核固体物理的发展与前景

核固体物理的发展与前景
核固体物理的发展与前景

核固体物理的发展与前景

作者:夏元复

作者单位:南京大学物理系,南京,210093

相似文献(10条)

1.会议论文夏元复我国核固体物理的发展与现状2001

本文阐述自从执行国家自然科学基金重点项目研究计划二年以来,我国核固体物理的发展与现状.

核固体物理是核物理与固体物理的结合.它有二个含义:一是用核方法研究固体物理课题,由于和传统研究方法的角度不同,往往会得出新的结果;二是研究适用于核装置的固体材料.不论哪个方向,都涉及核衰变和核反应的粒子,必须仔细考究它们的探测方法.从相互作用的机理看,它涉及原子核与核外环境间的超精细相互作用,以及核散射和核反应的相应机理.早期的研究开始于七十年代初欧洲物理学家在波兰Zakopane举行的Zakopane School of Physics,其中很多期被定名为"用核方法研究凝聚态物理研讨班",并拓展到了欧洲以外(例如见[1]).再以后,出现以"核固体物理"(或"核凝聚态物理")命名的课程,其中著名教科书则如[2]和[3].著作[2]在德国Konstanz大学长期用为"核固体物理"课程的课本,原书为德文版.1996年英文版出版后,更深受欢迎.在著名的瑞典Uppsala大学用的课本,它的书名甚为别致:"在μ子、质子和受激核眼光中的固体现象."[3]物理学是很宽广的,不同二级学科间的交叉对于学科发

2.会议论文郑小平.薛德胜.李发伸稀土超磁致伸缩材料Tb0.3Dy0.7(Fe1-xAlx)1.95的性能和穆斯堡尔研究2001

本文通过对室温下Tb0.3Dy0.7(Fe1-xAlx)1.95(x=0,0.05和0.1)合金的晶体结构、磁致伸缩、电阻率、抗压强度和穆斯堡尔谱的调查,研究了金属Al替代Fe对磁性能、电性能、机械性能和自旋重取向的影响.测量结果发现,对于Tb0.3Dy0.7(Fei-xAlx)1.95系统,金属Al的引入对晶体结构没有影响,其仍然保持MgCu2型的立方Laves相结构,晶格常数随Al含量的增多而增大:随着Al含量的增加,10MPa压应力作用下的磁致伸缩在低场下(H≤500Oe)有小幅增加,高场下迅速减小,而且易趋于和,说明引入Al有助于减小磁晶各向异性:电阻率随Al含量的增加提高了2-3倍:抗压强度接近于线性增大:易磁化轴方向经历了[l ll]→[u v 0]→[u u w]的转变,出现了自旋重取向.

3.期刊论文朱升云超精细相互作用与核固体物理研讨会简讯-物理2002,31(1)

4.会议论文张桂林用EXAFS和发射穆斯堡尔光谱研究镶嵌纳米颗粒早期晶化过程2001

1999年最后一期"Physics World"展望二十一世纪科学大发展时指出"纳米科学、信息科学和纳米生物学正迅速发展成工程技术,其中每一个都能在今后二十年成为新的工业革命的起始者".纳米材料是纳米科技的基础之一,它显然在新的工业革命中起着重要的作用.目前对纳米材料的研究方兴未艾,但着重于纳米晶粒晶化前期的研究还少有报道.对镶嵌纳米的晶化前期研究更是凤毛麟角.这主要是因为它受到亚稳态相的样品制备和测量灵敏度的限制.本文介绍了用EXAFS和发射穆斯堡尔光谱研究镶嵌纳米颗粒早期晶化过程。

5.学位论文周雷慢正电子寿命谱仪电子学系统原型机的研制2009

慢正电子束技术(Slow Positron Technique)已经成为凝聚态物理学、化学和材料科学研究的主要研究工具之一,对材料表面微观缺陷的分析有明显的优越性。慢正电子湮没寿命测量主要利用慢正电子束流的单色性及能量连续可调等特点,研究缺陷在材料表面或近表面不同深度的分布信息。获得慢正电子湮没寿命测量起始时间的方法主要有两种:(1)利用慢正电子入射到样品时产生的二次电子获取时间起始信号;(2)利用对慢正电子束流进行脉冲化的脉冲调制信号作为起始信号。对慢正电子寿命谱仪而言,前者由于二次电子的能量和角度的分散性导致时间分辨率较低,目前最好可达350ps(FWHM);而后者的时间分辨率可达135~250ps(FWHM)。

为打破国内材料科学的研究限制,追赶国际先进正电子研究手段的步伐,根据低能脉冲调制正电子束技术,中国科学技术大学的核固体物理实验室设计了一套脉冲式慢正电子寿命谱仪装置,其脉冲调制系统包括斩波器(Chopper)、预集束腔(Pre-Buncher)、主集束腔(Main-Buncher)和脉冲调制电子学系统。谱仪装置的设计目标是使连续的慢正电子束流经过三路信号的调制后,在样品处得到宽度为150~200ps的正电子窄脉冲,并实现慢正电子谱仪装置的寿命测量达到好于200ps的时间分辨。

根据谱仪装置的设计原理并在参考赫尔辛基大学和北京高能所同类装置电子学系统的基础上,将谱仪电子学系统分为两个子系统:其一为脉冲调制电子学系统,该系统必须产生三路同步的高精度调制信号,来实现对慢正电子束的“筛选”和“聚焦”,以便在样品处得到宽度为150~200ps的正电子窄脉冲;同时,该系统必须提供与斩波器信号同步的时间起始信号。其二为高精度时间测量电子学系统,该系统必须对脉冲调制电子学系统给出的时间起始信号和探测器给出的时间停止信号进行高精度的时间间隔测量,以达到谱仪装置好于200ps的时间分辨。

为了能够达到谱仪装置的设计目标,对电子学系统提出以下要求:

1.斩波器信号为50MHz的脉冲信号,且具有大于5V的幅度、小于2ns的上升沿和下降沿、约7ns的脉冲宽度;预聚束腔和主聚束腔信号分别为频率50MHz和200MHz的正弦信号,且幅度都大于2V;

2.三路信号间的相位晃动在60ps范围内;

3.三路信号间的相位关系能够以小于50ps的步长进行调节;

4.在20ns内测量精度好于64ps的时间测量。

从上述要求可知,如何获得快边沿脉冲信号、保证各路信号间的低晃动及实现高精度的时间测量将是电子学系统设计的难点所在。

针对设计要求及难点,在电子学系统设计中主要采用如下的技术路线:以一路时钟信号作为“源”信号,运用直接数字频率合成技术由此“源”信号产生一个频率可进行微调的高频信号,并通过对此高频信号进行分配分频得到三路信号,这是保证信号间相位稳定的关键;运用脉冲宽带放大技术获得大幅度快边沿信号,在获得快边沿信号的同时保证了引入较小的相位晃动;运用高精度的门延时技术实现信号间的相位调整;使用专用的TDC器件实现高精度的时间测量。

