系统及电源设计的低成本奥妙2007-10-26德州仪器

全新的设计哲学:--基于低成本的高性能设计

张洪为

德州仪器半导体技术上海有限公司

2007年10月16日

静态成本的构成

60

10

如何降低材料成本?

u降低元器件的单价

n降低成本而不是降低性能或减少有用功能

u降低元器件的数量

n这是降低成本的关键

w PMU取代分立DC-DC方案TPS65050

?LDO取代DC-DC—轻PMU,bq2501x

w双屏手机的驱动:TFTLCD+OLED, TPS61140

u选用有针对性的解决方案

w例如:TFT LCD屏的偏压,TPS65120

u重新构思产品架构—LCD TV

n新的待机功耗法规要求新的电源架构Green Power

u巧妙复用相关器件

n不增加或轻微增加成本增加有吸引力的功能

w专用闪光灯驱动?专用USB Host? 不,更好的是TPA2103

u减少配件成本

n bq24070, 采用1/3功率的交流适配器

n Bq24060, 采用未经稳压的交流适配器,免除过压保护

如何降低开发成本?

u缩短开发时间是至关重要

n设计的通用性和可继承性

w一板多用PMU,TPS6505x, 针对射频优化

n免除频繁的认证过程

n精选经过大规模使用验证过的产品

n把项目成功放在第一优先

w有源泄放active discharge

w上电时序Power on sequence

w优选内部环路补偿

n充分考虑平稳可升级

w脚对脚兼容

w软件可复用

n强大的技术支持

w软件模拟?

w现场支持?

如何降低维护成本?

u降低元器件数量是降低返修率的关键

n F=单器件失效率*元器件数量

n典型单器件失效概率100~400pm, 典型元器件数量100~200个,故典型返修率1%~8%

n假定零售价100美元,每1%返修率相当于1美元,元器件数量每少一个,维护成本降低1美分

n bq24103 vs MCU充电方案的性能、维护成本分析

u重视0.1%的不良率,发掘问题背后的问题

如何降低销售成本?

u强调更低的使用成本

n例如:采用碱性电池的MP3, 效率提高10%,可以让使用者在整个产品寿命周期内节省100节AA电池,价值20~100美元

!超低启动电压又可以节省另外100节电池,折算20~100美

n例如:对于常规锂离子电池,只要设定充电电压稍低于4.2V ,如4.1~4.15V,牺牲一点8~15%的使用时间,就可以零成本延长电池的寿命3~5年

u有趣的功能设定

n例如:PMP在利用立体声音频功放中多余的通道中增加游戏的振动功能

u把优越的性能转化为使用者的享受

TPA2013 多功能扩展

TPA2013 多功能扩展

u USB Host电源

n USB Host (OTG)可以帮助用户共享容量日益巨大的Flash

n真关断,内置限流,节省一个USB限流开关

n轻载模式下的低EMI

u高效率提供5V电源给音频功放,最大不失真功率相对

3.3V供电提高2.29倍。

u提供LED闪光和火炬模式

u内置PLL,为音频功放提供额外的噪声抑制

?Provides Complete Integrated Power Solution

?Ultra-small solution (small package & components), easy to implement ?High accuracy for best picture quality ?Suitable for: 1-cell Li-Ion & 3-cell alkaline ?

High efficiency extends battery life

?Main Output, V MAIN

Post-Regulated ,Low Ripple Noise (5mV)±0.8% Typical Accuracy Efficiency up to 83%

?Positive / Negative Gate Voltage ,V GH / V GL

Voltage Up To +20V / -18V @ 2mA ±3% Typical Accuracy

?Auxiliary 1.8V / 3.3V Linear Regulator ?Automatic or Programmable Output-Sequencing

?

Output Short-Circuit Protected

TPS61140 Schematic for TFT LCD

问题:充电终止检测不到

Time

C u r r e n t (A )

+

当充电芯片在恒压模式时:

1. 充电电流将逐步降低

2. 系统用电超过设定的终止电流监测阈值old

3. 充电芯片稳定在设定的电压上,但I CHG > I TERM

?检测不到终止?

安全定时器溢出

Solution:

关闭定时器或考虑外加分流电路为系统供电

路径管理: 潜在的问题

I

Input current : I ADP = I BAT + I SYS Issues

?Over voltage shock, Input noise ?Large Adapter ?Not USB Friendly

动态功率管理(DPPM)

I CHG

I ADP

I SYS

§当(Isys + Ichg) > I AC_LIMIT 外部电压下降

§太大的瞬间系统电流将导致外部供电电压明显的跌落,从而导致系统复位或性能下降

§DPPM :

§当供电电压低于设定值的时候,减小充电电流“发现”交流适配器的最大电流!!!§电池补充模式

?交流适配器或USB 可以在给系统供电的同时充电:节省2~4MOSFET 和电压监测器

, 节省$0.25~0.40

?更小的,更低成本的交流适配器, 5V, 5W 可以满足绝大部分要求,节省$1

?动态调整充电电流

?给系统提供经过稳压的供电

?减少了内部DC-DC 和外部高电压的接触,提高了可靠性,降低了成本?延长了电池的寿命和安全性

动态功率分配的充电

管理

?Integration:1-A FET, Schottky diode, current sense, thermal shutdown in 3x3 mm 2QFN-10?Battery Management:±0.5% voltage regulation, charge termination, safety timer, battery pre-conditioning, battery detect

?26V Max Vin, thermal regulation and input over voltage protection

?Charge enable, Timer & Termination enable LDO mode when termination is disabled

bq24060/1/4:

Charger with OVP, Thermal Regulation & LDO Mode

/CE, /PG, 6.5V OVP bq24061TS, /PG, 10.5V OVP

bq24064

TS, /PG, 6.5V OVP bq24060Features

Options

?

