3七上 第三讲有理数乘除及混合运算 - 副本 - 副本

3七上 第三讲有理数乘除及混合运算 - 副本 - 副本
3七上 第三讲有理数乘除及混合运算 - 副本 - 副本

第二讲 有理数乘除法与混合运算

有理数乘除法

1、有理数乘法法则: (1)两数相乘,同号得正,异号得负,并把绝对值相乘;

(2)任何数同0相乘都得0;

(3)多个有理数相乘:

a :只要有一个因数为0,则积为0。

b :几个不为零的数相乘,积的符号由负数的个数决定,当负数的个数为奇数,则积为负;当 负数的个数为偶数,则积为正。

2、乘法运算律:(1)乘法交换律;(2)乘法结合律;(3)乘法分配律。

3、有理数除法法则:

(1)法则:除以一个数等于乘以这个数的倒数

(2)符号确定:两数相除,同号得正,异号得负,并把绝对值相除。 (3)0除以任何一个非零数,等于0;0不能作除数!

4.有理数运算规律:

知识讲解

中考要求

(1)在有理数运算中,加减是一级运算,乘除是二级运算,乘方是三级运算.一个式子里三级运算都含有时,先做第三级运算,再做第二级运算,最后做第一级运算;同一级运算,按照从左到右的先后顺序进行运算;

(2)有括号时按照小括号、中括号、大括号的顺序进行;

(3)运算中应灵活运用运算律简化运算

对应练习

有理数乘除法与混合运算

1.已知两个有理数a,b ,如果ab <0,且a+b <0,那么( )

A .a >0,b >0

B .a <0,b >0

C .a,b 异号

D .a,b 异号,且负数的绝对值较大

2.计算下列各题:

(1)(-6)×5×72)67(?

- (2))48()6143361121(-?-+--

(3)34.07

5)13(317234.03213?--?+?-?- ★(4))5(252449-? 1.一个有理数与其相反数的积( )

A .符号必定为正

B .符号必定为负

C .一定不大于零

D .一定不小于零

2.计算下列各题:

(1)3×(–9)+7×(–9) (2)4

1)23(158)245(?-??- (3))251(4)5(25.0-

??-?-- (4)113()241234

--+? 1.下列说法错误的是( ) A .任何有理数都有倒数 B .互为倒数的两个数的积为1

C .互为倒数的两个数同号

D .1和-1互为负倒数

2.(1)522

-的倒数是 (2))10

3()259(-÷-= ★3.计算:)511()2()24(-÷-÷- 1.下列结论错误的是( )

A .若b a ,异号,则b a ?<0,

b a <0 B .若b a ,同号,则b a ?>0,b

a >0 C .

b a b a b a -=-=- D .b a b a -=--

2.计算:101411

)2131(÷÷- 计算下列各题:

(1))24(9441227-÷?÷- (2)7)412(54)721(5÷-??-÷- (3)2

13443811-??÷- 1.下面说法正确的是( )

A .14和0.25-互为倒数

B .14

和4-互为倒数 C .0.1和10互为倒数 D .0的倒数是0 2.下列说法正确的是( )

A .若干个有理数相乘,当因数有奇数个时,积为负

B .若干个有理数相乘,当正因数有奇数个时,积为负

C .若干个有理数相乘,当负因数有奇数个时,积为负

D .若干个有理数相乘,当积为正数时,负因数有偶数个

3.若a b <,0a b

<,则有( ) A .00a b ><, B .00a b >>, C .00a b <>,

D .00a b <<, 4.互为相反数的两个数的积( )

A .符号必为正

B .符号必为负

C .一定不小于0

D .一定不大于0

5.绝对值小于4的负整数的积是( )

A.0

B.-6

C.-24

D.24 6.如果x

x ||=-1,那么x 是( ) A.正数

B.负数

C.非正数

D.非负数 二、填空题

1.若0ab <,0b >,则a 0.

