刚体动力学物理竞赛讲义 (2)

刚体动力学物理竞赛讲义 (2)
刚体动力学物理竞赛讲义 (2)

刚体动力学(二)

(32届复赛)三、如图,一质量分布均匀、半径为r 的刚性薄圆环落到粗糙的水平地面

前的瞬间,圆环质心速度0v 与竖直方向成θ(

32

2

π

π

θ<<

)角,并同时以角速度0ω(0ω的正方向如图中箭头所示)绕通过其质心O 、且垂直环面的轴转动。已知圆环仅在其所在的竖直平面内运动,在弹起前刚好与地面无相对滑动,圆环

与地面碰撞的恢复系数为k ,重力加速度为g 。忽略空气阻力。 (1)求圆环与地面碰后圆环质心的速度和圆环转动的角速度;

(2)求使圆环在与地面碰后能竖直弹起的条件和在此条件下圆环能上升的最大高度;

(3)若让θ角可变,求圆环第二次落地点到首次落地点之间的水平距离s 随θ变化的函数关系式、s 的最大值以及s 取最大值时r 、0v 和0ω应满足的条件。

(1) 考虑小球沿径向的合加速度。如图,设小球下滑至角位置时,小球相对于圆环的

速率为v ,圆环绕轴转动的角速度为ω。此时与速率v 对应的指向中心C 的小球加速度大小为

2

1v a R

=

同时,对应于圆环角速度ω,指向OO '轴的小球加速度大小为:

()2

sin sin R a R ω

ωθθ

=

该加速度指向中心C 的分量为

()2

2sin sin R a a R

ω

ωθθ==

该加速度的沿环面且与半径垂直的分量为()

2

3sin cos cot R a a R

ωωθθθ==

由加速度合成法则得小球下滑至θ角位置时,其指向中心C 的合加速度大小为

()2

212sin R R v a a a R R

ωθ=+=+ 在小球下滑至θ角位置时,将圆环对小球的正压力分解成指向环心的方向的分量N 、垂直

于环面的方向的分量T 。值得指出的是:由于不存在摩擦,圆环对小球的正压力沿环的切向的分量为零。在运动过程中小球受到的作用力是N 、T 和mg 。这些力可分成相互垂直的三个方向上的分量:在径向的分量不改变小球速度的大小,亦不改变小球对转轴的角动量;沿环切向的分量即sin mg θ要改变小球速度的大小;在垂直于环面方向的分量即T 要改变

小球对转轴的角动量,其反作用力将改变环对转轴的角动量,但与大圆沿OO '轴的竖直运动无关。在指向环心的方向,由牛顿第二定律有:

22

(sin )cos R v R N mg ma m R

ωθθ++==

合外力矩为零,系统角动量守恒,有:

()2

02sin L L m R θω=+

式中0L 和L 分别为圆环以角速度0ω和ω转动时的角动量。

如图,考虑右半圆环相对于轴的角动量,在θ角位置处取角度增量θ?,圆心角θ?所对圆弧l ?的质量为m l λ?=?(0

2m R

λπ≡

),其角动量为 2sin L m r l rR Rr z R S ωλωθλωλω?=?=?=?=?

式中r 是圆环上θ角位置到竖直轴OO '的距离,S ?为两虚线间窄条的面积。上式说明l ?的角动量与S ?成正比。整个圆环(两个半圆环)的角动量为:

22001

22222

m R L L R m R R πωωπ=?=?=∑

力N 及其反作用力不做功;而T 及其反作用力的作用点无相对移动,做功之和为零;系统机械能守恒。故

()()2

20121cos 2sin 2k k E E mgR m v R θωθ??-+-=?+?

?

式中0k E 和k E 分别为圆环以角速度0ω和ω转动时的动能。圆弧l ?的动能为:

()2

22111sin 222

k E m r l rR R S ωλωθλω?=

?=?=? 整个圆环(两个半圆环)的动能为:

2

2220011222224

k k m R E E R m R R πωωπ=?=???=∑ 根据牛顿第三定律,圆环受到小球竖直向上作用力大小为2cos N θ,当:

02cos N m g θ≥

时,圆环才能沿轴上滑。由此可知

()22

2

000

02

20cos 6cos 4cos 1024sin m R m m m m g

m m ωθθθθ????-+--≤??+??

(2) 此时由题给条件可知当30θ=?时,式中等号成立,即有:

()

22

000

02

9

1

24

R m

m m

g m m

ω??

?

-+=-

??

?+

??

??

由题意知

00

2

00

4sin

m m

m m m m

ωωω

θ

==

++

解得v=

(30届复赛)一、(15分)一半径为R、内侧光滑的半球面固定在地面上,开

口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小

v(

v). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小

为g.