Small solution size, low cost

?Maximizes battery capacity, cycle life and safety

?High level of safety protection avoids damage

?Facilitate manufacturing test without a battery; system can be powered when battery is absent if charger is set in LDO mode

输入过压保护是必须的吗?

p Input Over Voltage –Transformer-Rectifier Adaptors

üLower Cost

üCompare to regulated switch-mode adaptor, TR adaptors have much higher load regulation

üThe no load voltage can be much higher than rated voltage

p Hot Plug Event

üWhen an adaptor (AC or USB) is powered before it plugged into the device, the parasitic inductance in the wire will cause the input voltage of the device to ring üThe maximum theoretical voltage is twice the adaptor voltage

p System Load Transients

üAbrupt termination of load currents can cause the input voltage to overshoot due to charged parasitic inductance between the adaptor and the device

稳定性讨论

u“模拟记忆效应”

n有源泄放

n300ohm 有源负载在关机后

自动使能

REF TPS65010/TPS65020/TPS65

05x

n TPS6502x以后系列还支持

有源泄放的关断控制

上电次序

1. Why Power-On-Sequence necessary?

Typical dual voltage rail system

开关电源设计报告

1开关电源主电路设计 1.1主电路拓扑结构选择 由于本设计的要求为输入电压176-264 V 交流电,输出为24V 直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck 电路构成。总体要求是先将AC176-264V 整流滤波,然后再经过BUCK 电路稳压到24V 。考虑到变换器最大负输出功率为1000W ,因此需采用功率级较高的Buck 电路类型,且必须保证工作在CCM 工作状态下,因此综合考虑,本文采用全桥隔离型Buck 变换器。其主电路拓扑结构如下图所示: 图1-1 主电路拓扑结构 1.2开关电源电路稳态分析 下面将对全桥隔离型BUCK 变换器进行稳态分析,主要是推导前级输出电压g V 与后级输出电压V 之间的关系,为主电路参数的设计提供参考。将前级输出电压g V 代替前级电路,作为后级电路的输入,且后级BUCK 变换器工作在CCM 模式,BUCK 电路中的变压器可以用等效电路代替。 由于全桥隔离型BUCK 变换器中变压器二次侧存在两个引出端,使得后级BUCK 电路的工作频率等同于前级二倍的工作频率,如图1-1所示。在S T 2的工作时间内,总共可分为四种开关阶段,其具体分析过程如下: 1) 当S DT t <<0时,此时1Q 、4Q 和5D 导通,其等效电路图如图1-2所示。

i () t R v i ‘ 图1-2 在S DT t <<0时等效电路 g nv v =s (1-1) v nv v g -L = (1-2) R v i i /-C = (1-3) 2) 当S S T t DT <<时,此时1Q ~4Q 全部关断,6D 和5D 导通,其等效电路图如图1-3 所示。此时前级输出g V 为0,假设磁化电流为0,则流过6D 和5D 电流相等,均为L i 2 1 。。 i () t R i ‘ 图1-3 在S S T t DT <<时等效电路 0=s v (1-4) v v -L = (1-5) R v i i /-C = (1-6) 3) 当S S T D t T )( +1<<时,此时2Q 、3Q 和6D 导通,其等效电路图如图1-2所示。

直流稳压电源课程设计[1]

课程设计名称:电力电子技术 题目:直流稳压电源的课程设计 专业:电力自动化 班级:电力09-2 姓名:王裕 学号:0905040218

目录 一、简介 (3) 二、设计目的 (4) 三、设计任务和要求 (5) 四、设计步骤 (6) 1.电路图设计 (6) 2. 电路安装、调试 (6) 五、总体设计思路 (7) 1.直流稳压电源设计思路 (7) 2.直流稳压电源原理 (7) 3.设计方法简介 (8) 六、实验设备及原器件 (11) 七、注意事项 (12) 八、此电路的误差分析 (13) 九、心得体会 (14) 十、参考文献 (15)

一简介 直流稳压电源一般由电源变压器,整流滤波电路及稳压电路所组成。变压器把市电交流电压变为所需要的低压交流电。整流器把交流电变为直流电。经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电,并实现电压可在6-13V可调。

二设计目的 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.学会直流稳压电源的设计方法和性能指标测试方法。 3.培养实践技能,提高分析和解决实际问题的能力。

三设计任务及要求 1.设计并制作一个连续可调直流稳压电源,主要技术指标要求: ①输出电压可调:Uo=+6V~+13V ②最大输出电流:Iomax=1A ③输出电压变化量:ΔUo≤15mV ④稳压系数:SV≤0.003 2.设计电路结构,选择电路元件,计算确定元件参数,画出实用原理电路图。 3.自拟实验方法、步骤及数据表格,提出测试所需仪器及元器件的规格、数量,交指导教师审核。 4.批准后,进实验室进行组装、调试,并测试其主要性能参数。

DCDC开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计 引言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。 目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。 从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点。在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。 1. 开关电源控制电路原理分析 DC-DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压。在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制[PWM]法。 PWM从控制方式上可以分为两类,即电压型控制(voltage mode control)和电流型控制(current mode control)。电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号。从控制理论的角度来讲,电压型控制方式是一种单环控制系统。电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。图1即为电压型控制的原理框图。 图1 电压型控制的原理框图 电流型控制是指将误差放大器输出信号与采样到的电感峰值电流进行比较.从而对输出脉冲的占空比进行控制,使输出的电感峰值电流随误差电压变化而变化。电流控制型是一个一阶系统,而一阶系统是无条件的稳定系统。是在传统的PWM电压控制的基础上,增加电流负反馈环节,使其成为一个双环控制系统,让电感电流不在是一个独立的变量,从而使开关变换器的二阶模型变成了一个一阶系统。信号。从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成。在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阂值。电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电