2.0.125和 互为倒数,倒数是它本身的数是 .

3.若a >0,b <0,则ab 0;若a <0,b <0,则ab 0.

4.5

3的相反数与它的倒数的积等于 . 三、计算下列各题:

(1)32-923÷? (2)2112(1)34

-?-+ ★(3)15511512277227

?????--?+-? ? ????? ★(4)11(5)()555-?÷-?

四、解答题

★1.阅读下面一段话,解决后面的问题.

观察下面一列数:1,2,4,8,…,我们发现,这一列数从第二项起,每一项与它前一项的比都等于2. 一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数叫做等比数列的比.

(1)等比数列5,-15,45,…的第四项是 第五项是

(2)一个等比数列的第二项是10,第三项是20,则它的第一项是 ,第四项是 ★2.若2ab

a b a b a b *=-++,求下列各式的值:

(1)(-2)*3 (2)[2*(-3)]*(-1)

讲义说明

【教学重点】

1. 掌握有理数的乘除法法则

2. 会进行有理数乘除混合运算,知道运算顺序

【教学难点】

1. 除法法则记不住

2. 乘法的分配律逆运用

【学生困惑及解决方案】

困惑1:学生乘除的运算顺序会弄错

解决方案:本块内容是属于计算问题,应该让学生多做几道易错题,让学生自己多去分析。

困惑2:乘法分配律的逆运用学生不会做

解决方案:首先熟练掌握乘法分配律,然后在同一道题里进行逆运算,然后再换成另外一道题。

有理数混合运算的方法技巧及练习题

有理数混合运算的方法技巧及练习题 一、理解运算顺序 有理数混合运算的运算顺序: ①从高级到低级:先算乘方,再算乘除,最后算加减; 有理数的混合运算涉及多种运算,确定合理的运算顺序是正确解题的关键 例:计算:3+50÷22 ×(5 1-)-1 ②从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的. 例:计算:()[] 232315.011--??????????? ???-- ③从左向右:同级运算,按照从左至右的顺序进行; 例:计算:???? ??-+???? ??-÷???? ??--388712787431 二、应用四个原则: 1、整体性原则: 乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。 2、简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用。 3、口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。 4、分段同时性原则: 对一个算式,一般可以将它分成若干小段,同时分别进行运算。如何分段呢?主要有:(1)运算符号分段法。有理数的基本运算有五种:加、减、乘、除和乘方,其中加减为第一级运算,乘除为第二级运算,乘方为第三级运算。在运算中,低级运算把高级运算分成若干段。 一般以加号、减号把整个算式分成若干段,然后把每一段中的乘方、乘除的结果先计算出来,最后再算出这几个加数的和. 把算式进行分段,关键是在计算前要认真审题,妥用整体观察的办法,分清运算符号,确定整个式子中有几个加号、减号,再以加减号为界进行分段,这是进行有理数混合运算行之有效的方法. (2)括号分段法,有括号的应先算括号里面的。在实施时可同时分别对括号内外的算式进行运算。 (3)绝对值符号分段法。绝对值符号除了本身的作用外,还具有括号的作用,从运算顺序的角度来说,先计算绝对值符号里面的,因此绝对值符号也可以把算式分成几段,同时进行计算. (4)分数线分段法,分数线可以把算式分成分子和分母两部分并同时分别运算。

有理数加减乘除混合运算基础试题(含答案)