本论文设计有如下几个主要特点:

1.由一路信号通过变化得到三路信号的方法保证了在每次系统上电时信号间都能够有确定的相位关系;

2.脉冲宽带放大技术获得大幅度快边沿信号,同时保证了对信号附加较小的晃动;

3.精密门延时技术实现信号间相位的调整;

4.专用的高精度时间测量器件TDC-GPX的使用,保证了系统的测量精度;

5.内部集成DSP硬核大容量可编程逻辑器件(FPGA)的使用,为在线核信号数字处理提供研究平台,同时,为电荷修正的前沿定时方式时间测量作进一步的研究提供了测试平台,便于与恒比定时方式时间测量进行对比性实验;

6.国内首台自行设计、以集成电路芯片为基础的脉冲式慢正电子寿命谱仪电子学系统原型机。系统的主要功能集成在NIM插件电路上实现,避免了使用大量的分立器件而存在的不兼容风险,同时,避免了由国外商业模块搭建的集成系统不容易根据实验条件改造和调节的缺点,增加了系统的灵活性。

目前,本论文所设计的电子学系统原型机已经完成,并经过了一系列电子学测试,测试结果表明电子学系统设计满足设计指标要求,即将与慢正电子寿命谱仪一起进行联合实验测试。

6.会议论文卢殿通离子注入SOI材料的制备、性能及应用2001

SOI(Silicon On Insulator)材料是为了满足卫星、导弹、飞船航天电子控制系统的需要而发展起来的一种新型硅材料.采用这种材料制作的SOI-CMOS(Complementary Metal-Oxside-Semiconduator)电路,实现了完全介质隔离,具有无锁定、高速度、低功耗和强的抗福射能力等重要优点.因而受到世界各发达国家的高度重视.离子注入SOI材料,是把氧或氮注入硅单晶中形成绝缘埋层二氧化硅或氮化硅:即形成SIMOX(Separation by IMplamted OXygen)或SIMNI(Separation by Implamted Nitrogen)材料,顶层硅仍保持单晶硅的性能.这种材料不但比SOS(Siliconon Sapphire)便宜,而且性能好,完全可以满足制作SOI电路的要求.在集成电路领域,SOI材料是研制高速、高可靠、抗辐照集成电路的最理想的材料,SOI-CMOS电路将广泛应用卫星和导弹的控制系统中.本文介绍了离子注入SOI材料的制备、性能及应用.

7.会议论文王宝义北京慢正电子强束流初步设计2001

慢正电子束流技术是现代科学和高新技术发展中应用非常广泛的研究手段之一,其特点是对于晶体中的点缺陷(如位错、空位、空位团、微空洞、高分子材料中的自由体积等)十分敏感,是一种用核谱学检测微观结构的近代物理实验方法.目前已发展成为研究辐照、离子注入、半导体辐照缺陷、各种生长薄膜、半导体界面等当今十分活跃的表面、界面、团簇等领域的独特而有力研究手段,在材料科学研究与发展中起到了重要作用.

中国科学院高能物理所和合作单位在国家基金委与中国科学院的支持下,经过认真的讨论和论证,拟利用北京正负电子对撞机电子直线加速器完成注入后的"剩余时间",在不改变加速器运行参数,以1.55GeV电子束流为初级入射束流,产生高强度和高亮度的低能单色正电子束流,建设北京慢正电子强束流系统.

北京慢正电子强束流系统的设计指标:在现有对撞机工作模式下,慢正电子束流强度达到106/s;在专用模式下,慢正电子束流强度达到108/s,慢正电子能量从0~50 keV连续可调;样品室设计真空度为10-8Pa,能够满足各学科研究工作的需要.同时结合相关技术,形成一个以同步辐射技术为主体的多学科研究中心,希望在凝聚

8.会议论文周生强.姚淑德.焦升贤.孙长春.孙昌GaN的离子辐照效应2001

本文首先采用背散射/沟道(RBS/channeling)技术分析了GaN的结构参数、结晶品质,然后注入He2+,N+离子,研究注入产生的电阻变化和晶格损伤.在不同的温度下,氮气保护退火30分钟,用Hall法测量电阻率,发现GaN的电阻率增大6-8个数量级.在200-400℃左右退火,电阻率变化最大.

9.会议论文郭立平.孙凯.陈东风.张百生.杜红林.成之绪中子散射谱仪的模拟技术和应用2001

本文简述了中子散射谱仪模拟技术的发展和意义,介绍了中子散射谱仪模拟技术的原理和软件,报道了应用MCSTAS模拟技术对中国先进研究堆旁高分辨中子粉末衍射仪的初步模拟和优化结果.

10.会议论文陈东风.郭立平.孙凯.肖红文.C.-K. Loong.D.Mikkekon.R. Mikkekon.A Chatterjee.T.Workon.K. Takeuchi.勾成.李际周一个新的中子非弹性散射数据处理软件-javaCAP2001

本文介绍了一个新编的中子非弹性散射数据处理软件,javaCAP,用于分析处理中子斩波器谱仪HRMECS的飞行时间数据.java CAP充分利用了Java语言的平台独立性和因特网适用性两个独特的优点,以及面向对象的编程手段,克服了原有FORTRAN版本的的局限性,重新开发了一系列新的功能.它不仅对RUNFILE中的所有DATASET进行数据处理,而且可对DATASET中每个(共~1000个)探测器或探测器组中的PHS和TOF谱进行性能检验,并根据检验结果删除坏探测器的数据.通过对多个样品、本底和校准实验的DATASET各种复杂的处理,以及对各个TOF谱合并和标准化,最后转换为动量-能量转移空间(Q,E)的各种散射函数.用户可随时对中间和最终结果进性实时监控和输出.输出结果可保存并生成格式化的表格文件或文本文件,以便于将结果粘贴到常用应用软件中或进行进异步的数据处理分析.目前javaCAP已被纳入ISAW中,成为ISAW第一个具有数据处理功能的软件包.