电动汽车车载充电机设计与实现

科技信息2013年第5期 SCIENCE&TECHNOLOGYINFORMATION作者简介:瞿章豪(1987—),男,硕士,从事电力电子器件、电动汽车充放电研究。徐正龙(1989—),男,硕士,从事电力电子器件、电动汽车充放电研究。 0引言 随着现代高新技术的发展和当今世界环境、能源两大难题的日益突出,电动汽车以优越的环保和节能特性,成为了汽车工业研究、开发和使用的热点。电动汽车的发展包括电动汽车以及能源供给系统的研究和开发,其中能源供给系统是指充电基础设施,供电、充电和电池系统及能源供给模式。充电系统为电动汽车运行提供能量补给,是电动汽车的重要基础支撑系统,也是电动汽车商业化、产业化过程中的重要环节。因此,电动汽车充电设施作为电动汽车产业链的重要组成部分,在电动汽车产业发展的同时还应该充分考虑充电设施的发展[1]。研究发现,电池充电过程对电池寿命影响很大,也就是说,大多数的蓄电池是“充坏”的。因此,开发出一种性能优良的充电系统对电池的寿命和电动汽车性能具有重大的作用。 1车载充电机硬件电路设计 车载充电机电路模块如图1所示。主要包括三个部分:功率单元、保护及控制单元、辅助管理单元,其中功率单元在控制单元的配合下是把市电转换成蓄电池充电需要的精电;控制模块通过电力电子开关器件控制功率单元的转换过程,通过闭环控制方式精确完成转换功能。辅助模块主要是为控制模块的电力电子器件提供低压供电及实现系统与外界的联系。此三个单元协同作用组成闭环控制系统。下面对此系统按照所分单元进行解析。 图1 车载充电机硬件电路模块图 Figure.1 The hardware circuit module chart of Electric Vehicle ’s charger 1.1 功率单元设计解析 功率单元作为充电能量传递通道,主要包含EMI 抑制模块、整流模块、PFC 校正模块、滤波模块、全桥变换模块、直流输出模块。为防止电网与充电机之间的谐波相互影响,在电网与充电机之间加入由X 电容、Y 电容、共模电感组成的(Electro-Magnetic Interference EMI )抑 制器;为提高转换效率及降低谐波影响,在整流后加入基于BOOST 拓扑的主动式(Power Factor Correction PFC )功率因数校正器;车载充电器为高压输出,在此为提高系统抗电压应力能力,采用全桥DC/DC 拓扑变换电路。为提高输出精度,滤波单元采用π型滤波方式。在控制器作用及其他单元配合下,各模块协同作用,把电网粗电转换成电池充电所需的精电。 1.2保护及控制单元设计解析 控制单元在辅助单元及检测反馈配合下,在此单元主控器内加入智能控制算法提高系统充电能量转换效率。主要包含原边检测及保护模块、过流检测及保护模块、过压/欠压监测及保护模块、DSP 主控模块。保护及检测模块是由电阻组成的检测网络检测功率单元电压信号,通过LM317组成放大网络对检测到的信号放大,再通过光耦将此信号传递到控制端;由电流互感器TAK17-02组成的检测网络检测功率单元电流信号传到控制端。由DSP28335电路及脉冲变压器隔离驱动电路组成的控制器单元根据采集到的功率单元的电流和电压信息,对DC/DC 全桥变换器模块作出相应的充电、保护控制,使充电器能够更加安全、高效、快速的为蓄电池充电,在完成控制能量转换的同时实现保护功能。 1.3辅助管理单元设计解析 辅助单元负责为整个系统本身提供运行能量及信息交付接口。辅助管理单元主要包括CAN 通信模块、辅助电源模块、人机交互模块。CAN 通信通过研究充电器与BMS 之间通信技术,最终实现充电机与BMS 之间的通信,从而实现实时监测电池特性根据电池特性,选择电池最优充电曲线充电,加快充电速度,减少充电等待时间。系统内部需要多种压值的供电电源,因此辅助电源需满足可同时提供多路输出电源,从调整性要求出发,本文辅助电源模块采用以UC3854为主控芯片的(Flyback )反激拓扑电路,考虑对驱动电路提供驱动能量及成本、空间要求,此电路工作于CCM 模式,同时以DSP28335供电输出回路为反馈控制端,以提高系统稳定性。电池在不同的使用周期,其充电接受功率改变,同时为满足系统升级需求,加入人机交互模块,从而加入人工智能提高系统适应性。 2 车载充电机软件设计 2.1 常用充电控制方法问题分析 作为车载充电器中通用的控制方法,控制电路通常采用固定开关频率,改变脉冲宽度的方法。充电器总是工作在同样开关频率下,所需充电功率的大小靠调节脉冲宽度来实现。所需充电功率小,脉冲较窄,充电电流较小;所需充电功率大,脉冲较宽,充电电流较大[2]。在上述控制方法中,所需充电功率大的情况下,充电效率高,但所需充电功率小的情况下充电功率低。车载充电机的损耗主要有两类功率损耗:导通损耗和开关损耗。导通损耗主要由负载电流大小决定,而开关损耗与开关次数成正比,开关次数越少,开关损耗就越低。在所需充电功率小的情况下,用恒频控制方法,此时开关频率与所需充电功率大的频率相同,所以两种情况下的开关损耗相同,此为固定开关频率控制方法 电动汽车车载充电机设计与实现 瞿章豪徐正龙 (重庆邮电大学自动化学院,中国重庆400065) 【摘要】本文设计了一种适用于电动汽车充电的充电系统,为提高充电效率,提出一种针对电池的充电的超前补偿控制算法。文中详细介绍了系统硬件电路组成及算法实现过程。充电实验结果表明,硬件设计结构合理,同时该算法控制的充电过程可以达到更高的充电效率。 【关键词】电动汽车;车载充电机;超前补偿控制;变频控制技术 The Charger's Design and Implementation Based on Electric Vehicle QU Zhang-hao XU Zheng-long (Chongqing University of Posts and Telecommunications ,Chongqing ,400065,China ) 【Abstract 】This paper designs a battery charging system that ’s suitable for electric vehicle,in order to improve the charging efficiency,this paper puts forward a battery charging control algorithm based on the lead compensation.This paper introduces the hardware circuit ’s structure and the algorithm ’s realization process of the system,in detail.The Charging experimental results show that the algorithm controls the charging process can achieve more higher charging efficiency 。 【Key words 】Electric Vehicle;Vehicle ’s charger;Lead compensation control;Variable frequency control technology ○机械与电子○ 133