数 学 练 习(一) 〔有理数加减法运算练习〕 一、加减法法则、运算律的复习。 A .△同号两数相加,取___相同的符号_______________,并把__绝对值相加__________________________。 1、(–3)+(–9) 2、85+(+15) -12 100 3、(–36 1)+(–33 2) 4、(–3.5)+(–5 3 2) -66 5 -96 1 △绝对值不相等的异号两数相加,取_绝对值较大的加数的符号________________________,并用________较大的绝对值减去较小的绝对值____________ _____________. 互为__________________的两个数相加得0。 1、(–45) +(+23) 2、(–1.35)+6.35 5 -22 3、41 2+(–2.25) 4、(–9)+7 -2 △ 一个数同0相加,仍得___这个数__________。 1、(–9)+ 0=___-9___________; 2、0 +(+15)=____15_________。 B .加法交换律:a + b = ____b+a_______ 加法结合律:(a + b) + c = ____a+(b+c)___________ 1、(–1.76)+(–19.15)+ (–8.24) 2、23+(–17)+(+7)+(–13) -29.15 0 3、(+ 341)+(–253)+ 543+(–852) 4、52+112+(–5 2 ) -2 11 2 C .有理数的减法可以转化为__正数___来进行,转化的“桥梁”是____(正号可以省略)或是(有理数减法法 则)。 _____。

初一-有理数的乘除法、乘方运算-练习题

有理数的乘除法、乘方运算 练习题 一、有理数的乘除法 1、有理数乘法法则: (1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同0相乘都得0; — (3)多个有理数相乘: a :只要有一个因数为0,则积为0。 b :几个不为零的数相乘,积的符号由0的个数决定,当0的个数为奇数,则积为负, 当0的个数为偶数,则积为正。 2、乘法运算律:(1)乘法交换律;(2)乘法结合律;(3)乘法分配律。 3、有理数除法法则: (1)法则:除以一个数等于乘以这个数的倒数 (2)符号确定:两数相除,同号得正,异号得负,并把绝对值相除。 ~ (3)0除以任何一个非零数,等于0;0不能作除数! 二、有理数乘方: 1、n 个相同因数的积的运算,叫做乘方。乘方的结果叫做幂;用字母表示 a n a a a a 个????记作n a ,其中a 叫做底数,n 叫做指数,n a 的结果叫做幂;读法:n a 读作a 的n 次方。 2、正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数。 。 练习题 一、选择题: 1、一个有理数和它的相反数之积( ) A .符号必为正 B .符号必为负 C .一定不大于零 D .一定不小于零 2、若0ab >,则下列说法中,正确的是( ) A .a ,b 之和大于0 B .a ,b 之和小于0 C .,a b m 同号 D .无法确定 ! 3、下列说法中,正确的是( ) A .两个有理数的乘积一定大于每一个因数。 B .若一个数的绝对值等于它本身,这个数一定是正数。 C .有理数的乘法就是求几个加数的和的运算。 D .两个连续自然数的积一定是一个偶数。 4、下列说法中,正确的是( )

有理数的乘除法(简便运算)

有理数的乘除法(简便运算)1.用简便方法计算下列各题. (1) 7 (0.25)4(18) 9 ?? -?-??- ? ?? (2)(0.1)(100)0.01(10) -?-??- (3)( 3.7)(0.125)(8) -?-?-(4) 1 (4)(25)(6) 3 -??-?- (5)4(8)25( 1.25) ?-??-(6)220.125(0.25)32 ??-? (7) 211 (60) 31215 ?? --?- ? ?? (8) 131 1(48) 2448 ?? --?- ? ?? (9) 1311 641224 ???? -+-÷- ? ? ???? (10) 3551 11 461236 ???? --÷- ? ? ????

(11)1111115133555?????? -?-+?--?- ? ? ??????? (12)115(48)0.12548(48)84-?+?+-? (13)666433363777?????--?--? ? ????? (14)1515158124292929?????? -?-+?--?- ? ? ??????? (15)149(15)15?- (16)71 993672 -? (17)24149255-÷ (18)62467? ?-÷ ?? ? (19)13243520122014201320152233442013201320142014?????????? ??????????? ? ? ? ? ???????????

