及在a 、b 两点都连续,现在函数f (x )的定义域是[a ,b ],若在a 点连续,则f (x )在a 点的极限存在并且等于f (a ),即在a 点的左、右极限都存在,且都等于f (a ), f (x )在(a ,b )内的每一点处连续,在a 点处右极限存在等于f (a ),在b 点处左极限存在等于f (b ). 5.函数f (x )在[a ,b ]上连续的定义: 如果f (x )在开区间(a ,b )内连续,在左端点x =a 处有 + →a x lim f (x )=f (a ),在右端点x =b 处有 - →b x lim f (x )=f (b ),就说函数f (x )在闭区间[a ,b ]上连续,或f (x )是闭区间[a ,b ]上 的连续函数. 6. 最大值最小值定理 如果f (x )是闭区间[a ,b ]上的连续函数,那么f (x )在闭区间[a ,b ]上有最大值和最小值 7.特别注意:函数f(x)在x=x 0处连续与函数f(x)在x=x 0处有极限的联系与区别。“连续必有极限,有极限未必连续。” 二、问题讨论 ●点击双基 1.f (x )在x =x 0处连续是f (x )在x =x 0处有定义的_________条件. A.充分不必要 B.必要不充分

大一高数公式

2 、 高等数学公式 导数公式: 基本积分表: tgxdx In cosx C ctgxdx In sin x r C secxdx In secx tgx C cscxdx In cscx ctgx C dx 1 arctg x C 2 2 a x a a dx 1In 2a x a C 2 2 x a x a dx 1In 2a a x C 2 2 a x a x dx arcsi 吐 C / 2 2 va x a dx sec 2 xdx tgx C 2 cos x dx 2 . .2 csc xdx ctgx C sin x secx tgxdx secx C cscx ctgxdx cscx C a x dx x a C In a shxdx chx C chxdx shx C dx 2 2 ----------- In(x . x a ) C ;2 2 v 3 .x a 2 2 n sin n xdx n cos xdx ■- x 2 a 2dx x x 2 2 a 2 一 x 2 a 2dx x 2 -x 2 a 2 2 2 x 2 2 :a x dx 一 :■ a x n 1 三角函数的有理式积分: 2 _____________________ a 2 2 In(x x a ) C 2 a (tgx) sec x (ctgx) csc x (secx) secx tgx (cscx) cscx ctgx (a x ) a x l na (log a x) 1 xl na (arctgx) (arcctgx) 1 1 x 2 * * * 1 1 x 2 (arcsin x) (arccos x) 1

高等数学函数及极限教案

第一章函数与极限 教学目的: 1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系 式。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形。 5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极 限之间的关系。 6、掌握极限的性质及四则运算法则。 7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极 限的方法。 8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有 界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、复合函数及分段函数的概念; 2、基本初等函数的性质及其图形; 3、极限的概念极限的性质及四则运算法则; 4、两个重要极限; 5、无穷小及无穷小的比较; 6、函数连续性及初等函数的连续性; 7、区间上连续函数的性质。 教学难点: 1、分段函数的建立与性质; 2、左极限与右极限概念及应用; 3、极限存在的两个准则的应用; 4、间断点及其分类; 5、闭区间上连续函数性质的应用。 §1. 1 映射与函数 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示. 元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a M. 集合的表示:

列举法: 把集合的全体元素一一列举出来. 例如A ={a , b , c , d , e , f , g }. 描述法: 若集合M 是由元素具有某种性质P 的元素x 的全体所组成, 则M 可表示为 A ={a 1, a 2, ? ? ?, a n }, M ={x | x 具有性质P }. 例如M ={(x , y )| x , y 为实数, x 2+y 2=1}. 几个数集: N 表示所有自然数构成的集合, 称为自然数集. N ={0, 1, 2, ???, n , ???}. N +={1, 2, ?? ?, n , ???}. R 表示所有实数构成的集合, 称为实数集. Z 表示所有整数构成的集合, 称为整数集. Z ={???, -n , ???, -2, -1, 0, 1, 2, ???, n , ???}. Q 表示所有有理数构成的集合, 称为有理数集. },|{互质与且q p q Z p q p +∈∈=N Q 子集: 若x ∈A , 则必有x ∈B , 则称A 是B 的子集, 记为A ?B (读作A 包含于B )或B ?A . 如果集合A 与集合B 互为子集, A ?B 且B ?A , 则称集合A 与集合B 相等, 记作A =B . 若A ?B 且A ≠B , 则称A 是B 的真子集, 记作A ≠?B . 例如, N ≠?Z ≠?Q ≠?R . 不含任何元素的集合称为空集, 记作?. 规定空集是任何集合的子集. 2. 集合的运算 设A 、B 是两个集合, 由所有属于A 或者属于B 的元素组成的集合称为A 与B 的并集(简称并), 记作A ?B , 即 A ? B ={x |x ∈A 或x ∈B }. 设A 、B 是两个集合, 由所有既属于A 又属于B 的元素组成的集合称为A 与B 的交集(简称交), 记作A ?B , 即 A ? B ={x |x ∈A 且x ∈B }. 设A 、B 是两个集合, 由所有属于A 而不属于B 的元素组成的集合称为A 与B 的差集(简称差), 记作A \B , 即 A \ B ={x |x ∈A 且x ?B }. 如果我们研究某个问题限定在一个大的集合I 中进行, 所研究的其他集合A 都是I 的子集. 此时, 我们称集合I 为全集或基本集. 称I\A 为A 的余集或补集, 记作A C . 集合运算的法则: 设A 、B 、C 为任意三个集合, 则 (1)交换律A ?B =B ?A , A ?B =B ?A ; (2)结合律 (A ?B )?C =A ?(B ?C ), (A ?B )?C =A ?(B ?C ); (3)分配律 (A ?B )?C =(A ?C )?(B ?C ), (A ?B )?C =(A ?C )?(B ?C ); (4)对偶律 (A ?B )C =A C ?B C , (A ?B )C =A C ?B C .