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电又如何使直流电压(电流)稳定这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A;

③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=±; 发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

直流稳压电源设计报告multisim

西安文理学院机械与材料工程学院专业课程设计报告 专业班级测控技术与仪器一班 课程电子技术课程设计 题目直流稳压电源的设计 学号 学生姓名 指导教师 2017年3月

西安文理学院机械与材料工程学院 课程设计任务书 学生姓名 11 专业班级 15级测控技术与仪器1班学号2807150120 指导教师 22 职称讲师教研室测控 课程电子技术课程设计 题目 直流稳压电源的设计 任务与要求 使用Multisim仿真软件,设计一个采用220V,50Hz交流电网供电,固定输出的集 成稳压电源,其指标为U O =+12V; I O max=800mA。 设计要求: (1) 设计系统总体框架 (2) 设计电路 (3) 绘制电路图并仿真 (4) 撰写设计报告 开始日期 2017.3.10 完成日期 2017.3.24 2017年 2 月 24 日

直流稳压电源的设计 摘要 本设计是设计一个由220V,50Hz交流电源供电,输出为12V电压,限制电流800mA 的交流稳压电源。 首先使用电源变压器将220V的电网电压变成所需要的交流电压,经过由二极管组成的桥式整流电路,将正负交替的正弦交流电压变成单方向的脉动电压,再经过滤波电容使输出电压成为比较平滑的直流电压,在以三端固定式集成稳压器7812为核心构成的直流稳压电路,使输出的直流电压在电网电压或负载电流发生变化时保持稳定。这类稳压器有输入,输出和公共端三个端口,输出电压固定不变,所以输出稳定性极好。本设计就是应用上述原理实现了直流稳压电源的设计。 关键词:直流稳压电源;三端稳压器;变压器;滤波电容;整流二极管。

目录 第一章任务与要求 (1) 第二章总体布局与各部分电路分析 (1) 2.1 系统模块 (1) 2.2 总体设计 (1) 2.3 直流电源的组成及各部分的筛选与作用 (2) 2.3.1 变压电路 (2) 2.3.2 整流电路 (2) 2.3.3滤波电路 (6) 2.3.4稳压电路 (7) 第三章制作和调试 (8) 第四章实验心得体会及致谢 (9) 第五章参考文献 (10)

智能手机电源管理模块的设计

龙源期刊网 https://www.360docs.net/doc/026940699.html, 智能手机电源管理模块的设计 作者:芦昱昊 来源:《电子技术与软件工程》2017年第04期 摘要随着国民生活质量的不断提高,电子产品更新换代的速度也越来越快。通讯产品中的电源动力系统一直是开发者关注的重点,也是用户选择智能手机的关键选项,因此对智能手机电源管理模块的设计分析是十分必要的。 【关键词】智能手机电源模块设计管理 手机行业的发展变化可谓是日新月异,近年来肉眼可见的黑白屏到彩色屏、仅有通话功能到目前的各种实用应用,都是智能手机功能进步的体现。然而这些复杂功能的实现都是需要稳定的电源系统作为支持的,因此开展电源模块的电压以及效率设计管理是为智能手机的良好发展前景奠定基础。 1 智能手机电源管理模块的设计原则 智能手机的设计过程是设计师明确消费者对设备要求下进行的,因此需要从体积、重量、续航时间上等多方面进行详细考虑。智能手机体积的缩小处理是针对系统集中功能和元件封装技术的体现,因此需要考虑到减小PCB板后产生的各种影响。在体积和重量都有限制的情况下,提高电池的容量和密度是最佳的创新选择,同时注重电源系统在工作状态下的转化频率,也是处理续航时间的主要方案。由此可知,电源管理模块的转化率和能耗是手机改革重点,手机厂家需要从电能转化的效率和电源的使用效率两方面提高设备的科技含量,制造出具备高性价比和满足消费者需求的优势产品。 2 智能手机电源管理模块的设计分析 2.1 PMU 市面上很多电子产品需要根据实际功能调节出不同电压的电源,也就意味着电池在供电的同时还需要根据芯片迅速转换电压,转换期间的功率损耗也应当保持在规定范围之内,同时该电源模块还需要维持电源的充电安全。这样的新型电源模块电路被称作是电源管理单元,英文缩写为PMU,是为提高电源转化效率和降低能耗的电源管理方案。PMU的构架分为集中式和分布式,但是二者共同存在的几率很小,设计者需要在系统划分之初决定好使用哪种方案。集中式是仅执行PMU附近的单一处理器进行电压调节和电源切换工作,而分布式系统则是作用于每一个电源子系统上。二者的选择重点是从智能手机应用的数量和响应速度的要求,同时还要考虑到电源模块管理过程中的间隔距离。通过比较来看,PMU分布式的方案较集中式的灵活一些,只需要在系统之间加入一根电源轨,作为所有外围的电源连接线,那么每一个外围电

