数据处理与数值分析

数据处理与数值分析
数据处理与数值分析

天津大学本科课程描述

(表格内容:题头为加黑小四号宋体,内容为普通小四号宋体,1.5倍行距)

学院:化工学院专业名称:化学工程与工艺、生物工程、制药工程、应用化学(工)

本科课程信息

课程名称:数据处理与数值分析课程编号:2070355

学分: 2.5 学时:40

课程描述:数据处理与数值分析是本科四年制《化学工程与工艺》、《生物工程》、《制药工程》、《应用化学》专业的一门选修课程。是在学生

已有的高等数学知识基础上重点介绍化学化工中常用的一些数据

处理及数值分析方法。

该课的目的和任务是使学生学会使用数学模型化方法解决化工的实际问题,讲授过程中强调数学理论与化工实际相结合,介绍

数学方法的同时更注重介绍应用此数学知识能够解决的化工实际

问题,以提高学生用数学知识分析和解决化工实际问题的能力,这

门课不应只是提供数学的知识。该课可为学生后续的专业及专业基

础课的学习和毕业论文的撰写奠定基础。

Course Description

(表格内容:题头为加黑小四号Times New Roman,内容为普通小四号Times New Roman,1.5倍行距)

School: School of Chemical

Engineering and Technology

Major: Chemical Engineering

and Technology、

Biological Engineering、

Pharmaceutical

Engineering、Applied

Chemistry Information of undergraduate courses:

Title:Data Processing and

Numerical Solutions

Code:2070355

Credit points: 2.5 Hours: 40

Course

Description: Data Processing and Numerical Solutions is a comprehensive applied Mathematics, which is based on Advanced Mathematics, Arithmetic

Language, Physical Chemistry and Chemical Engineering Theory

and emphasizes the combination with chemical engineering. It

mainly introduces the commonly used mathematical methods in

chemistry and chemical engineering and the application of the

mathematical methods in modern chemical engineering industry.

矩阵与数值分析学习指导和典型例题分析

第一章 误差分析与向量与矩阵的范数 一、内容提要 本章要求掌握绝对误差、相对误差、有效数字、误差限的定义及其相互关系;掌握数值稳定性的概念、设计函数计算时的一些基本原则和误差分析;熟练掌握向量和矩阵范数的定义及其性质。 1.误差的基本概念和有效数字 1).绝对误差和相对误差的基本概念 设实数x 为某个精确值,a 为它的一个近似值,则称a x -为近似值a 的绝对误差,简称为误差. 当0≠x 时,x a x -称为a 的相对误差.在实际运算中,精确值x 往往是未知的,所 以常把a a x -作为a 的相对误差. 2).绝对误差界和相对误差界的基本概念 设实数x 为某个精确值,a 为它的一个近似值,如果有常数a e ,使得 a e a x ≤- 称a e 为a 的绝对误差界,或简称为误差界.称 a e a 是a 的相对误差界. 此例计算中不难发现,绝对误差界和相对误差界并不是唯一的,但是它们越小,说明a 近似x 的程度越好,即a 的精度越好. 3).有效数字 设实数x 为某个精确值,a 为它的一个近似值,写成 ΛΛn k a a a a 21.010?±= 它可以是有限或无限小数的形式,其中),2,1(Λ=i a i 是9,,1,0Λ中的一个数字,k a ,01≠为整数.如果 n k a x -?≤ -102 1 则称a 为x 的具有n 位有效数字的近似值. 如果a 有n 位有效数字,则a 的相对误差界满足:n a a a x -?≤-11 1021 。 4).函数计算的误差估计 如果),,,(21n x x x f y Λ=为n 元函数,自变量n x x x ,,,21Λ的近似值分别为n a a a ,,,21Λ,则

数值分析拉格朗日插值法上机实验报告

课题一:拉格朗日插值法 1.实验目的 1.学习和掌握拉格朗日插值多项式。 2.运用拉格朗日插值多项式进行计算。 2.实验过程 作出插值点(1.00,0.00),(-1.00,-3.00),(2.00,4.00)二、算法步骤 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X坐标; (3)分别输入已知点的Y坐标; 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日

插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项*/ a=(float*)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:");

scanf("%d",&n); if(n<=0) { printf("Error! The value of n must in (0,20)."); getch();return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); } 举例如下:已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。