以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其

速度v分解成纬线切向(水平方向)分量?v及经线切向分量θv. 设滑块质量为m,在某中

间状态时,滑块位于半球面内侧P处,P和球心O的连线与水平方向的夹角为θ. 由机械能

守恒得

222

111

sin

222

m mgR m m

θ

=-++

v v v(1)

这里已取球心O处为重力势能零点. 以过O的竖直线为轴. 球面对滑块的支持力通过该轴,

力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动

量守恒,故

cos

m R m R

?

θ

=

v v. (2)

由(1) 式,最大速率应与θ的最大值相对应

max max

()

θ

=

v v. (3)

而由(2) 式,q不可能达到π2. 由(1)和(2)式,q的最大值应与0

θ

=

v相对应,即

max

()0

θ

θ=

v.

(4)

(4)式也可用下述方法得到:由(1)、(2) 式得

222

2sin tan0

gR

θ

θθ

-=≥

v v.

若sin0

θ≠,由上式得

22

sin2

cos

gR

θ

θ

v

.

实际上,sin =0θ也满足上式。由上式可知 max 22

max 0sin 2cos gR

θθ=v .

由(3)式有

222

m a x m a x 0

m a x

()2s i n t a n 0gR θθθθ=-=v v

. (4’) 将max ()0θθ=v 代入式(1),并与式(2)联立,得

()2220max max max sin 2sin 1sin 0gR θθθ--=v .

(5)

以max sin θ为未知量,方程(5)的一个根是sin q

=0,即q =0,这表示初态,其速率为最小

值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为 22

max 0max 2sin sin 20gR gR θθ+-=v .

(6)

其解为

20max

sin 14gR θ?=???

v . (7)

注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,

(2

2012

?=

+v v , (8)

考虑到(4)式有

max ==

v (30届复赛)二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处. 1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;

2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件. 1. 由于碰撞时间t ?很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有

D C

2l r =

v v . (1)

以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒

D C A 0222m l m r m l m l ++=v v v v .

(2)

由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ?很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故

2222D C A 011112222

m m m m ++=v v v v . (3)

由 (1)、(2)、(3) 式解得22

00022222248,,888C D A lr l r l r l r l r

===-+++v v v v v v (4)

[代替 (3) 式,可利用弹性碰撞特点0D A =-v v v . (3’) 同样可解出(4). ]

设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有

22

1A 0022428l r F t m m m l r

+'?=-=-+v v v ,

(5)

方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为

22

1022428l r F t m l r

+?=+v (6)

方向与0v 方向相同.

以B 、C 、D 为系统,设其质心离转轴的距离为x ,则

22(2)2

mr m l l r x m αα++=

=

++.

(7)

质心在碰后瞬间的速度为

C 0224(2)(2)(8)

l l r x r l r α+=

=++v v v . (8) 轴与杆的作用时间也为t ?,设轴对杆的作用力为2F ,由质心运动定理有

()21022

4(2)

28l l r F t F t m m l r α+?+?=+=

+v v .

(9) 由此得

2022

(2)

28r l r F t m l r

-?=

+v . (10)

方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022

(2)

28r l r F t m l r -'?=-+v , (11)

方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.

[代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ?+?=+v v . ]

[也可由对质心的角动量定理代替 (7)-(9) 式. ]

2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度022

48C lr

l r =+v v 绕过B 的轴做匀速圆周运动的向

心力,即

()222

C 0

222

16(8)l r k r m m r l r -==+v v

(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件

0v (13)

可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.

(30届复赛)三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令m

L

λ=

表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω=

式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.

2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.

3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .

提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为

d (())d d d d d Y X t Y X t X t

=

例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t t

θθθθ=

1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量λ、

ω和L 的函数,按题意 可表示为

k E k L αβγλω=

(1)

式中,k 为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则λ、ω、L 和k E 的单位分别为

1122

[][][],

[][],[][],

[][][][]k M L T L L E M L T λω---==== (2)

在一般情形下,若[]q 表示物理量q 的单位,则物理量q 可写为

()[]q q q = (3) 式中,()q 表示物理量q 在取单位[]q 时的数值. 这样,(1) 式可写为

()[]()()()[][]k k E E k L L αβγαβγ

λωλω= (4)

在由(2)表示的同一单位制下,上式即

()()()()k E k L αβγλω= (5) [][][][]k E L αβγλω= (6) 将 (2)中第四 式代入 (6) 式得

22[][][][][][]M L T M L T αγαβ---= (7) (2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是

1,2,3αβγ=== (8) 所以

23k E k L λω= (9) 2. 由题意,杆的动能为

,c ,r k k k E E E =+ (10)

其中,

2

2,c c 11()222k L E m L λω??

== ???

v (11)

注意到,杆在质心系中的运动可视为两根长度为

2

L

的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为

3

2,r

2(,,)222k k L L E E k λωλω??

== ???

(12)

将(9)、 (11)、 (12)式代入(10)式得 2

3

23212222L L k L L k λωλωλω????

=+ ? ?????

(13)

由此解得

1

6

k = (14)

于是

E k =

1

6

lw 2L 3. (15) 3. 以细杆与地球为系统,下摆过程中机械能守恒

sin 2k L E mg θ??= ???