汽车车载系统的电源设计浅析

2014年第03 期 随着我国经济建设的逐渐深入,我国汽车行业的发展速度越来越快,人们生活水平的大幅提高也使得人们对汽车内部车载设备的要求越来越高。由于汽车上面所涉及到的电子设备种类繁多,开关复杂,例如汽车上面装备有具有自动功能的感性负载,如雨刮器、电动车窗、电喇叭、感性线圈等等,这些电子设备在断电的瞬间都会产生很高的感应电动势,这种瞬间作用的感应电动势会直接作用到一些与蓄电池并联的器件上,从而造成电源串扰、瞬变过压等问题,以至于导致电子元件的故障破坏。因而,根据上述这些汽车电系的特点,普通的过压、过载保护已经难以适应要求,并且随着集成电路制造技术的逐渐成熟,车载电子设备正逐步朝着体积缩小化,重量减轻化,功率减小化的趋势发展,传统的电源也渐渐不能满足要求。同时,开关电源的出现以其独有的优势逐渐被广泛采用,尤其是在一些耗电量比较敏感的便携式电子设备中,基本都能见到开关电源的身影。而本文分别从12V 汽油车车载系统和24V 柴油车车载系统两种类型对电源设计进行简要阐述。1.汽车车载系统电源概况 1.1蓄电池主要作用1.1.1在发电机电压低或不发电(发动机处于怠速、停转状态)时,向车载用电设备供电。1.1.2当汽车上同时启用的用电设备功率超过了发电机的额定功率时,协助发电机供电。1.1.3在其存电不足及发电机负载不多时,将发电机的电能转换为化学能储存起来。1.1.4蓄电池相当于一个大电容,可以吸收电路中的瞬变电压脉冲,对汽车上的电气设备及电子元件起到了保护作用。1.1.5对汽车电子控制系统来说,蓄电池也是电子控制装置内存的不间断电源。1.2汽车车载系统对电源的要求1. 2.1要求蓄电池的内阻要小,大电流输出时的电压稳定,以保证有良好的起动性能。1.2.2要求蓄电池的充电性能良好、使用寿命长、维护方便或少维护,以满足汽车使用性能要求。1.2.3要求发电机在发动机转速变化范围内都能正常发电且电压稳定,以满足用电设备的用电需求1.2.4要求发电机的体积小、重量轻、故障率低、发电效率高、使用寿命长等,以确保汽车使用性能要求。2.汽车车载系统电源设计 2.112V 汽油车车载系统电源设计2.1.1分布式系统结构车载电源管理系统中,12v 稳压控制模块可用作12V 可控稳定电压和12V 常通电源。在这电源系统中,常通稳定电源主要功能是给一些车载电器进行供电,譬如仪表盘的时钟,某些需要供电的内存等等,汽车处于行驶状态下时,ECU 数字电路的电力主要来源于12v 可控稳定电压。另外,霍尔电流传感器的使用能够有效实现对蓄电池充电、放电过程的监视,并能大概估计出蓄电池的SOC 值。总体而言,汽车的电源管理系统中供应电能的形式主要是以电源通道的形式进行,其中,在每一个通道之内,都应该设计一个配套的智能继电器实现对其的有效控制。2.1.2基于智能继电器的电源通道设计所谓的“电源通道”,就是一种具有控制电流以及能够保护过电流的电能传输通道。而随着智能继电器在车载电源系统中的应用,电源通道的电流保护和电流控制等功能在某种程度上得到了有效的强化。目前,随着科技的发展,汽车电源系统中,传统的继电器已经渐渐难以满足对电流的有效控制,因而我们引入了模拟半导体功率器件(如IGBT 、MOS 场效应晶体管等等)。实际上,有些半导体功率器件甚至还能实现过热、过压和过电流等方面的保护功能,但由于其内部导通电阻相对较大,所产生的焦耳效应会伴随着大量的热量散失,所以,模拟半导体功率器件在车载大直流电源开关控制方面的应用目前还难以真正实现。因而,本设计所选用的是一种普通车载继电器,设计过程中,为辅助其运行,还特别设计了一个单片机控制系统,这一系统中主要包括电流检测电路、电压检测电路以及初级线圈驱动电路,当然,还有连接车载总线通信的总线接口。该设计结构中,为了保证智能继电器能够实现对检测电路上电流的实时保护,以及对总线电流大小形成过载保护,我们通常会在检测电路中设置低通运算和霍尔传感器两大部分来对电路进行放大。智能继电器主要是通过LIN 总线的设计保证与车载网络之间实现信息交换,而普通继电器的主要功能就是要一定限度内的过载电流确保分断,而如果是短路状况下形成的大电流,该继电器则难以发挥作用。正是因此,在短路保护结构设计中,往往还需要设置相关的短路保护器件,例如自恢复熔丝等等。2.224V 柴油车车载电源设计2.2.1正电源设计通过采用开关电源稳压转换器,在输入端接入24V 直流,使得输出端输出5V 直流。作为所输入直流电源的载体,供电线路设计上还需要设置滤波电路。为了保护电源芯片,防止电源接反和电源过压等情况的发生,往往要通过加二极管进行控制,输入端和输出端的电容是滤波电容,则在输出端要加上发光二极管DS1进行+5V 电源指示。2.2.2负电源设计一般情况下,通过采用开关电源转换器ICL7660AM JA ,能够容易实现-5V 电源。ICL7660的工作温度范围在-55℃至+125℃之间,输入电压范围在1.5V 至10V 之间,设计过程中,通过使用CMOS 工艺所制成的小功率、高效率的低压直流转换器,一方面可以保证由单电源到对称输出双电源转换的顺利进行,另一方面还能保证倍压和多倍压的输出。结语:未来,随着汽车逐渐成为大众商品,人们对汽车的设计要求不仅仅在于行驶功能,更多的在于内部舒适度、便捷度等各方面的功能指数,因而对于车载系统的研究迫在眉睫。汽车企业只有不断深入研究汽车车载系统的电源设计理论,并不断优化 种电子设备的使用,才能在激烈的竞争中取得领先优势参考文献:[1]陈广洋,陆奎.基于STC 单片机的智能车载电源管理器设计[J].微型电脑应用.2009(01)[2]张新丰,杨殿阁,薛雯,陆良,连小珉.车载电源管理系统设计[J].电工技术学报.2009(05)[3]肖宁,吕盼稂,王余涛,竺长安.基于TEF6606车载收音机模块设计[J].微型机与应用.2010(08)作者简介:刘娟,女,汉,1979年10月出生,籍贯:湖南长沙,助教,湖南大学电气工程专业毕业,专业方向:汽车机电。汽车车载系统的电源设计浅析 刘娟(长沙职业技术学院南院汽车工程系410111) 【摘要】随着我国汽车行业的高速发展,车载系统在汽车上的应用越来越频繁,许多车载产品,例如车载电视、车载点烟器在方便人们的生活之余,也逐渐成为人们汽车旅途上不可缺乏必需品之一。而车载系统中通常包括单片机和其他芯片,往往系统性能的好坏很大程度上都是由供电品质的好坏决定,因此,本文根据笔者的个人经验,主要就汽车车载系统的电源设计方面进行了简要介绍。 【关键词】汽车;车载系统;电源设计 ● ◇电源与电流◇5