矩阵与数值分析上机实验题及程序

1.给定n 阶方程组Ax b =,其中 6186186186A ?? ? ? ?= ? ? ??? ,7151514b ?? ? ? ?= ? ? ??? 则方程组有解(1,1,,1)T x = 。对10n =和84n =,分别用Gauss 消去法和列主元消去法解方程组,并比较计算结果。 Gauss 消去法: Matlab 编程(建立GS.m 文件): function x=GS(n) A=[];b=[]; for i=1:n-1 A(i,i)=6; A(i,i+1)=1; A(i+1,i)=8; b(i)=15; end A(n,n)=6;b(1)=7;b(n)=14;b=b'; for k=1:n-1 for i=k+1:n m(i,k)=A(i,k)/A(k,k); A(i,k:n)=A(i,k:n)-m(i,k)*A(k,k:n); b(i)=b(i)-m(i,k)*b(k); end end b(n)=b(n)/A(n,n); for i=n-1:-1:1 b(i)=(b(i)-sum(A(i,i+1:n).*b(i+1:n)'))/A(i,i); end clear x; x=b; disp( 'AX=b 的解x 是') end 计算结果: 在matlab 命令框里输出GS (10)得: >> GS(10) AX=b 的解x 是 ans = 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 在matlab命令框里输出GS(84)得:>> GS(84) AX=b的解x是 ans = 1.0e+008 * 0.0000 … … … 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0001 0.0002 -0.0003 0.0007 -0.0013 0.0026 -0.0052 0.0105 -0.0209 0.0419 -0.0836 0.1665 -0.3303

数值分析常用的插值方法

数值分析报告 班级: 专业: 流水号: 学号: 姓名:

常用的插值方法 序言 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。 插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……x n处的值是f(x0),……f(x n),要求估算f(x)在[a,b〕中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0, C1,……C n的函数类Φ(C0,C1,……C n)中求出满足条件P(x i)=f(x i)(i=0,1,……n)的函数P(x),并以P(x)作为f(x)的估值。此处f(x)称为被插值函数,x0,x1,……xn 称为插值结(节)点,Φ(C0,C1,……C n)称为插值函数类,上面等式称为插值条件,Φ(C0,……C n)中满足上式的函数称为插值函数,R(x)=f(x)-P(x)称为插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。 一.拉格朗日插值 1.问题提出: 已知函数()y f x =在n+1个点01,,,n x x x L 上的函数值01,,,n y y y L ,求任意一点 x '的函数值()f x '。 说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。 2.解决方法: 构造一个n 次代数多项式函数()n P x 来替代未知(或复杂)函数()y f x =,则 用()n P x '作为函数值()f x '的近似值。 设()2012n n n P x a a x a x a x =++++L ,构造()n P x 即是确定n+1个多项式的系数 012,,,,n a a a a L 。 3.构造()n P x 的依据: 当多项式函数()n P x 也同时过已知的n+1个点时,我们可以认为多项式函数 ()n P x 逼近于原来的函数()f x 。根据这个条件,可以写出非齐次线性方程组: 20102000 20112111 2012n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?++++=?++++=?? ? ?++++=?L L L L L 其系数矩阵的行列式D 为范德萌行列式: ()20 0021110 2111n n i j n i j n n n n x x x x x x D x x x x x ≥>≥= = -∏L L M M M M L

数值分析常用的插值方法

数值分析 报告 班级: 专业: 流水号: 学号: 姓名:

常用的插值方法 序言 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。 插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上 n+1 个互不相同点x 0,x 1 (x) n 处的值是f(x ),……f(x n ),要求估算f(x)在[a,b〕 中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C , C 1,……C n 的函数类Φ(C ,C 1 ,……C n )中求出满足条件P(x i )=f(x i )(i=0,1,…… n)的函数P(x),并以P(x)作为f(x)的估值。此处f(x)称为被插值函数,x 0,x 1 ,……xn 称为插值结(节)点,Φ(C 0,C 1 ,……C n )称为插值函数类,上面等式称为插值条件, Φ(C 0,……C n )中满足上式的函数称为插值函数,R(x)= f(x)-P(x)称为 插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。 一.拉格朗日插值 1.问题提出: 已知函数()y f x =在n+1个点01,, ,n x x x 上的函数值01,, ,n y y y ,求任意一点 x '的函数值()f x '。 说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。 2.解决方法: 构造一个n 次代数多项式函数()n P x 来替代未知(或复杂)函数()y f x =,则 用()n P x '作为函数值()f x '的近似值。 设()2012n n n P x a a x a x a x =+++ +,构造()n P x 即是确定n+1个多项式的系数 012,,,,n a a a a 。 3.构造()n P x 的依据: 当多项式函数()n P x 也同时过已知的n+1个点时,我们可以认为多项式函数 ()n P x 逼近于原来的函数()f x 。根据这个条件,可以写出非齐次线性方程组: 20102000 201121112012n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?+++ +=?++++=??? ?+++ +=? 其系数矩阵的行列式D 为范德萌行列式: () 200021110 2 111n n i j n i j n n n n x x x x x x D x x x x x ≥>≥= = -∏