本文链接:https://www.360docs.net/doc/ff4815784.html,/Conference_6097537.aspx

授权使用:黄小强(wfxadz),授权号:0a573609-c948-48b6-9713-9e9300aab14b

下载时间:2011年2月23日

金属材料与人类社会的发展

金属材料与人类社会的发展 概要: 金属是人类历史发展中最不可或缺的材料,更是人类社会进步的关键所在,本篇论文将围绕金属在人类社会中的地位,应用等方面展开。主要论述金属材料与人类社会之间的关系,回顾金属过去在人类历史中的作用,分析其在现代社会的地位,并且展望金属才来的在未来的发展前景。 正文: 从100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。现在考古发掘证明我国在八千多年前已经制成实用的陶器,在六千多年前已经冶炼出黄铜,在四千多年前已有简单的青铜工具,在三千多年前已用陨铁制造兵器。我们的祖先在二千五百多年前的春秋时期已会冶炼生铁,比欧洲要早一千八百多年以上。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉镍管炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。至今,金属材料在材料工业中一直占有主导地位。金属材料可以说是人类社会发展的全称见证者,我之所以那么说,是与他在人类社会各个转型期所起到的举足轻重的作用所分不开的。作为人类最早发现并开始加以利用的一种材料,金属可以说从方方面面影响着人类的历史发展进程。从最初把金属打造成狩猎武器到如今人类的生活已完全离不开金属,可见金属早已融入了整个人类社会,那么金属在人类社会中的过去,现在和将来又会是什么样的呢? 金属的在人类社会的过去时中扮演的角色多为一个时期的社会性质的缩影。如新石器时代,青铜器时代等等,而之所会如此为这些时代命名,归根结底,最主要的原因,便是人类在这一石器开发出了某种新的金属,而这一金属几乎决定了人类在这一时期的文明发展进程。如在战国石器,由于铁器的发明和使用,既解放了农村的大量生产力,又在投入战争使用后,大大缩短了战争的进程,从而加速了整个国家的统一,结束了乱世的局面,使得我国文明在一段动荡时期后能够继续得以正常的发展。其中,金属在武器方面的贡献主要在冷兵

核能的利用与发展

核能的利用与前景 摘 要 本文简要介绍原子核的质量亏损和结合能、核子的平均结合能与规律等核能利用原理及核能发电、供热的应用,并对核能聚变前景进行展望。 关键词 核能 质量亏损 结合能 1、引言【1】 人类赖以生存的地球,正在超负荷运行。不仅人口在增长,而且社会发展对能源的需求正以惊人的速度增长。而靠大量燃烧石化燃料获得能源的同时,也给现代社会带来了许多难以解决的灾难性问题:能量资源短缺,森林植被遭破坏,大气、水系、土壤被污染,二氧化碳增多导致的温室效应使自然灾害增多等等。在保护和改善环境的前提下开发利用新兴能源,是人类生存和社会发展的必然趋势。20世纪30年代,随着对原子核研究的深入,人类发现了原子核内蕴藏着巨大的可开发的能量,并开始和平利用原子能的研究。经半个多世纪的努力,迄今世界上已有30多个国家建造核电站440多座,发电量占全球的18%。与火电相比,核电是廉价、洁净、安全的能源。随着将来受控热核聚变的成功,核能必然成为未来的能源支柱。 2、原理 2.1、原子核的质量亏损和结合能【1】 原子核都是由质子和中子组成的,质子和中子统称核子。实验数据发现任何一个原子核的质量总小于组成它的所有核子的质量和,也即核子在组成原子核的过程中,发生了质量亏损,其亏损等于核子结合为核时质量的减少,用△M 表示。 根据爱因斯坦质能方程2E mc =,可知自由核子在结合成原子核时要释放能量,这个能量称为原子核的结合能B 。2()p n B ZM NM M C =+-,其中M p 、M n 、M 分别为质子、中子、原子核的质量。 2.2、核子的平均结合能与规律【1】

质子和中子结合为原子核时放出 的总能量除以质量数A,称为核子的平 均结合能E 。其物理意义是自由核子结 合成原子核时平均每个核子释放的能 量;也可以理解为核分散成核子时,外 界必须对每个核子作功的平均值。E 的 大小可以表征原子核稳定的程 度。平均结合能越大,表示这些 原子核越稳定。核子数较小的轻 核与核子数较大的重核,平均结 合能都比较小,中等核子数的原 子核,平均结合能较大,表示这 些原子核较稳定。当平均结合能 较小的原子核转化成平均结合 能较大的原子核时,就可释放核 能。 图1中表示出各种不同核的平均结合能对质量数A 的分布曲线。从曲线图分析可知中等原子核的平均结合能较大,轻核和重核的平均结合能较小。这说明当一个重核分裂成两个中等质量的原子核时或者当两上很轻的核聚合成一个较重的核时,将有能量的释放,此能即为原子能,又称核能。重核的裂变和轻核的聚变是获取原子能的两条主要途径。 2.3、核裂变【2】 核裂变,又称核分裂,是指由重的原子(铀y óu 或钚b ù)分裂成较轻的原子的一种核反应形式。原子弹以及裂变核电站或是核能发电厂的能量来源都是核裂变。其中铀裂变在核电厂最常见,加 热后铀原子放出2到4个中子,中子再 去撞击其它原子,从而形成链式反应而 自发裂变。如图2所示。 2.2、核聚变【2】 核聚变是指由质量小的原子 (主要 图1:平均结合能图 图3 :核聚变示意图 外来中子 铀-235 裂变 辐射 中子 链式裂变反应 图3:裂变反应示意图

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

金属材料就业前景

金属材料就业前景文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

金属材料就业前景 金属材料就业方向与前景 本人是材料学院的学生,我们学院下设四个专业方向,分别是:金属材料、无机非金属材料、太阳能光伏材料、高分子材料。总体来说,高分子的就业前景最好,其次是金属材料。由于光伏材料是我院第一届招生,所以他们的就业既可能是巨大的机遇,又可能是极大的风险。本人所学专业是金属材料,因此下面我将介绍一些金属材料方面的概况。 金属制品行业包括结构性金属制品制造、金属工具制造、集装箱及金属包装容器制造、不锈钢及类似日用金属制品制造等。随着社会的进步和科技的发展,金属制品在工业、农业以及人们的生活各个领域的运用越来越广泛,也给社会创造越来越大的价值。 2009年金属制品行业的产品将越来越趋向于多元化,业界的技术水平越来越高,产品质量会稳步提高,竞争与市场将进一步合理化。加上国家对行业的进一步规范,以及相关行业优惠政策的实施,2009-2012年,金属制品行业将有巨大的发展空间。 对于金属材料工程专业的毕业生,毕业后主要职业流向有: (1) 材料工程师 (2) 工业工程技术员 (3) 工业工程师 (4) 机械工程技术员 (5) 电子工程师 主要行业流向有: (1) 金属制品业 (2) 初级金属制造业 (3) 交通运输设备制造业 (4) 电子和电器设备及零件制造业 (5) 工商业机械及计算机设备制造业 造船厂技术部做焊接,现在很缺乏焊接的人才,他们招不到焊接方向的人的话就会考虑你的,我有很多同学都去了广州和上海的造船厂去大型制造业做铸造、锻造或者热处理,比如一重、二重、钢厂和汽车制造厂还有就是去一些企业的研发中心做材料测试和研发,这样一般要求是研究生毕业。主要就是技术工作了,部门就是在生产部或者技术部做技术支持、研发部或实验室做产品研发 其实我现在发现最好的是去外资的验证公司,做资格或者质量验证的,真的很好,最主要的是看你的综合个人素质了~