(16) 由(15)、(16)式得

w =

(17) 以在杆上距O 点为r 处的横截面外侧长为()L r -的那一段为研究对象,该段质量为

()L r λ-,其质心速度为

22c L r L r

r ωω-+??'=+= ???

v . (18) 设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得 ()()cos t T L r g L r a λθλ+-=- (19)

()()sin n N L r g L r a λθλ--=- (20)

式中,t a 为质心的切向加速度的大小

()3cos d d d d d 2d 2d dt 4c

t L r g L r L r a t t L

θωωθθ+'++=

===v (21) 而n a 为质心的法向加速度的大小

()2

3sin 22n L r g L r a L

θω++==. (22) 由(19)、(20)、(21)、(22)式解得

()()

2

3cos 4L r r L T mg L θ--=

(23)

()()

2

53sin 2L r L r N mg L θ-+=

(24)

(29届复赛)三、(25分)如图所示,两根刚性轻杆AB

和BC 在B 端牢固粘接在一起,AB 延长线与BC 的夹角

α为锐角,

杆BC 长为l ,杆AB 长为cos l α。在杆的A 、B 和C 三点各固连一质量均为m 的小球,构成一刚性系统。整个系统放在光滑水平桌面上,桌面上有一固定的光滑竖直挡板。杆AB 延长线与挡板垂直。现使该系统以大

小为0v 、方向沿AB 的速度向挡板平动。在某时刻,小球C 与挡板碰撞,碰撞结束时球C 垂直于挡板方向的分速度为零,且球C 与挡板不粘连。若使球C 碰撞后,球B 先于球A 与挡板相碰,求夹角α应满足的条件。

如图1所示,建直角坐标Oxy ,x 轴与挡板垂直,y 轴与挡板重合. 碰撞前体系质心的速度为0v ,方向沿x 轴正方向,以P 表示系统的质心,以Px v 和Py v 表示碰撞后质心的速度分量,J 表示墙作用于小球C 的冲量的大小. 根据质心运动定理有

Px 033J m m -=-v v (1)

Py 030m =-v (2) 由(1)和(2)式得

0Px 33mv J

m

-=v (3)

Py 0=v (4)

可在质心参考系中考察系统对质心的角动量. 在球C 与挡板碰撞过程中,质心的坐标为 P c o s x l α=- (5)

P 1

s i n 3

y l α=- (6)

球C 碰挡板前,三小球相对于质心静止,对质心的角动量为零;球C 碰挡板后,质心相对质心参考系仍是静止的,三小球相对质心参考系的运动是绕质心的转动,若转动角速度为ω,则三小球对质心P 的角动量

222

AP BP CP L m l m l m l ωωω=++ (7)

式中AP l 、BP l 和 CP l 分别是A 、B 和C 三球到质心P 的距离,由图1可知

222

22AP 1cos sin 9l l l αα=+ (8)

2

22BP 1sin 9

l l α= (9)

222

22CP 4cos sin 9

l l l αα=+ (10)

由(7)、(8)、(9)和(10)各式得

222

(12cos )3

L ml ωα=+ (11)

在碰撞过程中,质心有加速度,质心参考系是非惯性参考系,在质心参考系中考察动力学问题时,必须引入惯性力. 但作用于质点系的惯性力的合力通过质心,对质心的力矩等于零,不影响质点系对质心的角动量,故在质心参考系中,相对质心角动量的变化仍取决于作用于球C 的冲量J 的冲量矩,即有

2

sin 3

J l L α= (12)

【也可以始终在惯性参考系中考察问题,即把桌面上与体系质心重合的那一点作为角动量的参考点,则对该参考点(12)式也成立】

由(11)和(12)式得

2sin (12cos )

J ml α

ωα=+ (13)

球C 相对于质心参考系的速度分量分别为(参考图1) CPx CP P sin (sin ||)l l y ωβωα=-=--v (14)

CPy CP cos cos l l ωβωα=-=-v (15)

球C 相对固定参考系速度的x 分量为 C x C P x P =+v v v (16)

由(3)、(6)、(13) (16)各式得

Cx 02(12cos )

J

m α=-

++v v

(17)

根据题意有

0Cx =v (18)

由(17)和(18)式得

20(12cos )J m α=+v (19)

由(13)和(19)式得

sin l

αω=v (20) 球A 若先于球B 与挡板发生碰撞,则在球C 与挡板碰撞后,整个系统至

少应绕质心转过π/2角,即杆AB 至少转到沿y 方向,如图2所示. 系统

绕质心转过π/2所需时间

12t πω= (21)

在此时间内质心沿x 方向向右移动的距离 Px x t ?=v (22) 若

P P y x x ?+> (23) 则球B 先于球A 与挡板碰撞. 由(5)、(6)、(14)、(16)、(18)、(21)、

(22)和(23)式得 3

arctan 1α>+π

(24)