大连理工大学09级矩阵与数值分析试题

大 连 理 工 大 学 课 程 名 称: 矩阵与数值分析 试 卷: 统一 考试类型 闭卷 授课院 (系): 数 学 系 考试日期:2010年1月12日 试卷共 8页 一、 填空与判断题(?或√),每空 2 分,共50分 (1) 已知2009.12a =,2010.01b =分别是按四舍五入原则得到的1x 和2x 近似值,那么,1x a -≤ ; 2x b b -≤ ;12x x ab -≤ 。 (2)[]0,1上权函 数()x x ρ=的正交多项式族中()1x φ= ; ()()1 5 350 x x x φ+=? 。 (3) 已知存在实数R 使曲线2y x =和()2 228y x R +-=相切。求切点横坐标近似值的Newton 迭代公式为 。 (4) 设1221?? ?-??A =,则它的奇异值为 。 (5)若取1101??=????A ,则1 d t e t =?A 。 (6) 若1

(8) 已知0.2510.25??= ?? ?A ,则0k k ∞ ==∑A 。 (9) 设,n ≠∈C s 0则 () 2 T =ss s,s 。 (10) 求解微分方程(0)2u t u u '=-??=?,的Euler 法公式为 ; 绝对稳定区间为 ;改进的Euler 公式为 。 (11) 用A (-2,-3.1)、B (-1,0.9)、C (0,1.0) 、D (1,3.1)、E (2,4.9)拟合一 直线s (x )=a +bx 的法方程组为: 。 (12) 已知多项式()3234321p x x x x =+++,那么求此多项式值的秦九韶算法公为:_ ______。 (13) 给定如下数据表 则均差[1,0,1f -= ,由数据构造出最简插值多项式 ()p x = 。 (14)设???? ? ? ?? +=231311a A ,当a 满足条件 时, A 必有唯一的T LL 分解(其中L 是对角元为正的下三角矩阵)。 (15) 求01)(=--=x e x f x 根的Newton 迭代法至少局部平方收敛 ( ) (16) 若A 为可逆矩阵,则求解A T Ax=b 的Gauss-Seidel 迭代法收敛 ( ) (17) 分段二点三次Hermite 插值多项式∈C 2函数类 ( ) (18) 如果A 为Hermite 矩阵,则A 的奇异值是A 的特征值 ( )

数值分析 插值法

第二章插值法 2.在区间[-1,1]上分别取n=10,20用两组等距节点对龙哥函数f(x)=1/(1+25*x^2)做多项式插值及三次样条插值,对每个n值,分别画出插值函数及f(x)的图形。 (1)多项式插值 ①先建立一个多项式插值的M-file; 输入如下的命令(如牛顿插值公式): function [C,D]=newpoly(X,Y) n=length(X); D=zeros(n,n) D(:,1)=Y' for j=2:n for k=j:n D(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1)); end end C=D(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))) m=length(C); C(m)= C(m)+D(k,k); end ②当n=10时,我们在命令窗口中输入以下的命令: clear,clf,hold on; X=-1:0.2:1; Y=1./(1+25*X.^2); [C,D]=newpoly(X,Y); x=-1:0.01:1; y=polyval(C,x); plot(x,y,X,Y,'.'); grid on; xp=-1:0.2:1; z=1./(1+25*xp.^2); plot(xp,z,'r') 得到插值函数和f(x)图形:

③当n=20时,我们在命令窗口中输入以下的命令:clear,clf,hold on; X=-1:0.1:1; Y=1./(1+25*X.^2); [C,D]=newpoly(X,Y); x=-1:0.01:1; y=polyval(C,x); plot(x,y,X,Y,'.'); grid on; xp=-1:0.1:1; z=1./(1+25*xp.^2); plot(xp,z,'r') 得到插值函数和f(x)图形:

大连理工大学矩阵与数值分析2017年考题

大连理工大学2017年研究生矩阵与数值分析考试 考试日期:2017年6月5日 一、填空题(50分,每空2分) 1.a=0.3000经过四舍五入具有4位有效数字,则 x a a -≤,ln ln x a -≤ 2.已知X=(1,5,12)T ,Y=(1,0,a)T ,则由X 映射到Y 的Householder 矩阵为:,计算||H||2=,cond 2(H)= 3.根据3次样条函数的性质(后面-前面=a (x-x0)3),一个求其中的参数b== 4.2 '3u u t =,写出隐式Euler 格式: 梯形法格式: 5.已知A=XX T ,其中X 为n 维列向量,则||A||2=,||A||F =,矩阵序列的极限:2lim k k A A →∞?? ? ? ?? = 6.A=LU ,其解为x ,写出一步迭代后的改善格式: 7. 531A -?? ? = ? ?-?? ,请问通过幂法与反幂法计算出的特征值分别是, 8.1111A ?? ?= ? ??? ,sin A =,823A A A +-=,At e =,d d At e t =,2 1At e dt ?= 9. ()()()()2 1 2 012f x dx A f A f A f =++?是Newton-cotes 公式,则1 A =,具有代数精度= 10. f(x)=7x 7+6x 6+…+x ,f[20,21,22….,28]= 11. 0.40.200.5A ??= ???,1 k k A ∞=∑= 12.f(0)=1,f(1)=-1,f(2)=1,f(3)=19,请问对该节点进行插值后最高次的系数= 还有2空没有回忆出来,但是比上面题目还简单,因此不用担心。 二、121232352A -?? ?=-- ? ?--??,121b ?? ? = ? ?-?? (1)计算LU 分解 (2)利用LU 求逆矩阵 (3)写出G-S 格式(12分)

矩阵与数值分析_大连理工大学2011试卷

2011级工科硕士研究生 《矩阵与数值分析》课程数值实验题目 一、 对于数列1111 1,,, ,,392781 ,有如下两种生成方式 1、首项为01a =,递推公式为11 ,1,2,3 n n a a n -== ; 2、前两项为011 1,3 a a ==,递推公式为1210,2,3,3n n n a a a n --=-= ; 给出利用上述两种递推公式生成的序列的第50项。 二、 利用迭代格式 1 0,1,2,k x k += = 及Aitken 加速后的新迭代格式求方程324100x x +-=在[1, 1.5]内的根 三、解线性方程组 1.分别Jacobi 迭代法和Gauss-Seidel 迭代法求解线性方程组 12346212425027,208511 3270x x x x -?????? ? ? ? - ? ? ? = ? ? ? -- ? ? ? ???? ?? 迭代法计算停止的条件为:6)() 1(3 110max -+≤≤<-k j k j j x x . 2. 用Gauss 列主元消去法、QR 方法求解如下方程组: 1234221 2141312. 4201123 230x x x x ?????? ? ? ?- ? ? ? = ? ? ? -- ? ? ????? ?? 四、已知一组数据点,编写一程序求解三 次样条插值函数满足

并针对下面一组具体实验数据 求解,其中边界条件为. 五、编写程序构造区间上的以等分结点为插值结点的Newton插值公式,假设结点数为(包括两个端点),给定相应的函数值,插 值区间和等分的份数,该程序能快速计算出相应的插值公式。以 ,为例计算其对应的插值公式,分别取 不同的值并画出原函数的图像以及插值函数的图像,观察当增大 时的逼近效果. 实验须知: (1)所有的数值实验的题目要求用C语言或Matlab编程; (2)实验报告内容应包括问题、程序、计算结果及分析等; (3)12月26日前在本课程网站上提交实验报告; (4)本次实验成绩将占总成绩的10%。 (5)报告上要注明:所在教学班号、任课老师的姓名;报告人所在院系、学号。电子版提交到课程网站ftp://202.118.75.63/中各自老师目录下的homework文件夹内,文件名用学号命名。 《矩阵与数值分析》课程教学组 2011年11月30日