核能利用与发展论文

核能利用与发展趋势 学校:东北农业大学 学院:工程学院 班级:机化1302 学号: 姓名:

核能利用与发展趋势 Unclear energy utilization and development trend 摘要核电是一种清洁、安全、技术成熟、供应能力强、能大规模应用的发电方式,目前,我国核电已由起步进入发展阶段,具有自主设计建造第一代核电的能力,我国已做出积极推进核电发展的重大决定,加快我国核电建设,提高核电在电力供给中的比重,这将有助于缓解电力增民与交通运输的矛盾,核能利用的发展前景将越来越广阔。 关键词核能利用前景核能发展核电 1.核电概述 核能的发展和利用是20世纪科技史上最杰出的成就之一。它通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc2,该方程式表明,质量和能量是等价的,其比例常数为光速的平方。在核能的利用中,核电厂的发展是相当迅速的,己被公认为是一种经济、安全、可靠、干净的能源,核动力技术在多数发达国家得到了巨大发展,也在很多发展中国家获得了广泛的认可。根据能源需求和能源生产结构,我国政府己制定了积极发展核电的方针,建设了秦山和大亚湾两大核电基地,中国核电建设的安全策略取得了成功。 2.核能发电 核能是原子核结构发生变化是释放出来的能量。目前人类利用核能主要有三种——重元素的原子核发生裂变和轻元素的原子核发生聚合反映时释放出来的核能或是原子核自发射出某种粒子而变为另一种核的过程,它们分别为核裂变能、核聚变能和核衰变。核裂变能 核裂变,又称核分裂,是指由较重的原子,主要是指铀或钚,分裂成较轻的(原子序数较小的)原子的一种核反应形式。原子弹以及裂变核电站的能量来源都是核裂变。早期原子弹应用钚-239为原料制成。而铀-235裂变在核电厂最常见。 重核原子经中子撞击后,分裂成为两个较轻的原子,同时释放出数个中子。释放出的中子再去撞击其它的重核原子,从而形成链式反应而自发分裂。原子核裂变时除放出中子还会放出热,核电厂用以发电的能量即来源于此。 由于每次核裂变释放出的中子数量大于一个,因此若对链式反应不加以控制,同时发生的核裂变数目将在极短时间内以几何级数形式增长。若聚集在一起的重核原子足够

马克思主义基本原理-核能对人类社会发展的影响

核能对人类社会发展的影响 刘xx (北京理工大学机械工程及自动化 xxxxx) 摘要核能是一种高效、清洁的能源。介绍了核能的发展历史以及产生的基本原理。核能在核电站、医疗、核动力装置、核武器的相关技术原理,还有核能在这四个方面对人类社会生产、生活、管理、建设的影响。 关键词核能核电站医疗核动力核武器 从古至今,人类都在消耗能源,各种各样的能源,最常见、使用最长久的就是化石燃料,包括木材、煤矿、石油等,到近代人类发现了中子撞击铀会产生巨大的能量,于是乎核能产生了。 1 核能产生原理 首先先介绍一下核能(Nuclear Energy)的概念,核能又称为原子能,是由组成原子核的粒子之间发生的反应,转化其质量从原子核中释放出的能量。 1905年,阿尔伯特·爱因斯坦提出狭义相对论,之后作为推论,又提出质能方程E=mc2,(其中E=能量,m=质量,c=光速常量)。 原子核是由中子和质子构成。每个中子和质子都有自己的质量。但一个原子核的质量不完全等于每一个中子和质子的质量和。这两者的质量差根据爱因斯坦的质能方程,可以算出由中子和质子形成原子核的过程中释放的能量。 当重原子裂变成两个或多个原子时,生成原子的结合能总和会大于原来重原子所具有的结合能,此间的差值便会以热能的形式释放出来,这便是核裂变反应。反之,当几个轻原子结合,合成原子的结合能大于原本所有原子结合能之和,这便是核聚变反应放出能量的来源。总的来说:核能是通过三种核反应之一释放:1.核裂变。打开原子核的结合力。2、核聚变,原子的粒子熔合在一起。3、核衰变,自然的慢得多的裂变形式。 原子能比化学反应中释放的热能要大将近5千万倍:铀核裂变的这种原子能释放形式约为200,000,000电子伏特,而碳的燃烧这种化学反应能量仅放出4.1电子伏特。 核能是人类历史上的一项伟大发现,但是由于其巨大的能量具有强大的应用潜力如果应用不当,落入反和平人士的手中,其高强度能量就有可能成为全人类的灾难。核能就像是一个天使与魔鬼的结合体,人类一直在寻找一种途径能够通过利用核能解决日益加剧的能源短缺问题,但是有震慑于它的可怕威力,稍不注意就会造成难以估量的损失(日本福田核电站事件)。 核能在社会发展(社会生产、管理、建设、生活)中发挥了巨大的作用。目前而言,核能的应用主要集中在核电站、医疗、小型核动力装置、核武器这四种形式。 2 核能发电

无机非金属材料的现状与前景

无机非金属材料的现状与前景 【摘要】无机非金属材料是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。在材料学飞速发展的今天,无机非金属材料有这广阔的应用前景和良好的就业形势。 【关键字】无机非金属材料方向前景智能 1. 无机非金属材料的特点及应用 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。 在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。 无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。 普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。与高分子材料相比,密度较大,制造工艺较复杂。