通信电源系统配置设计参数

电源系统配置设计参数 一、电池容量配臵 1、确定机房的中期用电负荷=总功耗(W)/48(V)=总负载电流(A); 2、确定蓄电池的后备时间=10小时(以10小时为例); 3、根据公式计算出蓄电池容量=总负载电流*10*1.42=蓄电池组总容量(AH); 通常设两组蓄电池,两组电池总容量必须大于计算所得蓄电池组总容量。 二、开关电源容量配臵 开关电源设计中要确定两个问题:一是蓄电池容量;二是开关电源规格。 1、蓄电池容量=负载功率/电压*电池备用时间(AH),这是近似计算公式; 2、高频开关电源容量=蓄电池充电电流+负载电流=0.1*蓄电池容量+负载电流(A); 3、高频开关电源整流模块数=高频开关电源容量/单个模块输出电流,该结果只能进位不能舍去,同时考虑N+1备份; 高频开关组合电源机架按远期容量配臵,整流模块按近期负荷配臵,高频开关电源中整流模块数按n+1冗余方式确定,其中n为主用,n<=10时,1块为备用;n>10时,每10块备用1块。主用整流模块总容量应按负荷电源和均充电流(10小时率充电电流)之和确定。

例:当蓄电池为2组300AH时,充电电流A=2*300/10=60A 负荷电流=31.25A 总电流=60+31.25=91.25A 根据计算即可求的需要配多大的开关电源。要是机房没什么发展,只需要配臵100A组合开关电源即满足需要。 三、高阻柜相关问题 在通信设备供电系统中,有低阻配电和高阻配电两种配电方式。在采用高阻配电的供电系统中,每一路负载支路都具有高阻抗,远大于电源电阻,所以某一支路的负载短路所引起的电源瞬间变化电压能 够被限制在一定的范围内,不会影响其他支路负载的工作。 每一负载分路由空气开关、高阻片(含短接片)、输出接线端子组成,可实现多路小电流输出。当负载电流过大时,空气开关可起到保护作用。如果负载发生短路,高阻片上可产生一定压降,防止由于少数负载短路导致其它负载支路输出电压严重下降的后果。但是需要注意的是因为高阻片有一定的阻值,在负载电流较大时,需要关注高阻片的发热问题,特别是DSLAM机柜通常是单路输入,电流通常较大,单框负载电流超过5A,早期设备甚至超过10A。若负载电流较大需要考虑短路高阻片或者增加-48V接入支路数。配电线距离较长更现场更需要全程压降指标。