(20)2 3815 20192021 4916 2020???? ? 2.我们知道a a b b ÷= ,b b a a ÷=,显然a b ÷与b a ÷的结果互为倒数关系.小明利用这一思想方法计算121123031065???? -÷-+- ? ????? 的过程如下:因为 211212112(30)20351210310653031065?????? -+-÷-=-+-?-=-+-+=- ? ? ??????? . 故原式1 10 =-. 请你仿照这种方法计算:113224261437???? -÷-+- ? ?????. 3.阅读下列材料: 计算: 1111243412??÷-+ ??? . 解法一:原式11111111111 3412243244241224242424= ÷-÷+÷=?-?+?= . 解法二:原式143112116241212122412244 ??= ÷-+=÷=?= ???. 解法三:原式的倒数111111111124242424434122434123412???? =-+÷ =-+?=?-?+?= ? ????? . 所以,原式1 4=. (1)上述得到的结果不同,你认为解法 是错误的; (2)请你选择合适的解法计算:113224261437???? -÷--+ ? ?????.

1.4.3 有理数的加减乘除混合运算 同步作业(含答案)

1.4.3 有理数加减乘除混合运算 ◆随堂检测 1、 计算:(1))12()9()15(8---+---; (2))1()2.3(7)5 6 (-+----; (3)21)41(6132-----; (4))2.4(3 1 12)527()3211(------. 2、计算:(1))]41()52 [()3(-÷-÷-; (2)3)4 11()213()53(÷-÷-?-; (3))5()910()101()212(-÷-÷-?-; (4)7 4)431()1651()56(?-÷-?- 3、计算:(1))2(66-÷+-; (2))12(60)4()3(-÷--?-;

(3))6()61(51-?-÷+-; (4)10 1411)2131(÷÷-. ◆典例分析 计算:(1)601)315141 (÷+- ;(2))3 1 5141(601+-÷. 分析:第(2)题属于易错题,因为除法没有分配律,只有乘法才有分配律,而一些学生往往因不看清题目而错误地运用运算规律。 解:(1)解法一:23606023 60)602060126015(601)315141(=?=?+-=÷+- 解法二:601)315141(÷+-23603 1 6051604160)315141(=?+?-?=?+-= (显然,解法二中运用了乘法分配律后计算方法很简单。) (2)错解: )315141(601+-÷30 1 316015160141601= ÷+÷-÷= (出错的原因在于:除法没有分配律,从而是不能运用的) 正确解法一: )315141(601+-÷=23 1 6023601)602060126015(601= ÷=+-÷ 正确解法二: ∵601)31514 1 (÷+- 23603 16051604160)315141(=?+?-?=?+-= ∴根据倒数的定义有:)315141(601+-÷= 23 1 ◆课下作业 ●拓展提高 1、 计算: (1))425()327261(-÷+-; (2)]5 1)31(71[1051---÷.

有理数乘除混合运算习题

有理数乘除法混合运算 姓名: 成绩: 一. 填空题(每空2分,共52分) 1.有理数的乘法 =+?)4(10 =-?+)5()6( =+?-)3()8( =-?-)7()10( =+?)2020(0 =?-0)2010( =- ?-)9 5()53( =-?)001.0(1000 =?-93 13 =?-425.0 =-?-)8.0(05.0 =-?)7 33 (1542 2. 有理数的除法 =+÷)9(18 =-÷)8(1 =÷-763 =-÷-)9()45( =+÷)2020(0 =-÷)2010(0 =-÷)10 7(10 12 =÷-02.06 =÷-8 143 =-÷)25.0(5.0 =-÷-)12 1(25.1 =-÷)53 1(54 1 3. 有理数的乘除法混合运算 =-??-?-)13(0)25(8 =-÷÷-?-)3(3)10(9 二. 计算题(每题3分,共48分) 1. )4(52-??- 2. )3 1 ()5 3 (310-?-??- 3.)25.0()7()8()5(-?-?-?- 4. 6.0)4(9 525.1?-??- 5. )8 32143(16+-- ?- 6. )24 1()75.06 54321(- ÷-+--