高考数学复习备考知识点汇总及解题技巧第七节-极限

高考数学复习备考知识点汇总及解题技巧 第七节-极限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1?=a ,则n n n n a )1(lim lim ?=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在

⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim ②b a b a n n n ?=?∞ →)(lim ③)0(lim ≠=∞→b b a b a n n n 特别地,如果C 是常数,那么 Ca a C a C n n n n n =?=?∞ →∞→∞→lim lim )(lim . ⑷数列极限的应用: 求无穷数列的各项和,特别地,当1 q 时,无穷等比数列的各项和为)1(11 q q a S ?=. (化循环小数为分数方法同上式) 注:并不是每一个无穷数列都有极限. 3. 函数极限; ⑴当自变量x 无限趋近于常数0x (但不等于0x )时,如果函数)(x f 无限趋进于一个常数a ,就是说当x 趋近于0x 时,函数)(x f 的极限为a .记作a x f x x =→)(lim 0 或当0x x →时,a x f →)(. 注:当0x x →时,)(x f 是否存在极限与)(x f 在0x 处是否定义无关,因为0x x →并不要求0x x =.(当然,)(x f 在0x 是否有定义也与)(x f 在0x 处是否存在极限无关.?函数)(x f 在0x 有定义是)(lim 0 x f x x →存在的既不充分又不必要条件.) 如???+??=1 111)( x x x x x P 在1=x 处无定义,但)(lim 1x P x →存在,因为在1=x 处左右极限均等于零. ⑵函数极限的四则运算法则: 如果b x g a x f x x x x ==→→)(lim ,)(lim 0 0,那么 ①b a x g x f x x ±=±→))()((lim 0 ②b a x g x f x x ?=?→))()((lim 0 ③)0()()(lim 0≠=→b b a x g x f x x 特别地,如果C 是常数,那么 )(lim ))((lim 0 0x f C x f C x x x x →→=?. n x x n x x x f x f )](lim [)]([lim 0 0→→=(+∈N n ) 注:①各个函数的极限都应存在. ②四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. ⑶几个常用极限:

高等数学大一题库

(一)函数、极限、连续 一、选择题: 1、 在区间(-1,0)内,由( )所给出的函数是单调上升的。 (A);1+=x y (B);2x x y -= (C)34+-=x y (D)25-=x y 2、 当+∞→x 时,函数f (x )=x sin x 是( ) (A )无穷大量 (B )无穷小量 (C )无界函数 (D )有界函数 3、 当x →1时,31)(,11)(x x x x x f -=+-=?都是无穷小,则f (x )是)(x ?的( ) (A )高阶无穷小 (B )低阶无穷小 (C )同阶无穷小 (D )等阶无穷 小 4、 x =0是函数1 ()arctan f x x =的( ) (A )可去间断点 (B )跳跃间断点; (C )振荡间断点 (D )无穷间断点 5、 下列的正确结论是( ) (A ))(lim x f x x →若存在,则f (x )有界; (B )若在0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0 x g x x →),(lim 0x h x x →都存在,则),(lim 0 x f x x →也 存在; (C )若f(x)在闭区间[a , b ]上连续,且f (a ), f (b )<0则方程f (x )=0,在(a , b )内有唯一的实根; (D ) 当∞→x 时,x x x x x a sin )(,1)(==β都是无穷小,但()x α与)(x β却不能比. 二、填空题: 1、 若),1(3-=x f y Z 且x Z y ==1 则f (x )的表达式为 ; 2、 已知数列n x n 101 4- =的极限是4, 对于,101 1=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ; 3、 3214lim 1 x x ax x b x →---+=+(b 为有限数) , 则a = , b = ; 4、 设 ,)(a x a x x f --=则x =a 是f (x )的第 类 间断点; 5、 ,0 , ; 0, )(,sin )(?? ?>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,则n = ; 三、 计算题: 1、计算下列各式极限: (1)x x x x sin 2cos 1lim 0-→; (2)x x x x -+→11ln 1lim 0;

大一高等数学公式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  ? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 2 2 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='

相关文档
最新文档