电池电源管理系统设计

电源招聘专家 我国是一个煤矿事故多发的国家,为进一步提高煤矿安全防护能力和应急救援水平,借鉴美国、澳大利亚、南非等国家成功的经验和做法,2010年,国家把建设煤矿井下避难硐室应用试点列入了煤矿安全改造项目重点支持方向。 为了满足井下复杂的运行环境及井下避难硐室对电池电源运行稳定、安全可靠、大电流输出等关键要求,研发了基于MAX17830的矿用电池电源管理系统。 1 总体技术方案 根据煤矿井下的环境及井下避难硐室对电池电源运行稳定、安全可靠、大电流输出等关键要求,结合磷酸铁锂电池的特性,采用MAX17830作为矿用电池管理系统的采集与保护芯片。 本矿用电池电源管理系统由五部分组成,分别为显示模块、管理模块、执行机构、电池组、防爆壳。整个电池电源管理系统共设有4对接线口:24 V直流输出端口、24 V直流充电端口、485通信端口和CAN通信端口[1-2]。 本矿用电池电源管理系统的工作流程如图1所示。 2 电池电源管理系统硬件设计 2.1 器件选择及布局 本矿用电池电源管理系统设计所采用的主要器件如表1所示。 按照器件的功能及电池管理系统的特点,对器件进行布局设计,器件布局情况如图2所示。 2.2 核心电路解析 2.2.1 MAX17830介绍 MAX17830芯片由美国的美信半导体公司生产,包含12路电压检测通道、12路平衡电路控制引脚及2路NTC温度传感器。在本电池电源管理系统中使用了8路电压检测通道、8路平衡电路控制引脚和2路NTC温度传感器。MAX17830采集8个单体电池的电压并使用IIC通信协议与CPU通信,将采集的数据发送给CPU,接受CPU的控制[3-4]。 2.2.2 电池电压采集与过充保护电路 此电路围绕着MAX17830而设计,负责整个电池组单体电池的电压采集、过充保护、平衡管理等,其电路设计的原理图如3所示。 3 电池电源管理系统软件设计 3.1 软件基本功能 为了保证电池电源系统的稳定,设计电池电源管理系统软件的基本功能如下[5]: (1)动态信息的采样,对单体电压、单体温度、电池组电流、电池组电压进行采样;(2)电管理,根据系统动态参数对充电过程、放电过程、短路情况进行报警、主动保护多级管理措施; (3)热管理,电池单体高于或低于指定界限时电池电源管理系统将采取保护措施并报警;(4)均衡管理,充、放电过程中可对单体电池持续有效地提供高达70 mA的均衡电流,每块单体电池设有一路均衡电路; (5)数据管理,使用CAN/485通信协议可实时读取、调用系统存储的数据及管理系统工作状态。详实记录过流、过压、过温等报警信息,作为系统诊断的依据; (6)电量评估,长时间精准剩余电量估计,实验室SoC估计精度在97%以上(-40 ℃~

纯电动汽车车用电源系统设计匹配

纯电动汽车车用电源系统设计 纯电动汽车的结构相对简单,只有一个能量来源——动力电池,所以电源系统的设计相对也比较简单,本节以一种纯电动公交车的电源系统设计来进行说明。 1.整车设计要求 整车设计参数如表9-1所示。 整车行驶工况满足表9-2中国典型城市公交车行驶工况要求。 动力电源系统分布在车辆两侧四个相同的空间内(原行李箱位置)。 2.电源系统设计 (1)确定车辆的功率需求根据汽车理论,汽车功率平衡关系应满足式(9-1)。 (9-1)P v——车辆需求功率,kW; g——重力加速度,m/S2; m——车辆满载质量,kg; i——道路坡度; δ——旋转质量换算系数; du/dt——加速度,m/s2; u a——车速,km/h; η——传动系统效率;

A——车辆迎风面积,m2; fr——滚动阻力系数; CD——风阻系数。 在启动加速、爬坡、最高车速三种情况下车辆的需求功率是最高的,分别计算这三种情况下车辆的需求功率,选择功率要求最大的作为车辆的需求功率。 最高车速μmax对应的车辆功率需求P v1为: (9-2)最大爬坡度am对应的车辆需求功率P v2为: (9-3)原地起步加速到指定加速时间T如式9-4所示,可以计算出给定全力加速时电动汽车电机对应于车速ua的需求功率P v3。 (9-4)由式(9-2)~式(9-4)以及表9-1与表9-2中的数据,可以得到车辆的最高车速、最大爬坡度和全力加速时车辆对应的功率需求,分别为98.7kW,91.8kW、65kW。 纯电动汽车的电机的功率应能同时满足汽车对最高车速、加速度及爬坡度的要求,所以电动机的额定功率为: (9-5) 国家标准推荐的电机功率等级为5.5kW、7.5kW、11kW、15kW、18.5kW、22kW、30kW、37kW、45kW、55kW、75kW、90kW、110kW、132kW、150kW、160kW、185kW、200kW及以上,并符合GB/T4772.1-1999的要求。根据式(9—5)计算结果以及车辆辅件的功率需求,电机额定功率可以选定为110kW。电源系统的功率应不低于P,即应大于110kW。 (2)确定系统电压范围根据整车所选择的电机,确定电源系统的标称电压及电压应用范围。 采用合理的高电压设计,可以减小电机逆变器的成本和体积,并且有利于控制总线的工作电流在一定范围内,从而保护电源系统。同时,总线电压越高,驱动电机能够输出的最大电磁转矩和最大功率数值也就越大,车辆动力性能好。但直流总线的最高电压也不能过高,否则会对功率逆变器中的功率开关器件造成较大的冲击,总线电压不能超过IGBT决定的电机最高允许电压限制。