即 36>α (25)

图2

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

大学物理刚体动力学

第二章 刚体力学基础 自学练习题 一、选择题 1.有两个力作用在有固定转轴的刚体上: (1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( ) (A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。 【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】 2.关于力矩有以下几种说法: (1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零; (3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。 对上述说法,下述判断正确的是:( ) (A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。 【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】 3.一个力(35)F i j N =+作用于某点上,其作用点的矢径为m j i r )34( -=,则该力对坐标原点的力矩为 ( ) (A )3kN m -?; (B )29kN m ?; (C )29kN m -?; (D )3kN m ?。 【提示:(43)(35)430209293 5 i j k M r F i j i j k k k =?=-?+=-=+ =】 4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆 到竖直位置的过程中,下述说法正确的是:( ) (A )角速度从小到大,角加速度不变; (B )角速度从小到大,角加速度从小到大; (C )角速度从小到大,角加速度从大到小;

高中物理竞赛练习7 热学一08

高中物理竞赛练习7 热学一08.5 1.证明理想气体的压强p = k n ε32,其中n 为单位体积内的分子数,k ε是气体分子的平均动能. 2.已知地球和太阳的半径分别为R 1=6×106m 、R 2=7× 108m ,地球与太阳的距离d =1.5×1011m .若地球与太阳均可视为黑体,试估算太阳表面温度. 3.如图所示,两根金属棒A 、B 尺寸相同,A 的导热系数是B 的两倍,用它们来导热,设高温端和低温端温度恒定,求将A 、B 并联使用与串联使用的能流之比.设棒侧面是绝热的. 4.估算地球大气总质量M 和总分子数N . 5.一卡诺机在温度为27℃和127℃两个热源之间运转.(1)若在正循环中,该机从高温热源吸热1.2×103 cal , 则将向低温热源放热多少?对外作功多少?(2)若使该机反向运转(致冷机),当从低温热源吸热1.2×103cal 热量,则将向高温热源放热多少?外界作功多少? 6.一定质量的单原子理想气体在一密闭容器中等压膨胀到体积为原来的1.5倍,然后又被压缩,体积和压强均减为1/3,且过程中压强与体积始终成正比,比例系数不变,在此压缩过程中气体向外放热Q o ,压缩后气体重新等压膨胀到原体积(气体在第一次等压膨胀前的状态),为使气体等容回到上面提到的原状态(第一次膨胀前的状态),需要传递给气体的热量Q 1是多少?

7.1 moI单原子理想气体初始温度为T o,分别通过等压和绝热(即不吸热也不放热)两种方式使其膨胀,且膨胀后末体积相等.如果已知两过程末状态气体的压强相比为1.5,求在此两过程中气体所做的功之和. 8.如图所示,两块铅直的玻璃板部分浸入水中,两板平行,间距d=0.5 mm,由于水的表面张力的缘故,水沿板上升一定的高度h,取水的表面张力系数σ =7.3×10-2N·m-1,求h的大小. 9.内径均匀的U形玻璃管,左端封闭,右端开口,注入水银后;左管封闭的气体被一小段长为h1=3.0cm 的术银柱分成m和n两段.在27℃时,L m=20 cm,L n=10 cm,且右管内水银面与n气柱下表面相平,如图所示.现设法使n上升与m气柱合在一起,并将U形管加热到127℃,试求m和n气柱混合后的压强和长度.(p o=75cmHg) 10.在密度为ρ=7.8 g·cm-3的钢针表面上涂一薄层不能被水润湿的油以后,再把它轻轻地横放在水的表面,为了使针在0℃时不掉落水中,不考虑浮力,问该钢针的直径最大为多少? 11.已知水的表面张力系数为σ1=7.26×10-2N·m-1,酒精的表面张力系数为σ2=2.2×10-2N·m-1.由两个内径相等的滴管滴出相同质量的水和酒精,求两者的液滴数之比.

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

物理竞赛热学专题40题刷题练习(带答案详解)