矩阵与数值分析实习题2018秋

矩阵与数值分析2018秋上机实习 1. 用秦九韶算法编程计算f (x )=1+x +x 2+?+x 50在x =1.00001处的值。 2. 设f (x )=54x 6+45x 5?102x 4?69x 3+35x 2+16x ?4.在区间[?2,2] 上画出函数, (1)使用Newton 迭代法找出该区间上的5个根,并计算e i+1/e i 2和e i+1/e i ,由此判断哪个根是1阶收敛,哪个根是2阶收敛?(2)使用割线法计算这5个根,并判断哪个根是线性收敛,哪个是超线性收敛? 3. 令H 表示n ×n 的Hilbert 矩阵,其中(i,j)元素是1/(i +j ?1), b 是元素全为1的向量,用Gauss 消去法求解Hx =b,其中取(a) n =2; (b) n =5; (c) n =10. 4. 已知方程组 [ 3?1?13?1??? ?13?1?13] [x 1?x n ]=[ 21?12] 分别用Jacobi 迭代和Gauss-Seidel 迭代求解方程组,精确到小数点后6位 5. 用共轭梯度法求解第3题中的方程组 6. 令f (x )=e |x|,x ∈[?1,1],分别用等距节点和Chebyshev 的零点去插值f(x),等距节点包括左右两个端点,分别取n =5,10,15,20,画出插值函数以及原函数的图并比较,观察有没有龙格现象发生。 7. 编程求解教材183页例3,并计算出样条函数在插值结点及相邻结点的中点处的导数值,并画出原函数及插值函数,原函数的导函数及插值函数的导函数的图像。把步长变为0.1重复上述操作。 8. (1)给定数据点(x i ,x i 2),x i =0,1n ,2n ,…,1,当n =5,10,15,20,25,30时分别用直线拟合这组数据点并注意观察当点数逐渐增加时直线的表达式的变化.(2)计算函数f (c 1,c 2)=∫(x 2?c 1?c 2x )2dx 1 0的最小值,并解释与(1)的关系 9. 已知常微分方程 {du dx =2x u +x 2e x x ∈[1,2],u (1)=0 , 分别用Euler 法,改进的Euler 法,Runge-Kutta 法去求解该方程,步长选为0.1,0.05,0.01.画图观察求解效果。 要求: 1.考试前提交作业(word 形式提交,包括代码和实验结果),主题写“学号+姓名+学部(学院)”发送至邮箱zhuke_2015@https://www.360docs.net/doc/ff7690579.html, ,文件名“学号+姓名+学部学院”。考试后提交的数值试验部分成绩记为零分。 2.可用任何一种语言编程

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合 一、实验目的 1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性; 2. 编写MATLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象; 3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理; 4. 编写MATLAB 程序实现最小二乘多项式曲线拟合。 二、实验内容 1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。 2. 设 ]5,5[,11 )(2 -∈+= x x x f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。 3. 在某冶炼过程中,根据统计数据的含碳量与时间关系如下表,试求含碳量与时间t 的拟合曲线。

(1) 用最小二乘法进行曲线拟合; (2) 编写MATLAB 程序绘制出曲线拟合图。 三、实验步骤 1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件: ?? ?≠===j i j i x l ij j i , 0,, 1)(δ 的一组基函数{}n i i x l 0)(=,l i (x )的表达式为 ∏ ≠==--= n i j j j i j i n i x x x x x l ,0),,1,0()( 有了基函数{}n i i x l 0)(=,n 次插值多项式就可表示为 ∑==n i i i n x l y x L 0)()( (2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为 1102110] ,,,[],,,[],,,[x x x x x f x x x f x x x f n n n n --= - 则n 次多项式 ) ())(](,,[) )(](,,[)](,[)()(11010102100100----++--+-+=n n n x x x x x x x x x f x x x x x x x f x x x x f x f x N 差商表的构造过程:

矩阵与数值分析讲解

2013级工科硕士研究生 《矩阵与数值分析》课程数值实验题目 一、设 6 2 2 10 1 N N j S j = = - ∑,分别编制从小到大和从大到小的顺序程序分别计算 100001000000 , S S 并指出两种方法计算结果的有效位数。 Matlab程序如下: function [si,sd]=S(N) format long; si=0;sd=0; for j=N:-1:2 si=1.0e6/(j^2-1)+si; end for j=2:N sd=1.0e6/(j^2-1)+sd; end end 在matlab命令窗口中输入:[si,sd]=S(10000) 运行结果:si =7.499000049995000e+005 sd =7.499000049994994e+005 在matlab命令窗口中输入:[si,sd]=S(1000000) 运行结果:si =7.499990000005000e+005 sd =7.499990000005200e+0051 结果分析:si为从大到小的顺序求和的值,sd为从小到大的顺序求和的值。当N分别为10000和1000000时,si分别为7.499000049995000e+005和7.499990000005000e+005,可以看出这两个数的有效值均为13位;而sd分别为7.499000049994994e+005和7.499990000005200e+005,这两个数的有效值均为16位。这就出现了我们在矩阵理论课上所学的“大数吃小数”的问题。为了使结果更为精确我们必须避免在四则运算中出现“大数吃小数”的情况,应该按从小到大的顺序进行求和。 二、解线性方程组 1.分别利用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组Ax b =,其中常向量为()21 n-维随机生成的列向量,系数矩阵A具有如下形式