核能开发利用及对环境的污染

核能的开发利用及对环境的污染 能源是人类社会和经济发展的保障性资源,同时能源问题也是世界性的问题。目前人类所使用的能源主要是化石能源,自19世纪70年年代产业革命以来,化石燃料的消费量急剧保持增长,90%以上的世界经济活动所需的能源都依靠化石能源提供,由于大量消耗,这类资源正趋于枯竭;同时化石燃料的大规模利用也带来了严重的环境污染,导致了温室效应和全球气候变暖等一系列环境问题。能源危机与环境危机日益紧迫,寻找新的清洁、安全、高效的能源是人类所面临的共同任务。 现代社会中,除了煤炭、石油、天然气、水力资源外,还有许多可利用的能源,如风能、太阳能、潮汐能、地热能等等,但是由于技术问题和开发成本等因素,这些能源很难在近期内实现大规模的工业生产和利用;而核能是一种经济、安全、可靠、清洁的能源,同各种化石能源相比起来,核能对环境和人类健康的危害更小,这些明显的优势使核能成为新世纪可以大规模使用的安全和经济的工业能源。从20世纪50年代以来,前苏联、美国、法国、德国、日本等发达国家建造了大量的核电站,由于核电具有巨大的发展潜能和广阔的利用前景,和平发展利用核能将成为未来较长一段时期内能源产业的发展方向。 一.核能发展的简单历程 人类对核能的现实利用始于战争。核能的战争用途在于通过原子弹的巨大威力损坏敌方人员和物资, 达到制胜或结束战争的目的, 目前人类对核能的开发利用主要是发展核电, 相对与其他能源, 核能具有明显的优势。核电站的开发与建设开始于20世纪50年代,1954年,前苏联建成电功率为5000kW 的实验性核电站;1957年,美国建成电功率为9万kW 的希平港原型核电站;这些成就证明了利用核能发电的技术可行性。国际上把上述实验性和原型核电机组称为第一代核电机组。 20世纪60年代后期以来,在试验性和原型核电机组基础上,陆续建成电功率在30万kW 以上的压水堆、沸水堆、重水堆等核电机组,它们在进一步证明核能发电技术可行性的同时,使核电的经济性也得以证明:可与火电、水电相竞争。20世纪70年代,因石油涨价引发的能源危机促进了核电的发展,目前世界上商业运行的四百多座核电机组大部分是在这段时期建成的,称为第二代核电机组。 第三代核电设计开始于20世纪80年代,第三代核电站按照URD或EUR 文件或IAEA 推荐的新的安全法规设计,但其核电机组的能源转换系统(将核能转换为电能的系统)仍大量采用了第二代的成熟技术,预计一般能在2010年前进行商用建造。从核电发达国家的动向来看,第三代核电是当今国际上核电发展的主流。 与此同时,为了从更长远的核能的可持续性发展着想,以美国为首的一些工业发达国家已经联合起来组成“第四代国际核能论坛”(GIF),进行第四代核能利用系统的研究和开发。第四代是指安全性和经济性都更加优越,废物量极少,无需厂外应急,并具有防核扩散能力的核能利用系统,其目标是到2030 年后能进行商用建造。 二.核能的利用现状与核电的发展 1954年前苏联世界建成第一座发电功率为5000KW 的试验性核电站, 美国则在1957年12月建成了发电功率达90000KW的希平港压水堆核电站。20世纪60年代到70年代, 是世界各国经济快速发展时期, 电力需求也以十年翻一番的速度迅速增长, 此时, 核电的安全性和经济性得到验证, 相对于常规发电系统的优越性鲜明地显现出来, 给核电发展提供了一个广阔的市场。核电迅速实现了标准化、批量化的建设和发展。 国际原子能机构公布的一份报告显示, 立陶宛核能发电在全国发电总量中所占的比重接近80%, 这一比重在世界上是最高的。在世界主要工业大国中, 法国核电的比例高, 核电占国家总发电量的78%, 位居世界第二, 日本的核电比例为40%, 德国为33% , 韩国为30% , 美国为22% , 而我国仅为2%右, 发展空间很大。

材料科学的发展史

材料是人类生活和生产的物质基础,是人类认识自然和改造自然的工具。可以这样说,自从人类一出现就开始了使用材料。材料的历史与人类史一样久远。从考古学的角度,人类文明曾被划分为旧石器时代、新石器时代、青铜器时代、铁器时代等,由此可见材料的发展对人类社会的影响。材料也是人类进化的标志之一,任何工程技术都离不开材料的设计和制造工艺,一种新材料的出现,必将支持和促进当时文明的发展和技术的进步。从人类的出现到20世纪的今天,人类的文明程度不断提高,材料及材料科学也在不断发展。在人类文明的进程中,材料大致经历了以下五个发展阶段。 1.使用纯天然材料的初级阶段 在原古时代,人类只能使用天然材料(如兽皮、甲骨、羽毛、树木、草叶、石块、泥土等),相当于人们通常所说的旧石器时代。这一阶段,人类所能利用的材料都是纯天然的,在这一阶段的后期,虽然人类文明的程度有了很大进步,在制造器物方面有了种种技巧,但是都只是纯天然材料的简单加工。 2.人类单纯利用火制造材料的阶段 这一阶段横跨人们通常所说的新石器时代、铜器时代和铁器时代,也就是距今约10000年前到20世纪初的一个漫长的时期,并且延续至今,它们分别以人类的三大人造材料为象征,即陶、铜和铁。这一阶段主要是人类利用火来对天然材料进行煅烧、冶炼和加工的时代。例如人类用天然的矿土烧制陶器、砖瓦和陶瓷,以后又制出玻璃、水泥,以及从各种天然矿石中提炼铜、铁等金属材料,等等。 3.利用物理与化学原理合成材料的阶段 20世纪初,随着物理学和化学等科学的发展以及各种检测技术的出现,人类一方面从化学角度出发,开始研究材料的化学组成、化学键、结构及合成方法,另一方面从物理学角度出发开始研究材料的物性,就是以凝聚态物理、晶体物理和固体物理等作为基础来说明材料组成、结构及性能间的关系,并研究材料制备和使用材料的有关工艺性问题。由于物理和化学等科学理论在材料技术中的应用,从而出现了材料科学。在此基础上,人类开始了人工合成材料的新阶段。这一阶段以合成高分子材料的出现为开端,一直延续到现在,而且仍将继续下去。人工合成塑料、合成纤维及合成橡胶等合成高分子材料的出现,加上已有的金属材料和陶瓷材料(无机非金属材料)构成了现代材料的三大支柱。除合成高分子材料以外,人类也合成了一系列的合金材料和无机非金属材料。超导材料、半导体材料、光纤等材料都是这一阶段的杰出代表。 从这一阶段开始,人们不再是单纯地采用天然矿石和原料,经过简单的煅烧或冶炼来制造材料,而且能利用一系列物理与化学原理及现象来创造新的材料。并且根据需要,人们可以在对以往材料组成、结构及性能间关系的研究基础上,进行材料设计。使用的原料本身有可能是天然原料,也有可能是合成原料。而材料合成及制造方法更是多种多样。 4.材料的复合化阶段 20世纪50年代金属陶瓷的出现标志着复合材料时代的到来。随后又出现了玻璃钢、铝塑薄膜、梯度功能材料以及最近出现的抗菌材料的热潮,都是复合材料的典型实例。它们都是为了适应高新技术的发展以及人类文明程度的提高而产生的。到这时,人类已经可以利用新的物理、化学方法,根据实际需要设计独特性能的材料。 现代复合材料最根本的思想不只是要使两种材料的性能变成3加3等于6,而是要想办法使他们变成3乘以3等于9,乃至更大。 严格来说,复合材料并不只限于两类材料的复合。只要是由两种不同的相组成的材料都可以称为复合材料。 5.材料的智能化阶段 自然界中的材料都具有自适应、自诊断合资修复的功能。如所有的动物或植物都能在没