物理竞赛热学专题40题刷题练习(带答案详解) 1.潜水艇的贮气筒与水箱相连,当贮气筒中的空气压入水箱后,水箱便排出水,使潜水艇浮起。某潜水艇贮气简的容积是2m 3,其上的气压表显示内部贮有压强为2×107Pa 的压缩空气,在一次潜到海底作业后的上浮操作中利用简内的压缩空气将水箱中体积为10m 3水排出了潜水艇的水箱,此时气压表显示筒内剩余空气的压强是9.5×106pa ,设在排水过程中压缩空气的温度不变,试估算此潜水艇所在海底位置的深度。 设想让压强p 1=2× 107Pa 、体积V 1=2m 3的压缩空气都变成压强p 2=9.5×106Pa 压缩气体,其体积为V 2,根据玻-马定律则有 p 1V 1=p 2V 2 排水过程中排出压强p 2=9.5× 106Pa 的压缩空气的体积 221V V V '=-, 设潜水艇所在处水的压强为p 3,则压强p 2=9.5×106Pa 、体积为2V '的压缩空气,变成压强为p 3的空气的体积V 3=10m 3。 根据玻马定律则有 2233p V p V '= 联立可解得 p 3=2.1×106Pa 设潜水艇所在海底位置的深度为h ,因 p 3=p 0+ρ gh 解得 h =200m 2.在我国北方的冬天,即便气温很低,一些较深的河 流、湖泊、池塘里的水一般也不会冻结到底,鱼类还可以在水面结冰的情况下安全过冬,试解释水不会冻结到底的原因? 【详解】 由于水的特殊内部结构,从4C ?到0C ?,体积随温度的降低而增大,达到0C ?后开始结冰,冰的密度比水的密度小。 入秋冬季节,气温开始下降,河流、湖泊、池塘里的水上层的先变冷,密度变大而沉到水底,形成对流,到达4C ?时气温如果再降低,上层水反而膨胀,密度变小,对流停止,“漂浮”在水面上,形成一个“盖子”,而下面的水主要靠热传导散失内能,但由于水

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

全国中学生物理竞赛真题汇编热学

全国中学生物理竞赛真题汇编---热学 1.(19Y4) 四、(20分)如图预19-4所示,三个绝热的、容积相同的球状容器A 、B 、C ,用带有阀门K 1、K 2的绝热细管连通,相邻两球球心的高度差 1.00m h =.初始时,阀门是关闭的,A 中装有1mol 的氦(He ),B 中装有1mol 的氪(Kr ),C 中装有lmol 的氙(Xe ),三者的温度和压强都相同.气体均可视为理想气体.现打开阀门K 1、K 2,三种气体相互混合,最终每一种气体在整个容器中均匀分布,三个容器中气体的温度相同.求气体温度的改变量.已知三种气体的摩尔质量分别为 31He 4.00310kg mol μ--=?? 在体积不变时,这三种气体任何一种每摩尔温度升高1K ,所吸收的热量均为 3/2R ,R 为普适气体常量. 2.(20Y3)(20分)在野外施工中,需要使质量m =4.20 kg 的铝合金构件升温;除了保温瓶中尚存有温度t =90.0oC 的1.200kg 的热水外,无其他热源。试提出一个操作方案,能利用这些热水使构件从温度t 0=10.0oC 升温到66.0oC 以上(含66.0oC),并通过计算验证你的方案. 已知铝合金的比热容c =0.880×103J ·(k g·oC)-1 , 水的比热容c = 4.20×103J ·(kg ·oC)-1 ,不计向周围环境散失的热量. 3.(22Y6)(25分)如图所示。两根位于同一水平面内的平行的直长金属导轨,处于恒定磁场中。 磁场方向与导轨所在平面垂直.一质量为m 的均匀导体细杆,放在导轨上,并与导轨垂 直,可沿导轨无摩擦地滑动,细杆与导轨的电阻均可忽略不计.导轨的左端与一根阻值为 尺0的电阻丝相连,电阻丝置于一绝热容器中,电阻丝的热容量不计.容器与一水平放置的开口细管相通,细管内有一截面为S 的小液柱(质量不计),液柱将l mol 气体(可视为理想气体)封闭在容器中.已知温度升高1 K 时,该气体的内能的增加量为5R /2(R 为普适气体常量),大气压强为po ,现令细杆沿导轨方向以初速V 0向右运动,试求达到平衡时细管中液柱的位移. 4.(16F1)20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。若让其继续作等温膨胀,使体积再次加倍。试计算此时: 1.汽缸中气体的温度; 2.汽缸中水蒸气的摩尔数; 3.汽缸中气体的总压强。 假定空气和水蒸气均可以当作理想气体处理。 5.(17F1)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管 的长度l=76cm,管内封闭有n=1.0×10-3 mol的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cmHg,每摩尔空 气的内能U=CVT,其中T为绝对温度,常量CV=20.5J·(mol·K)-1 ,普适气体常量R=8.31J·(m ol·K)-1 31Kr 83.810kg mol μ--=??31Xe 131.310kg mol μ--=??

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

上海物理竞赛热学

上海物理竞赛热学 The Standardization Office was revised on the afternoon of December 13, 2020

8.质量相等的甲、乙两金属块,其材质不同。将它们放入沸水中,一段时间后温度均达到100℃,然后将它们按不同的方式投入一杯冷水中,使冷水升温。第一种方式:先从沸水中取出甲,将其投入冷水,当达到热平衡后将甲从杯中取出,测得水温升高20℃;然后将乙从沸水中取出投入这杯水中,再次达到热平衡,测得水温又升高了20℃。第二种方式:先从沸水中取出乙投入冷水,当达到热平衡后将乙从杯中取出;然后将甲从沸水中取出,投入这杯水中,再次达到热平衡。则在第二种方式下,这杯冷水温度的变化是()A.升高不足40℃ B.升高超过40℃ C.恰好升高了40℃ D.条件不足,无法判断 5.食用冻豆腐时,发现豆腐内存在许多小孔,在小孔形成的过程中,发生的主要物态变 化是 ( ) A.凝固和熔化。 B.液化和升华。 C.凝华和熔化。 D.凝固和汽化。 7.如图24-3所示,从温度与室温(20℃左右)相同的酒精里取出温度计。温度计的示数会 ( ) A.减小。 B.增大。 C.先减小后增大。 D.先增大后减小。