常州大学数值分析课后习题答案第二章第三章第四章节

数值分析作业 第二章 1、用Gauss消元法求解下列方程组: 2x 1-x 2 +3x 3 =1, (1) 4x 1+2x 2 +5x 3 =4, x 1+2x 2 =7; (2) 解: A=[2 -1 3 1;4 2 5 4;1 2 0 7] n=size(A,1);x=zeros(n,1);flag=1; % 消元过程 for k=1:n-1 for i=k+1:n if abs(A(k,k))>eps A(i,k+1:n+1)= A(i,k+1:n+1)-A(k,k+1:n+1)*A(i,k)/A(k,k); else flag=0; return end end end % 回代过程 if abs(A(n,n))>eps x(n)=A(n,n+1)/A(n,n); else flag=0; return end for i=n-1:-1:1 x(i)=(A(i,n+1)-A(i,i+1:n)*x(i+1:n))/A(i,i); end return x A = 2 -1 3 1 4 2 5 4 1 2 0 7

x = 9 -1 -6 11x1-3x2-2x3=3, (2)-23x 1+11x 2 +1x 3 =0, x 1+2x 2 +2x 3 =-1; (2) 解: A=[11 -3 -2 3;-23 11 1 0;1 2 2 -1] n=size(A,1);x=zeros(n,1);flag=1; % 消元过程 for k=1:n-1 for i=k+1:n if abs(A(k,k))>eps A(i,k+1:n+1)= A(i,k+1:n+1)-A(k,k+1:n+1)*A(i,k)/A(k,k); else flag=0; return end end end % 回代过程 if abs(A(n,n))>eps x(n)=A(n,n+1)/A(n,n); else flag=0; return end for i=n-1:-1:1 x(i)=(A(i,n+1)-A(i,i+1:n)*x(i+1:n))/A(i,i); end return x A = 11 -3 -2 3 -23 11 1 0 1 2 2 -1 x = 0.2124 0.5492 -1.1554 4、用Cholesky分解法解方程组 3 2 3 x1 5 2 2 0 x2 3 3 0 12 x3 7

矩阵与数值分析公式总结

第一章 绝对误差: 121 100.x 102 k k n n a a a a a -=±?????-≤?,则称a 为x 的具有n 位有效数字的近似值 相对误差: 如果a 有n 位有效数字,则11 x 1102n a a a --≤ ?;如果11x 1 1021n a a a --≤?+(),则a 至少有n 位有效数字。 近似绝对误差估计式:' ()()()f x f a f a x a -≈- 近似相对误差界为: '()()()()() f a f x f a x a f a f a -≤- N 元函数误差界:1231231(x ,x ,x ,....x )(,,,....)n n n k k k k a f f f a a a a x a x =?? ?-≤- ????∑ 111 2 22111 112max p ,1n i i n i i i i n n p p i p i x x p ==∞≤≤==?? === ? ?? ∞=??=≤<+∞ ??? ∑∑∑向量范数:范数:范数:范数:范数:x x x x x x 11111 21 11max max m ij j n i n ij i m j m n ij m i j F a a a ≤≤=∞≤≤======== ∑∑∑ ∑ (列和范数) (行和范数) (算子范数谱: 范数)A A A A A (A)max i i ρλ=谱半径: (A 的最大特征值)