核能技术应用及发展

核能技术应用及发展 核能是核裂变能的简称,是由于原子核内部结构发生变化而释放出的能量。核能的释放通常有两种形式,一种是重核的裂变,即一个重原子核(如铀、钚)分裂成两个或多个中等原子量的原子核,引起链式反应,从而释放出巨大的能量;另一种是轻核的聚变,即两个轻原子核(如氢的同位素氘)聚合成为一个较重的核,从而释放出巨大的能量。 重核裂变是指一个重原子核,分裂成两个或多个中等原子量的原子核,引起链式反应,从而释放出巨大的能量。 所谓轻核聚变是指在高温下(几百万度以上)两个质量较小的原子核结合成质量较大的新核并放出大量能量的过程,也称热核反应。它是取得核能的重要途径之一。 与重核裂变相比,轻核聚变发电有着无可比拟的优点。 (1)能量巨大。核聚变比核裂变释放出更多的能量。例如,铀-235的裂变反应,将0.1%的物质变成了能量;而氘的聚变反应,将近0.4%的物质变成了能量。 (2)资源丰富。重核裂变使用的主要原料是铀,目前探明的储量仅够使用几十年;而轻核聚变使用的是海水中的氘,1升海水能提取30毫克氘,在聚变反应中能产生约等于300升汽油的能量,即“1升海水约等于300升汽油”,地球上海水中就有45万亿吨氘,足够人类使用数百亿年。而且地球上锂储量有2000多亿吨,锂可用来制造氚,足够人类在聚变能时代使用。因此受控核聚变的燃料取之不尽、用之不竭。 (3)成本低廉。1千克氘的价格只为1千克浓缩铀的1/40。 (4)安全、无污染核。聚变不产生放射性污染物,万一发生事故,反应堆会自动冷却而停止反应,不会发生爆炸。 但是,实现核聚变的条件十分苛刻,为了使2个原子核聚变,必须使两个原子核的一方或双方有足够的能量,去克服彼此之间的静电斥力,满足这样的条件需要几千万甚至几亿摄氏度的高温。 自20世纪70年代起,世界范围内掀起了托卡马克的研究热潮。目前,全世界有30多个国家及地区开展了核聚变研究,运行的托卡马克装置有几十个。 最近,由中国、美国、欧盟、日本、俄罗斯、韩国共同参与的国际热核反应堆合作计划(ITER)因其最终选址问题再次引起了人们的兴趣。这个被称为“人造太阳”的热核反应堆,不仅因为13万亿日元的巨大投资引人关注,更因为如能在未来50年内开发成功,将在很大程度上改变目前世界能源格局,使人类拥有取之不尽、用之不竭的理想的洁净能源。国际热核实验反应堆是继国际空间站之后最大的国际科学合作项目,我国也已正式加盟。根据计划,世界首座热核反应堆将于2006年开工,2013年前完工。这预示着在能源革命中占有重要地位的核聚变能开发和利用的曙光已出现,核能文明时代即将到来。 虽然目前化石燃料在能源消耗中所占的比重仍处于绝对优势,但此种能源不仅燃烧利用率低,而且污染环境,它燃烧所释放出来的二氧化碳等有害气体容易造成 "温室效应",使地球气温逐年升高,造成气候异常,加速土地沙漠化过程,给社会经济的可持续发展带来严重影响。与火电厂相比,核电站是非常清洁的能源,不排放这些有害物质也不会造成"温室效应",因此能大大改善环境质量,保护人类赖以生存的生态

金属材料的应用现状及发展趋势分析

金属材料的应用现状及发展趋势分析 在进行金属材料的应用现状及发展趋势分析之前,先简要介绍一下金属材料。金属材料是最重要的工程材料之一。按冶金工艺,金属材料可以分为铸锻材料、粉末冶金材料和金属基复合材料。铸锻材料又分为黑色金属材料和有色金属材料。黑色金属材料包括钢、铸铁和各种铁合金。有色金属是指除黑色金属以外的所有金属及其合金,如铝及铝合金、铜及铜合金等。工程结构中所用的金属材料90%以上是钢铁材料,其资源丰富、生产简单、价格便宜、性能优良、用途广泛。钢有分为碳钢和合金钢,铸铁又分为灰口铸铁和白口铸铁。 一、金属材料的应用现状 金属材料的结构及其性能决定了它的应用。而金属材料的性能包括工艺性能和使用性能。工艺性能是指在加工制造过程中材料适应加工的性能,如铸造性、锻造性、焊接性、淬透性、切削加工性等。使用性能是指材料在使用条件和使用环境下所表现出来的性能,包括力学性能(如强度、塑性、硬度、韧性、疲劳强度等)、物理性能(如熔点、密度热容、电阻率、磁性强度等)和化学性能(如耐腐蚀性、抗氧化性等)。 金属材料具有许多优良性能,是目前国名经济各行业、各部门应用最广泛的工程材料之一,特别是在车辆、机床、热能、化工、航空航天、建筑等行业各种部件和零件的制造中,发挥了不可替代的作用。 (1)、在汽车中的应用。缸体和缸盖,需具有足够的强度和刚度,良好的铸造性能和切削加工性能以及低廉的价格等,目前主要用灰铸钢和铝合金;缸套和活塞,对活塞材料的性能要求是热强性高,导热性好,耐磨性和工艺性好,目前常用铝硅合金;冲压件,采用钢板和钢带制造,主要是热轧和冷轧钢板。热轧钢板主要用于制造承受一定载荷的结构件,冷轧钢板主要用于构型复杂、受力不大的机器外壳、驾驶室、轿车车身等。还有汽车的曲轴和连杆、齿轮、螺栓和弹簧等,都按其实用需要使用的了不同的金属材料 (2)、在机床方面的应用。机床的机身、底座、液压缸、导轨、齿轮箱体、轴承座等大型零件部,以及其他如牛头刨床的滑枕、带轮、导杆、摆杆、载物台、手轮、刀架等,首选材料为灰铸铁,球磨铸铁也可选用。随着对产品外观装饰效果的日益重视,不锈钢、黄铜的