14.星期天,小林同学在父母的协助下,从早上6:00开始每隔半小时分别对他家附近的气 温和一个深水池里的水温进行测量,并根据记录的数据绘成温度一时刻图线,如图24-9 所示。则可以判断 ( ) A.甲是“气温”图线,乙是“水温”图线,因为水的比热容比空气的大。B.甲是“气温”图线,乙是“水温”图线,因为水的比热容比空气的小。C.甲是“水温”图线,乙是“气温”图线,因为水的比热容比空气的大。D.甲是“水温”图线,乙是“气温”图线,因为水的比热容比空气的小。 21.将质量为m、温度为O℃的雪(可看成是冰水混合物)投入装有热水的容器中,热水的质量为M,平衡后水温下降了t;向容器中再投入质量为2m上述同样性质的雪,平衡后容器中的水温恰好又下降了t。则m:M为 ( ) A. 1:2 :3 C.1:4 :5。 5.现有一扇形的均质金属物体,该材料具有热胀冷缩的性质,如图所示。室温状 态下AB、CD边所成的圆心角为α。若使物体温度均匀升高,则α角的变化情况是:( ) (A)变大 (B)不变

最新高中物理竞赛讲义(完整版)

最新高中物理竞赛讲义 (完整版) 目录 最新高中物理竞赛讲义(完整版) (1) 第0 部分绪言 (5) 一、高中物理奥赛概况 (5)

二、知识体系 (6) 第一部分力&物体的平衡 (7) 第一讲力的处理 (7) 第二讲物体的平衡 ............................. 1...0.. 第三讲习题课 ................................. 1..1... 第四讲摩擦角及其它........................... 1...7..第二部分牛顿运动定律 ............................ 2..2.. 第一讲牛顿三定律 ............................. 2...2.. 第二讲牛顿定律的应用 ......................... 2..3.. 第二讲配套例题选讲........................... 3...7..第三部分运动学 ................................. 3...7... 第一讲基本知识介绍 .......................... 3..7.. 第二讲运动的合成与分解、相对运动 ............. 4..0 第四部分曲线运动万有引力 ....................... 4...4. 第一讲基本知识介绍........................... 4...4.. 第二讲重要模型与专题 ......................... 4..7.. 第三讲典型例题解析............................. 5...9..第五部分动量和能量 ............................... 5...9.. 第一讲基本知识介绍............................. 5...9.. 第二讲重要模型与专题.......................... 6..3.. 第三讲典型例题解析............................. 8...3..第六部分振动和波 ................................. 8..3...

高中物理竞赛辅导讲义-微积分初步

微积分初步 一、微积分的基本概念 1、极限 极限指无限趋近于一个固定的数值 两个常见的极限公式 0sin lim 1x x x →= *1lim 11x x x →∞??+= ??? 2、导数 当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限叫做导数。 0'lim x dy y y dx x ?→?==? 导数含义,简单来说就是y 随x 变化的变化率。 导数的几何意义是该点切线的斜率。 3、原函数和导函数 对原函数上每点都求出导数,作为新函数的函数值,这个新的函数就是导函数。 00()()'()lim lim x x y y x x y x y x x x ?→?→?+?-==?? 4、微分和积分 由原函数求导函数:微分 由导函数求原函数:积分 微分和积分互为逆运算。 例1、根据导函数的定义,推导下列函数的导函数 (1)2y x = (2) (0)n y x n =≠ (3)sin y x = 二、微分 1、基本的求导公式 (1)()'0 ()C C =为常数 (2)()1' (0)n n x nx n -=≠ (3)()'x x e e = *(4)()'ln x x a a a = (5)()1ln 'x x = *(6)()1log 'ln a x x a =

(7)()sin 'cos x x = (8)()cos 'sin x x =- (9)()21tan 'cos x x = (10)()21cot 'sin x x = **(11)() arcsin 'x = **(12)()arccos 'x = **(13)()21arctan '1x x =+ **(14)()2 1arccot '1x x =-+ 2、函数四则运算的求导法则 设u =u (x ),v =v (x ) (1)()'''u v u v ±=± (2)()'''uv u v uv =+ (3)2'''u u v uv v v -??= ??? 例2、求y=tan x 的导数 3、复合函数求导 对于函数y =f (x ),可以用复合函数的观点看成y =f [g (x)],即y=f (u ),u =g (x ) 'dy dy du y dx du dx == 即:'''u x y y u = 例3、求28(12)y x =+的导数 例4、求ln tan y x =的导数 三、积分 1、基本的不定积分公式 下列各式中C 为积分常数 (1) ()kdx kx C k =+?为常数 (2)1 (1)1n n x x dx C n n +=+≠-+?