第二章 ,H H H A A AA A A =正规矩阵:是的共轭转置。 常见的Hermite 阵(A A =H )、实对称矩阵(A A =T )、斜Hermite 阵(A A -=H )、实反对称矩阵(A A -=T )、酉阵(I AA A A ==H H )和正交矩阵(I AA A A ==T T )等均为正规矩阵. 正定的充分必要条件是:A 的各阶顺序主子式都为正。A 的特征值全为正。 T T A A AA E ==正交矩阵:1T A A -=正交矩阵是实数特殊化的酉矩阵,因此总是正规矩阵。 奇异矩阵:对应的行列式等于0的方阵。 1、矩阵的LU 分解或Doolittle 分解 对于n 阶方阵A ,如果存在n 阶单位下三角矩阵L 和n 阶上三角矩阵U ,使得LU A =, 则称其为矩阵A 的LU 分解,也称为.Gauss 消去法对应的矩阵形式即为LU 分解, 其中L 为所有行乘子组成的单位下三角矩阵, U 为Gauss 消去法结束后得到的上三角矩阵. 原方程组b Ax =分解为两个三角形方程 组? ? ?==y Ux b Ly . 2、矩阵LU 分解的的存在和唯一性(各阶顺序主子式均不为零) 如果n 阶矩阵A 的各阶顺序主子式),,2,1(n k k =D 均不为零, 则必有单位下三角矩阵L 和上三角矩阵U ,使得LU A =, 而且L 和U 是唯一存在的. 3、矩阵的Cholesky 分解或平方根法(正定矩阵) 对任意n 阶对称正定矩阵A ,均存在下三角矩阵L 使T LL A =,称其为对称正定矩阵 A 的 Cholesky 分解. 进一步地, 如果规定L 的对角元为正数,则L 是唯一确定的.原方程组b Ax =分解为 两个三角形方程组? ??==y x L b Ly T . 利用矩阵乘法规则和L 的下三角结构可得 2 1 1 12? ?? ? ??-=∑-=j k jk jj jj l a l , jj j k jk ik ij ij l l l a l /1 1???? ??-=∑-=, i=j +1, j +2,…,n , j =1,2,…,n .

大连理工大学矩阵与数值分析大作业题目

2014级工科硕士研究生 《矩阵与数值分析》课程数值实验题目 1. 方程在x=3.0附近有根,试写出其三种不同的等价形式以构成两种不同的迭代格式,再用这两种迭代求根,并绘制误差下降曲线,观察这两种迭代是否收敛及收敛的快慢 2. 用复化梯形公式、复化辛普森公式、龙贝格公式求下列定积分,要求绝对误差为 ,并将计算结果与精确解进行比较: (1) (2) 3. 使用带选主元的分解法求解线性方程组,其中,, 当时.对于的情况分别求解. 精确解为.对得到的结果与精确解的差异进行解释. 4. 用4阶Runge-kutta 法求解微分方程 t t t te e t u u u u u 22210 1)(,101)0(,2---+==-=' (1) 令1.0=h ,使用上述程序执行20步,然后令05.0=h ,使用上述程序执行40步 (2) 比较两个近似解与精确解 (3) 当h 减半时,(1)中的最终全局误差是否和预期相符? (4) 在同一坐标系上画出两个近似解与精确解.(提示输出矩阵R 包含近似解的x 和y 坐标,用命令plot(R(:,1),R(:,2))画出相应图形.) 5. 设 为阶的三对角方阵,是一个阶的对称正定矩阵 其中为阶单位矩阵。设为线性方程组的真解,右边的向量由这个真解给出。 (1) 用Cholesky 分解法求解该方程. (2) 用Jacobi 迭代法和Gauss-Seidel 迭代法求解该方程组,误差设为 . 其中取值为4,5,6. 6. 设

考虑空间的一个等距划分,分点为 设为插值于这些等分点上的Lagrange插值多项式。 (1)选择不断增大的分点数目画出原函数与插值多项式在的图像,并 比较分析实验结果。 (2)选择 重复上述的实验看其结果如何 实验须知: (1)所有的数值实验的题目要求用C语言或Matlab编程; (2)实验报告内容应包括问题、程序、计算结果及分析等; (3)考试前提交实验报告; (4)本次实验成绩将占总成绩的10%。 (5)报告上要注明:所在教学班号、任课老师的姓名;报告人所在院系、学号。 《矩阵与数值分析》课程教学组

大连理工大学矩阵与数值分析上机作业

大连理工大学 矩阵与数值分析上机作业 课程名称:矩阵与数值分析 研究生姓名: 交作业日时间:2016 年12 月20日

1.1程序: Clear all; n=input('请输入向量的长度n:') for i=1:n; v(i)=1/i; end Y1=norm(v,1) Y2=norm(v,2) Y3=norm(v,inf) 1.2结果 n=10 Y1 =2.9290 Y2 =1.2449 Y3 =1 n=100 Y1 =5.1874 Y2 =1.2787 Y3 =1 n=1000 Y1 =7.4855 Y2 =1.2822 Y3 =1 N=10000 Y1 =9.7876 Y2 =1.2825 Y3 =1 1.3 分析 一范数逐渐递增,随着n的增加,范数的增加速度减小;二范数随着n的增加,逐渐趋于定值,无群范数都是1.