固体物理学发展简史

固体物理学发展简史 固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。它是物理学中内容极丰富、应用极广泛的分支学科。 固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。 在相当长的时间里,人们研究的固体主要是晶体。早在18世纪,阿维对晶体外部的几何规则性就有一定的认识。后来,布喇格在1850年导出14种点阵。费奥多罗夫在1890年、熊夫利在1891年、巴洛在1895年,各自建立了晶体对称性的群理论。这为固体的理论发展找到了基本的数学工具,影响深远。 1912年劳厄等发现X射线通过晶体的衍射现象,证实了晶体内部原子周期性排列的结构。加上后来布喇格父子1913年的工作,建立了晶体结构分析的基础。对于磁有序结构的晶体,增加了自旋磁矩有序排列的对称性,直到20

世纪50年代舒布尼科夫才建立了磁有序晶体的对称群理论。 第二次世界大战后发展的中子衍射技术,是磁性晶体结构分析的重要手段。70年代出现了高分辨电子显微镜点阵成像技术,在于晶体结构的观察方面有所进步。60年代起,人们开始研究在超高真空条件下晶体解理后表面的原子结构。20年代末发现的低能电子衍射技术在60年代经过改善,成为研究晶体表面的有力工具。近年来发展的扫描隧道显微镜,可以相当高的分辨率探测表面的原子结构。 晶体的结构以及它的物理、化学性质同晶体结合的基本形式有密切关系。通常晶体结合的基本形式可分成:高子键合、金属键合、共价键合、分子键合和氢键合。根据X 射线衍射强度分析和晶体的物理、化学性质,或者依据晶体价电子的局域密度分布的自洽理论计算,人们可以准确地判定该晶体具有何种键合形式。 固体中电子的状态和行为是了解固体的物理、化学性质的基础。维德曼和夫兰兹于1853年由实验确定了金属导热性和导电性之间关系的经验定律;洛伦兹在1905年建立了自由电子的经典统计理论,能够解释上述经验定律,但无法说明常温下金属电子气对比热容贡献甚小的原因;泡利在1927年首先用量子统计成功地计算了自由电子气的顺磁性,索末菲在1928年用量子统计求得电子气的比热容和输运现象,解决了经典理论的困难。

材料科学基础报告 金属材料的发展与展望

金属材料的发展和展望 一、金属材料的发展过程 材料的发展史就是人类社会的发展史,经历了石器、陶器、青铜器、铁器时代。我们正处于多元材料时代,材料、能源、信息是现代社会的三大支柱。金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。金属材料一直扮演着重要的角色,例如陆、海、空、各类运输工具,桥梁、建筑、机械工具,国防重工业等。 金属材料发展的四个阶段:由公元前4300年用金、铜、铁铸造锻打制作出大马士革刀、日本武士剑等原始钢铁到十九世纪铁桥铁路的修筑建立学科基础,又由十九世纪中金属学、金相学发展到合金相图、位错理论等微观组织理论的发展。微观理论的深入研究有原子扩散、马氏体相变、位错滑移,原子显微镜、电子显微镜等新仪器的产生又为进一步研究微观组织提供了可能性,随之产生了表面和界面科学。 材料科学研究了材料的核心关系,即结构和性能的关系,制造工艺决定了材料的结构,结构又决定了材料的性能,性能决定了它的用途。材料科学和技术进入世界科技发展优先领域的第五位。在面临环境保护、节约能源的情况下,新材料便应运而生。 现代金属材料有铝镁合金等先进结构材料、钛铝合金等高温合金材料、复合材料、超导材料、能源材料、智能材料、磁性材料、纳米材料等。材料力学性能有强度、弹性、塑性、硬度等,物理性能有电学、磁学、热学、光学性质等。对材料的研究方向正由力学性能慢慢向物性转变。金属材料具有高强度、优良的塑性和韧性,耐热、耐寒。可铸造、锻造、冲压和焊接,还有良好的导电性、导热性和铁磁性,因此是一切工业和现代科学技术中最重要的材料。 二、金属材料的现状 金属材料作为人类推动社会发展的重要载体之一,作为原料在人类的生产生活中已经被广泛应用,金属材料作为原料具有以下等特征,金属材料本身具备高弹性的模量,金属材料具有高强度的韧性,金属材料的强度硬度是其他同类原料所无法比拟的,在当代金属材料科学的不断成长下金属材料在所有材料的范畴中占据了非常非常重要的位置,在现实中,最常见的金属材料应用的领域有航天航空以及建筑工程等行业。 金属材料机械制造业、建筑业、电子信息等领域都有很大的市场和优势。 汽车的制造上有了高强度钢来制造外形,强度高且质量小的镁合金做发动机、变速箱传动机构等;高强度钢是具有很好的强度和韧性的钢种,在吸能性、应变分布能力和应变硬化特性上远远好于传统钢。与铝、镁这类金属材料相比,具有很好的经济性能,会为企业节省大量的制造成本。由于其有良好的强度和韧性等金属特性,因此被广泛的应用在保险杠、车门槛、车门防撞梁等零件上,它的使用既增加了汽车的安全性,又降低了车身自重。而为了适应轻质材料发展趋势,我们要不断的借鉴国外的先进技术,并结合自身发展需求特点,进行高强度钢的研发。 在建筑领域中,每一次新型金属材料、新型工程技术的出现,都将推动着建筑技术的革新,并对建筑师进行建筑创作,表达建筑美学产生巨大影响。金属材料以其优越的材料性能和独特的视觉效果,已经从建筑中最初的栏杆、扶手等局部装饰构件、建筑内部结构框架,逐渐走向建筑表皮,并决定着建筑所呈现的整体形象,表达着建筑美的意境。如今,金属材料在建筑表皮中扮演着重要角色,对应用金属材料进行建筑表皮的创作与研究,已成为材料科学、建筑学、美学等众多学科争相探索的一个重要课题。

核能发展现状及研究报告

核能研究汇报 1.核能的安全性: 核电是一种清洁、安全、技术成熟、供应能力强、能大规模应用的发电方式,国际核能的应用经历了对核电机组的从第一代到第三代不断改进的过程,目前,国际第四代核能利用系统研究提出了反应堆设计和核燃料循环方案的新概念,我国核电已由起步进入发展阶段,具有自主设计建造第二代核电的能力,我国已做出积极推进核电发展的重大决定,加快我国核电建设,提高核电在电力供给中的比重,这将有助于缓解电力增长与交通运输、环境保护的矛盾,核能利用的发展前景将越来越广阔。 从核能第一次利用至今,已经跨过了半个多世纪,对它的利用已经从由军事用途逐步扩展到民用领域。在当前和平利用的情况下,核能发展给人类带来了诸多好处——高效经济地解决能源危机、快速持续地带来经济效益、深入多元地扩展科技前景以及为人类社会持续发展提供动力,但核能技术是一把双刃剑。在体现优点的同时,核物质本身安全风险、核科技本身安全风险以及核能外部安全风险也给我们敲响了警钟。从伦理学角度有必要利用其实践功能和应用功效来引导、规范人类利用核能的行为,要更安全、可持续的发展核能。正是基于此目的,本文对当前核能发展中的主要弊端:核事故,核走私,企业管理操作者缺失职业道德,核科学家不负责任的行为,放射性污染进行分析,并阐述这些弊端涉及到的伦理问题。提炼了确保核安全利用的四条核伦理原则:和平利用原则、安全无害原则、公开透明原则、利