重点高中物理竞赛热学

高中物理竞赛——热学 一.分子动理论 1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别) 对于分子(单原子分子)间距的计算,气体和液体可直接用3分子占据的空间,对固体,则与分子的空间排列(晶体的点阵)有关。 【例题1】如图6-1所示,食盐(N a Cl )的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3 kg/mol ,密度为2.2×103kg/m 3,阿伏加德罗常数为6.0×1023mol -1,求食盐晶体中两个距离最近的钠离子中心之间的距离。 【解说】题意所求即图中任意一个小立方块的变长(设为a )的2倍,所以求a 成为本题的焦点。 由于一摩尔的氯化钠含有N A 个氯化钠分子,事实上也含有2N A 个钠离子(或氯离子),所以每个钠离子占据空间为v= A m ol N 2V 而由图不难看出,一个离子占据的空间就是小立方体的体积a 3, 即a 3= A m ol N 2V =A m ol N 2/M ρ,最后,邻近钠离子之间的距离l= 2 a 【答案】3.97×10-10m 。 〖思考〗本题还有没有其它思路? 〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有8 1×8个离子=2 1分子,所 以…(此法普遍适用于空间点阵比较复杂的晶体结构。) 2、物质内的分子永不停息地作无规则运动 固体分子在平衡位置附近做微小振动(振幅数量级为0.1A 0 ),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102m/s )。 无论是振动还是迁移,都具备两个特点:a 、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2气体分子的三种速率。最可几速率v P :f(v)=N N ?(其中ΔN 表 示v 到v+Δv 内分子数,N 表示分子总数)极大时的速率,v P = μRT 2=m kT 2;平均速率v :所有分子速率的算术平均值,v = πμ RT 8= m kT 8π;方均根速率2 v :与分子平均动能密切相关的一个 速率,2 v = μ RT 3= m kT 3〔其中R 为普适气体恒量,R=8.31J/(mol.K)。k 为玻耳兹曼常量, k= A N R =1.38×10-23J/K 〕

物理竞赛讲义(三)力矩、定轴转动物体的平衡条件、重心

郑梁梅高级中学高一物理竞赛辅导讲义 第三讲:力矩、定轴转动物体的平衡条件、重心 【知识要点】 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零或逆时针方向力矩总是与顺时针方向力矩相等。即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:物体所受重力的作用点叫重心。 计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。 3、公式法:如图所示,在平面直角坐标系中,质量为m 1和m 2的A 、B 两质点坐标分别为A (x 1,y 1),B (x 2,y 2)则由两物体共同组成的整体的重心坐标为: 212211m m x m x m x C ++= 212211m m y m y m y C ++= 一般情况下,较复杂集合体,可看成由多个质点组成的质点系, 其重心C 位置由如下公式求得: i i i C m x m x ∑∑= i i i C m y m y ∑∑= i i i C m z m z ∑∑= 本节内容常用方法有:①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多;②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解;③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 【典型例题】 【例题1】如图所示,光滑圆弧形环上套有两个质量不同的小球A 和B 两球之间连有弹簧,平衡时圆心O 与球所在位置的连线与竖直方向的夹角分别为α和β,求两球质量之比。 y y y 12C α β A B O

高中物理竞赛辅导讲义-第8篇-稳恒电流

高中物理竞赛辅导讲义 第8篇 稳恒电流 【知识梳理】 一、基尔霍夫定律(适用于任何复杂电路) 1. 基尔霍夫第一定律(节点电流定律) 流入电路任一节点(三条以上支路汇合点)的电流强度之和等于流出该节点的电流强度之和。即∑I =0。 若某复杂电路有n 个节点,但只有(n ?1)个独立的方程式。 2. 基尔霍夫第二定律(回路电压定律) 对于电路中任一回路,沿回路环绕一周,电势降落的代数和为零。即∑U =0。 若某复杂电路有m 个独立回路,就可写出m 个独立方程式。 二、等效电源定理 1. 等效电压源定理(戴维宁定理) 两端有源网络可以等效于一个电压源,其电动势等于网络的开路端电压,其内阻等于从网络两端看除源(将电动势短路,内阻仍保留在网络中)网络的电阻。 2. 等效电流源定理(诺尔顿定理) 两端有源网络可等效于一个电流源,电流源的电流I 0等于网络两端短路时流经两端点的电流,内阻等于从网络两端看除源网络的电阻。 三、叠加原理 若电路中有多个电源,则通过电路中任一支路的电流等于各个电动势单独存在时,在该支路产生的电流之和(代数和)。 四、Y?△电路的等效代换 如图所示的(a )(b )分别为Y 网络和△网络,两个网络中的6个电阻满足一定关系 时完全等效。 1. Y 网络变换为△网络 12 2331 123 R R R R R R R R ++=, 122331 231R R R R R R R R ++= 122331 312 R R R R R R R R ++= 2. △网络变换为Y 网络 12311122331R R R R R R = ++,23122122331R R R R R R =++,3123 3122331 R R R R R R =++