关于开关电源设计时的基本问题解答

关于开关电源设计时的基本问题解答 如何为开关电源电路选择合适的元器件和参数?很多未使用过开关电源设计的工程师会对它产生一定的畏惧心理,比如担心开关电源的干扰问题,PCB layout问题,元器件的参数和类型选择问题等。其实只要了解了,使用开关电源设计还是非常方便的。一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。 开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出电压的采样电路以及反馈环的控制电路。因此这部分的设计在于保证精确的采样电路,还有来控制反馈深度,因为如果反馈环响应过慢的话,对瞬态响应能力是会有很大影响。 输出部分设计包含了输出电容,输出电感以及MOSFET等等,这些器件的选择基本上就是要满足性能和成本的平衡,比如高的开关频率就可以使用小的电感值(意味着小的封装和便宜的成本),但是高的开关频率会增加干扰和对MOSFET的开关损耗,从而效率降低。低的开关频率带来的结果则是相反的。 对于输出电容的ESR和MOSFET的Rds_on参数选择也是非常关键的,小的ESR可以减小输出纹波,但是电容成本会增加,好的电容会贵嘛。开关电源控制器驱动能力也要注意,过多的MOSFET是不能被良好驱动的。 一般来说,开关电源控制器的供应商会提供具体的计算公式和使用方案供工程师借鉴的。如何调试开关电源电路?有一些经验可以共享给大家:(1)电源电路的输出通过低阻值大功率电阻接到板内,这样在不焊电阻的情况下可以先做到电源电路的先调试,避开后面电路的影响。(2)一般来说开关控制器是闭环系统,如果输出恶化的情况超过了闭环可以控制的范围,开关电源就会工作不正常,所以这种情况就需要认真检查反馈和采样电路。特别是如果采用了大ESR值的输出电容,会产生很多的电源纹波,这也会影响开关电源的工作的。

简易数控直流电源设计的报告

简易数控直流电源

数控直流电源是一种常见的电子仪器,广泛应用于电路,教学试验和科学研究等领域。目前使用的可控直流电源大部分是点动的,利用分立器件,体积大,效率低,可靠性差,操作不方便,故障率高。随着电子技术的发展,各种电子,电器设备对电源的性能要求提高,电源不断朝数字化,高效率,模块化和智能化发展。以单片机系统为核心而设计的新一代——数控直流电源,它不但电路简单,结构紧凑,价格低廉,性能优越,而且由于单片机具有计算和控制能力,利用它对数据进行各种计算,从而可排除和减少模拟电路引起的误差,输出电压和限定电流采用数输入采用键盘方式,电源的外表美观,操作使用方便,具有较高的使用价值。 关键词:数控直流电源单片机 ABSTRACT Numerical control dc power is a common electronic instrument, is widely used in the circuit, the teaching experiment and scientific research, etc. Current use of controlled most of the dc power supply is the point start, the use of the device division, big volume, low efficiency, poor reliability, operation convenience, not high failure. With the development of electronic technology, various kinds of electronic, electrical equipment to improve the performance requirements of power, the power supply, high efficiency, the constant digital modular and intelligent development. Based on the single chip computer system as the core and the design of a new generation of numerical control dc power, it-not only circuit is simple, compact structure, the price is low, superior performance, and because the single-chip microcomputer with the calculation and control ability, use it for data, so as to eliminate all kinds of calculation and reduce the error caused by the analog circuit, output voltage and current limit the number of the keyboard input way, the power supply appearance, convenient in operation, has higher application value. Key words:Numerical control dc power Single-chip microcomputer

车载电源简要说明

车载电源简要说明 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

连云港易思特电子有限公司 车载交直流一体化电源 使用说明书 公司总部:江苏灌云经济开发区纬三东路15号 生产基地:江苏灌云县杨集镇工业集中区露希欧汽车产业园 销售经理:潘东亚 2014年6月6日编制一、产品概述 车载交直流一体化电源,是一种专门为LED广告车、舞台车、宣传车、演 车等相关特殊车辆设计的特种车载电源。当客户现场可提供市政用电(交流220V)时,市电经设备内部交直流互投装置直接给负载供电,同时设备内充电器组为蓄电池组充电;当客户现场无法提供市政用电时,设备将自动投切至蓄电池供电,此时本设备提供的电源主要用于LED显示屏及电脑、功放音响及电动机、液压系统等交流负载供电。当市电恢复正常后,设备自动投切至市电工作;同时充电器组为蓄电池组充电。 二、应用领域 该产品主要应用于:LED广告车、舞台车、宣传车、演出车、冷藏车、 房 车、大型客车、公交车、旅游车等特种车领域。 三、产品特点 该产品是针对LED广告车而研发的电源产品,相比以往的LED广告车所采用的发电机供电系统,具有以下优点:

☆环保节能,无噪音,无公害; ☆全免维护,智能人性化操作系统,操作简单,维护方便; ☆运行、维护费用低; ☆采用最新DSP数字化控制,逆变器调制技术采用SPWM正弦脉宽调制技术,控制芯片采用美国Atmel微处理器,稳定、高效; ☆采用模块化设计方案,整个系统由若干个功能模块组成,便于调试和维护; ☆用户可选用RS232/485通讯接口,便于与上位机通讯; ☆逆变器采用隔离变压器输出,带载能力强; ☆逆变器模块采用进口IPM智能模块,输出稳定、可靠; ☆管理简单,自动切换可无人值守; ☆充电器采用高频软开关全桥变换技术,自动实现铅酸蓄电池的均/浮充转换; ☆逆变器正弦波输出,稳压、稳频; ☆系统可根据客户实际需要,优化配置,最大限度地为客户节省成本; ☆保护功能齐全,欠压、过压、过载、过流、短路、过温(选配)、电池过充等保护; ☆设备性能可定制; ☆可实现远程控制(选配); ☆设备自带强制启动功能,可强切市电同时可取消电池欠压、过压、过载等保护功能,特殊情况下可使用该功能,正常情况下不建议使用该功能,影响蓄电池寿命。 四、型号命名 车载电源命名方法如下: 五、车载交直流一体化电源外观图及说明 输出功率 A为交流电源,D为直流电源,

相关文档
最新文档