7. )611()427 1 5.33 12(-÷-- 8. )5(7 5 45+÷- 9. 4 34 55.2? ÷- 10. 735)4(3÷--? 11. )5 11()3.0()3(12-÷-?-÷- 12. )10()16.0()5 3(3 2-÷-÷- ? 13. )6()25()2(16)48(-?---÷÷- 14. 10 1)9.0()25.0()4 3 ()3 2 (42÷ ---÷-+-? 15. )31 ()2(6)511(18-?-÷--÷-- 16. ??? ??? -÷??? ???-?-+----)2.0()6.0(3217)32( (1)- 8+4÷(-2) (2)(-7)×(-5)- 90÷(-15)

有理数的加减乘除计算题(50道)

有理数的加减乘除 计算题(50道) 1. (+13)+(+17) 2. (—14)+(—18) 3. (+)+(—412 ) 4. (—34 )+(+56 ) 5. (+78 )+(—78 ) 6. (—3913 )+0 7. 1—(—5) 8. —5+5 9. 1—(—4) 10. —214 —134 11. (—323 )—(—123 ) 12. 5516 —(—1456 ) 13.(+1)+(—2)+(+3)+···+(+99)+(—100) 14. 2—7+5—3 15.(+317 )+(—)+【(+)+1417 】 16. —12 — 13 +14 — 16 17. (—30)—(—19)+27—48—(+16) 18. —314 —(—814 )—(—212 ) 19. (—10)—(+13)+(—4)—(—8)+5 20. 6—(—5)+(—11)

21. (—)+(—)+ 22. (—3)X (—9) 23. — 12 X 23 24. (—4)X6 25. (—6)X0 26. 23 X (— 94 ) 27. (—6)X (—1) 28. (— 13 )X 14 29. 8 X (— 34 )X4 X(—2) 30. (—36)÷(—9) 31. (—114 )÷ 32. 256 ÷(—256 ) 33.(—36)÷(— 49 ) 34. (—)÷(—118 ) 35. (—56)÷14÷2 36. — 12 ÷78 X (— 34 ) 37. (— 23 )X (+34 )÷56 38. (—3)X 0 X 23 39. 8X (— 34 )X (—4)X (—2) 40. (—5)(—2)

有理数的乘除法练习题

一、选择 1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( ) A.一定为正 B.一定为负 C.为零 D. 可能为正,也可能为负 2.若干个不等于0的有理数相乘,积的符号( ) A.由因数的个数决定 B.由正因数的个数决定 C.由负因数的个数决定 D.由负因数和正因数个数的差为决定 3.下列运算结果为负值的是( ) A.(-7)×(-6) B.(-6)+(-4); C.0×(-2)(-3) D.(-7)-(-15) 4.下列运算错误的是( ) A.(-2)×(-3)=6 B. 1 (6)3 2 ?? -?-=- ? ?? C.(-5)×(-2)×(-4)=-40 D.(-3)×(-2)×(-4)=-24 5.若两个有理数的和与它们的积都是正数,则这两个数( ) A.都是正数 B.是符号相同的非零数 C.都是负数 D.都是非负数 6.下列说法正确的是( ) A.负数没有倒数 B.正数的倒数比自身小 C.任何有理数都有倒数 D.-1的倒数是-1 7.关于0,下列说法不正确的是( ) A.0有相反数 B.0有绝对值 C.0有倒数 D.0是绝对值和相反数都相等的数 8.下列运算结果不一定为负数的是( ) A.异号两数相乘 B.异号两数相除 C.异号两数相加 D.奇数个负因数的乘积 9.下列运算有错误的是( ) A.1 3 ÷(-3)=3×(-3) B. 1 (5)5(2) 2 ?? -÷-=-?- ? ?? C.8-(-2)=8+2 D.2-7=(+2)+(-7) 10.下列运算正确的是( ) A. 11 34 22 ???? ---= ? ? ???? ; B.0-2=-2; C. 34 1 43 ?? ?-= ? ?? ; D.(-2)÷(-4)=2 二、填空 1.如果两个有理数的积是正的,那么这两个因数的符号一定______. 2.如果两个有理数的积是负的,那么这两个因数的符号一定_______. 3.奇数个负数相乘,结果的符号是_______. 4.偶数个负数相乘,结果的符号是_______. 5.如果41 0,0 a b >>,那么 a b _____0.