2.1程序 clear all; x(1)=-10^-15; dx=10^-18; L=2*10^3; for i=1:L y1(i)=log(1+x(i))/x(i); d=1+x(i); if d == 1 y2(i)=1; else y2(i)=log(d)/(d-1); end x(i+1)=x(i)+dx; end x=x(1:length(x)-1); plot(x,y1,'r'); hold on plot(x,y2);

2.2 结果 2.3 分析 红色的曲线代表未考虑题中算法时的情况,如果考虑题中的算法则数值大小始终为1,这主要是由于大数加小数的原因。 第3题 3.1 程序 clear all; A=[1 -18 144 -672 2016 -4032 5376 -4608 2304 -512]; x=1.95:0.005:2.05; for i=1:length(x); y1(i)=f(A,x(i)); y2(i)=(x(i)-2)^9; end figure(3); plot(x,y1); hold on;

第4章_插值法(数值分析)

4.1 设(0.4)0.38942,(0.5)0.47943,(0.6)0.56464f f f ===,使用一次、二次 Lagrange 插值多项式计算(0.5789)f 的近似值. 解:(0.4)0.38942,(0.5)0.47943,(0.6)0.56464f f f === 一次Lagrange 插值多项式公式 05338.08521.06 .05.06 .0)5.0(5.06.05.0) 6.0()(1+=--+--=x x f x f x P 故 546669.005338.057891.08521.0)57891 .0(1≈+?=P . 二次Lagrange 插值多项式公式: ) 5.04.0)( 6.04.0() 5.0)( 6.0() 4.0()4.0 5.0)( 6.05.0()4.0)(6.0()5.0()4.06.0)(5.06.0()4.0)(5.0() 6.0()(2----+----+----=x x f x x f x x f x P 即 01862.01161.124.0)(22-+-=x x x P 故 5470686 .001862.057891.01161.157891.024.0)57891.0(2 2=-?+?-=P 4.2 设01(),(), ,()n l x l x l x 是以为节点的01,,,n x x x 的n 次Lagrange 插值基函数,试 证明; (),0,1, ,n j j k k k x l x x j n ===∑ 证:假设在对应于01,,,n x x x 节点的函数值为,...)1,0(=i y i ,则应有: ),...,1,0()()(1 n i x l y x P n i i i ==∑= 取n j x y j i i ,...,1,0,==,由插值条件有: j i i j x y x P ==)( 故0 ()n j j i i i i x x l x ==∑,即0 ()n j j k k i x x l x ==∑

大连理工大学矩阵与数值分析上机作业13388

共享知识分享快乐 大连理工大学 矩阵与数值分析上机作业 课程名称:矩阵与数值分析 研究生姓名: 12 交作业日时间:日20 月年2016

卑微如蝼蚁、坚强似大象. 共享知识分享快乐 第1题 1.1程序: Clear ;all n=input('请输入向量的长度n:') for i=1:n; v(i)=1/i; end Y1=norm(v,1) Y2=norm(v,2) Y3=norm(v,inf) 1.2结果 n=10 Y1 =2.9290 Y2 =1.2449 Y3 =1 n=100 Y1 =5.1874 Y2 =1.2787 Y3 =1 n=1000 Y1 =7.4855 Y2 =1.2822 Y3 =1

N=10000 Y1 =9.7876 Y2 =1.2825 Y3 =1 1.3 分析 一范数逐渐递增,随着n的增加,范数的增加速度减小;二范数随着n的增加,逐渐趋于定值,无群范数都是1. 卑微如蝼蚁、坚强似大象. 共享知识分享快乐 第2题 2.1程序 ;clear all x(1)=-10^-15;dx=10^-18;L=2*10^3; i=1:L for y1(i)=log(1+x(i))/x(i); d=1+x(i); d == 1if y2(i)=1;else y2(i)=log(d)/(d-1);end x(i+1)=x(i)+dx;end x=x(1:length(x)-1););'r'plot(x,y1,on hold plot(x,y2);

卑微如蝼蚁、坚强似大象. 共享知识分享快乐 2.2 结果 2.3 分析 红色的曲线代表未考虑题中算法时的情况,如果考虑题中的算法则数值大小始终为1,这主要是由于大数加小数的原因。 第3题

相关文档
最新文档