上海物理竞赛热学之令狐文艳创作

8.质量相等的甲、乙两金属块,其材质不同。将它们放入沸水中,一段时间后温度均达到100℃,然后将它们按不同的方式投入一杯冷水中,使冷水升温。第一种方式:先从沸水中取出甲,将其投入冷水,当达到热平衡后将甲从杯中取出,测得水温升高20℃;然后将乙从沸水中取出投入这杯水中,再次达到热平衡,测得水温又升高了20℃。第二种方式:先从沸水中取出乙投入冷水,当达到热平衡后将乙从杯中取出;然后将甲从沸水中取出,投入这杯水中,再次达到热平衡。则在第二种方式下,这杯冷水温度的变化是() 令狐文艳

A.升高不足40℃ B.升高超过40℃ C.恰好升高了40℃ D.条件不足,无法判断 5.食用冻豆腐时,发现豆腐内存在许多小孔,在小孔形成的过程中,发生的主要物态变 化是 ( ) A.凝固和熔化。 B.液化和升华。 C.凝华和熔化。 D.凝固和汽化。 7.如图24-3所示,从温度与室温(20℃左右)相同的酒精里取出温度计。温度计的示数会 ( ) A.减小。 B.增大。 C.先减小后增大。 D.先增大后减小。 14.星期天,小林同学在父母的协助下,从早上6:00开始每隔半小时分别对他家附近的气 温和一个深水池里的水温进行测量,并根据记录的数据绘成温度一时刻图线,如图24-9 所示。则可以判断 ( ) A.甲是“气温”图线,乙是“水温”图线,因为水的比热容比空气的大。

B.甲是“气温”图线,乙是“水温”图线,因为水的比热容比空气的小。 C.甲是“水温”图线,乙是“气温”图线,因为水的比热容比空气的大。 D.甲是“水温”图线,乙是“气温”图线,因为水的比热容比空气的小。 21.将质量为m、温度为O℃的雪(可看成是冰水混合物)投入装有热水的容器中,热水的质量为M,平衡后水温下降了t;向容器中再投入质量为2m上述同样性质的雪,平衡后容器中的水温恰好又下降了t。则m:M为 ( ) A. 1:2 B.1:3 C.1:4 D.1:5。 5.现有一扇形的均质金属物体,该材料 具有热胀冷缩的性质,如图所示。室温 状 态下AB、CD边所成的圆心角为α。 若使物体温度均匀 升高,则α角的变化情况是:( ) (A)变大 (B)不变 (C)变小 (D)无法确定 4.如果不考虑散热的影响,给一定质量的水加热,水的温

高中物理竞赛辅导讲义 动量

高中物理竞赛辅导讲义 第4篇 动量 【知识梳理】 一、动量p (1)定义:物体的质量m 与速度v 的乘积叫做物体的动量。即p =mv 。 (2)意义:描述物体的运动状态。 (3)性质:①矢量性:方向与速度方向相同。遵守平行四边形定则。 ②瞬时性:是状态量,与时刻相对应。 ③相对性:中学以地面为参考系。 (4)单位:kg ·m/s 。(导出单位) 二、冲量 (1)定义:力和力的作用时间的乘积叫冲量。即I =Ft 。 (2)意义:力对时间的积累效果。 (3)性质:①矢量性:方向与力的方向相同。遵守平行四边形定则。 ②时间性:是过程量,与一段“时间”相对应。 ③绝对性:与参考系无关。 (4)单位:Ns 。(导出单位) 三、动量定理 (1)内容:物体所受合外力的冲量等于物体动量的变化。Ft =Δp 。 (2)推导:F ma =,21v v at -= (3)注意:①Ft 是合外力的冲量或总冲量。 ②等式两边都是矢量,等式反映“冲量和动量变化大小相等,方向相同”。 ③适用于低速运动的宏观物体与高速运动的微观粒子。 (4)用动量表示牛顿第二定律:物体动量的变化率等于它受到的合外力。p F t ?= ?。 四、动量守恒定律 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。这就是动量守恒定律。 2.推导:用动量定理和牛顿第三定律推导 1111v m v m t F -'=?;2222v m v m t F -'='?;F F -=';22112211v m v m v m v m +='+'。 3.理解: (1)守恒条件:系统不受外力或所受外力的合力为零。要区分内力和外力。 (2)守恒含义:任一时刻系统总动量相同,不只是初末状态相同。 (3)系统性:指系统的总动量守恒,不是系统内每个物体的动量守恒。每个物体的动量可以发生很大的变化。 (4)相对性:各物体的动量,都是同一惯性参考系(一般以地面为参考系)。

相关文档
最新文档