有理数乘除法知识点与练习

有理数乘除法 教学目标 1.使学生掌握多个有理数相乘的积的符号法则; 2.掌握有理数乘法的运算律,并利用运算律简化乘法运算; 3.使学生理解有理数倒数的意义; 4.使学生掌握有理数的除法法则,能够熟练地进行除法运算; 教学重点: 有理数乘法的运算.乘法的符号法则和乘法的运算律.有理数除法法则. 教学难点: 积的符号的确定.商的符号的确定. 知识点: 1·有理数乘法的法则: 两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0. 2·几个有理数相乘时积的符号法则: 几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正. 几个有理数相乘,有一个因数为0,积就为0. 注意:第一个因数是负数时,可省略括号. 3·乘法交换律:abc=cab=bca 乘法结合律:a(bc)d=a(bcd)=…… 分配律:a(b+c+d+…+m)=ab+ac+ad+…+am 4·倒数:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数; 倒数也可以看成是把分子分母的位置颠倒过来. 5·有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数. (两数相除,同号得正,异号得负,并把绝对值相除.) 0除以任何一个不为0的数,都得0. 例题: 8+5×(-4);? (-3)×(-7)-9×(-6).

(-23)×(-48)×216×0×(-2) (-27)÷3 20÷7÷(-20)÷3 练习题:有理数乘法 1.下列算式中,积为正数的是( ) A .(-2)×(+2 1) B .(-6)×(-2) C .0×(-1) D .(+5)×(-2) 2.下列说法正确的是( ) A .异号两数相乘,取绝对值较大的因数的符号 B .同号两数相乘,符号不变 C .两数相乘,如果积为负数,那么这两个因数异号 D .两数相乘,如果积为正数,那么这两个因数都是正数 3.计算(-221)×(-33 1)×(-1)的结果是( ) A .-661 B .-551 C .-831 D .56 5 4.如果ab =0,那么一定有( ) A .a =b =0 B .a =0 C .a ,b 至少有一个为0 D .a ,b 最多有一个为0 5.下面计算正确的是( ) A .-5×(-4)×(-2)×(-2)=5×4×2×2=80 B .12×(-5)=-50 C .(-9)×5×(-4)×0=9×5×4=180 D .(-36)×(-1)=-36 6.(1)(-3)×(-)=_______; (2)(-521)×(33 1)=_______; (3)-×=_______; (4)(+32)×(-)×0×(-93 1)=______ 7.绝对值大于1,小于4的所有整数的积是______。 8.绝对值不大于5的所有负整数的积是______。

七年级数学上(有理数乘除法混合运算练习题)