益与风险均衡原则。最后从政治、经济、文化、科技、环境角度提出相应对策,力图在这些领域内发挥核伦理的实践功能和应用功效,确保核能技术安全利用。 法国没有专门规范新能源问题的法典,其涉及新能源的法律规范主要包括能源基本法、新电力法等综合性法律以及专门性能源立法三类。法国在核能领域的成功依赖于基本法的支持、三级核能监管体制、核废物安全处置法律制度以及信息披露制度。法国在风能、太阳能和生物质能等可再生能源领域也制定了较为详细的法律和政策。我国应借鉴法国的成功经验,健全新能源法律体系并及时、灵活地修订能源法律,因地制宜地确定不同地区的新能源重点发展领域,采取合理的经济激励措施,并在能源开发利用过程中注重保护环境。 2.核能实现方式: 核能是人类最具希望的未来能源之一。人们开发核能的途径有两条:一是重元素的裂变,如铀的裂变;二是轻元素的聚变,如氘、氚、锂等。重元素的裂变技术,己得到实际性的应用;而轻元素聚变技术,也正在积极研究之中。 人类的能源从根本上说,来自核聚变反应,即发生在太阳上的“轻核聚变”。人类已经在地球上实现了不可控的热核反应, 即氢弹爆炸。要获得取之不尽的新能源, 必须使这一反应在可控条件下持续进行。为实现可控核聚变有两种方法,一是用托卡马克装置开展“磁约束聚变”的研究。另一条技术路线是20世纪70年代初公开的“包括以激光驱动为主攻方向的惯性约束核聚变(ICF)”。

核能发展的利与弊

核能发展的利与弊 吴瀚 中国石油大学(华东)信息与控制工程学院电气1605 1605030521 摘要:随着社会的发展,人们对于能源的需求越来越多,然而地球上的化石能源正越来越少,并且带来了许多环境问题。所以,我们继续一种新的相对清洁的能源,而核能恰好符合这些条件。诚然,核能作为新生事物,必然有其两面性。它所带来的运行与废料处理问题不容忽视,但我们可以加速技术的研发,解决这些问题,让核能能更好地为我们服务。 关键词:核能、利弊、发展历程、解决方法 引言:19世纪末,英国物理学家汤姆逊发现电子。从此,人们开始逐渐揭开原子核的神秘面纱。在1895年德国物理学家伦琴发现了X射线,紧随其后的是法国物理学家贝克勒尔于1896年发现了放射性。到了1898年居里夫人与居里先生发现放射性元素钋。经过三年又九个月的艰苦努力,居里夫人于1902年又发现了放射性元素镭。在1905年爱因斯坦提出质能转换公式,而到了1914年英国物理学家卢瑟福通过实验,确定氢原子核是一个正电荷单元,称为质子,之后,1935年英国物理学家查德威克发现了中子。1938年德国科学家奥托·哈恩用中子轰击铀原子核,发现了核裂变现象,从此,人们意识到隐藏在核内的巨大能量。于1942年12月2日美国芝加哥大学成功启动了世界上第一座核反应堆。1945年8月6日和9日美国的两颗原子弹先后投在了日本的广岛和长崎,伴着巨响,核能终于为世人所熟知。1954年苏联建成了世界上第一座商用核电站——奥布灵斯克核电站。从此人类开始将核能运用于军事、能源、工业、航天等领域。美国、俄罗斯、英国、法国、中国、日本、以色列等国相继展开核能应用研究。 到2017年,全世界已有30个国家拥有核电站,全球运行核电站数量已有441座,其中绝大部分是压水堆核电站。目前,只有核裂变被用于核能发电,而核聚变,乐观地估计,还需50年实现商业化。由于自然界有很多核聚变所需的氢同位素,且不会产生核废料的问题,所以各国在积极地发展受控核聚变,最著名的便是托卡马克受控热核反应装置。 随着时代的发展,现有的能源已经不能很好地满足。化石燃料的探明量并没有太多的增加,而人们燃烧量越来越多,余下的储量会越来越少。这样,便能很好地解释各国对核能的研究的大力支持。 新生事物都有其两面性,我们应正确认识到核能的优点以及它所可能带来的问题。对这些问题的认真思考,可以让我们更好地控制核反应,处理好带来的问题,让核能转变成高效安全的供电能源,为社会的未来发展提供能源。 一、核能的优点 1、经济方面

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

金属的材料地地的应用现状与发展趋势

金属材料的发展现状与前景 摘要:金属是人们日常生活生产中最不可或缺的材料,更是人类社会进步的关键所在,本篇论文主要论述金属材料的种类、性能及在社会发展中的重要应用,并且展望金属材料在未的发展前景。 关键词:金属材料、镁合金、铝合金、稀土、汽车 引言 金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。 人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。我们对金属材料的认识应从以下几方面开始: 一、分类: 金属材料通常分为黑色金属、有色金属和特种金属材料。 1、黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。 2、有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。

3、特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。 4、金属材料按生产成型工艺又分为铸造金属、变形金属、喷射成形金属,以及粉末冶金材料。铸造金属通过铸造工艺成型,主要有铸钢、铸铁和铸造有色金属及合金。变形金属通过压力加工如锻造、轧制、冲压等成型,其化学成分与相应的铸造金属略有不同。喷射成形金属是通过喷射成形工艺制成具有一定形状和组织性能的零件和毛坯。 二、性能 金属材料的性能可分为工艺性能和使用性能两种。为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 材料的工艺性能指材料适应冷、热加工方法的能力。 三、应用现状: 金属材料的发展已从纯金属、纯合金中摆脱出来。随着材料设计、工艺技术及使用性能试验的进步,传统的金属材料得到了迅速发展,新的高性能金属材料不断开发出来。如快速冷凝非晶和微晶材料、高比强和高比模的铝锂合金、有序金属间化合物及机械合金化合金、氧化物弥散强化合金、定向凝固柱晶和单晶合金等高温结构材料、金属基复合材料以及形状记忆合金、钕铁硼永磁合金、贮氢合金等新型功能金属材料,已分别在航空航天、能源、机电等各个领域获得了应用,并产生了巨大的经济效益。 1、镁及镁合金

相关文档
最新文档