a 的值为 。 七年级数学上----有理数乘除法练习 1、填空: (1)-7的倒数是___,它的相反数是___,它的绝对值是___;(2)-22的倒数是___,-2.5的倒数是__; 5 (3)倒数等于它本身的有理数是__。-2 的倒数的相反数是__。3 (4)倒数等于它本身的数是_____。(5)绝对值小于2011的所有整数的积为_____。(6)三个数的积为正数,则三个数中负因数的个数是_个。 -2与2的和的15倍是__,-2与2的15倍的和是__ 3535 (7)如果一个数的绝对值、倒数都等于它本身,则这个数是____。 2、下列结论错误的是()A、若a,b异号,则a?b<0,a<0 b B、若a,b同号,则a?b>0,a>0 C、-a=a=-a D、-a=-a b b-b b-b b 3、一个有理数与其相反数的积() A、符号必定为正 B、符号必定为负 C、一定不大于零 D、一定不小于零 4、下列说法错误的是()A、任何有理数都有倒数B、互为倒数的两个数的积为1 C、互为倒数的两个数同号 D、1和-1互为负倒数 5、已知两个有理数a,b,如果ab<0,且a+b<0,那么() A、a>0,b>0 B、a<0,b>0 C、a,b异号 D、a,b异号,且负数的绝对值较大 6、若a=5,b=-2,ab>0,则a+b=___。 7、若a≠0,则a 8、若a,b互为相反数,c,d互为倒数,m的绝对值是1,求(a+b)cd-2009m的值。 。 9、化简下列分数: -可编辑修改-

10、计算:(1)4924?(-5);(2)-14×4(3)-24×(7-5-1) 49÷ (-24); 3-0.34? (1)-16= 2 。 (2)12=(3)-54=(4)-9= -48-6-0.3 13 2514126 (4)36×(-1917)(5)(-6)×(-2)+(-6)×(+17)185353 (6)(-8)?(1-11+1); 248 14(7)-27÷2? (8)(-1-1+3-1)?(-48)。 123646 (9)-13?2215 7+3? (-13)- 7 ?0.34 -可编辑修改-

有理数的乘除法及混合运算

第12课时有理数的乘法 【学习目标】 1、通过行程问题说明有理数乘法法则的合理性,感知到数学知识来源于生活。 2、理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性; 3、熟练进行有理数乘法运算,掌握多个有理数相乘的积的符号法则。 【学习重点】依据有理数的乘法法则,熟练进行有理数的乘法运算; 【学习过程】 一、学习准备: 1、复习有理数加法法则;①同号两数相加,取相同的符号,并把绝对值相加; ②绝对值不等的异号两数相加,取绝对值较大加数的,并用较大的绝对值减去较小的绝对值;③互为相反数的两个数相加得;④一个数同0相加,仍得这个数. 2、复习有理数减法法则:减去一个数,等于加上这个数的. 3、计算:(-3)+(-3)= (-2)+(-2)+(-2)= 二、解读教材: 1、探索有理数乘法的规律 从以下情景体会和理解加法与乘法间的联系:一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行,经过x分种后,它现在位于原来位置的哪个方向,相距多少米? ①正数×正数:情景一,向东爬行2分钟,距离为3+3=6,即3×2=6; ②负数×正数:情景二,向西爬行2分钟,距离为(-3)+(-3)=-6,即(-3)×2=-6; 对比情景一和二的结果,可知: 两数相乘,若把一个因数换成它的相反数,所得的积是原来的积的相反数. 从而可得: ③正数×负数:3×(-2)=-6. 在此基础上,3再取相反数,又可得: ④负数×负数:(-3)×(-2)=6. (简记为:负负得正) 2、有理乘法的法则 总结以上各种情形,得到“有理数乘法的法则”: 两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同0相乘,都得0. 对“有理数乘法法则”的解读: (1)乘法的符号法则:同号得正,异号得负。 因为正数×正数,结果为正比较显然,所以“同号得正”主要是提醒同学们记住“负负为正”。而“异号得负”包括两种情况:正×负,或负×正,结果都是负数。

初一数学有理数乘除法练习题(已整理)

1.4.1有理数乘法(1) 随堂检测 1、 填空: (1)5×(-4)= ___;(2)(-6)×4= ___;(3)(-7)×(-1)= ___; (4)(-5)×0 =___; (5)=-?)23(94___;(6)=-?-)3 2()61( ___; (7)(-3)×=-)3 1( 2、填空: (1)-7的倒数是___,它的相反数是___,它的绝对值是___; (2)5 22-的倒数是___,-2.5的倒数是___; (3)倒数等于它本身的有理数是___。 3、计算: (1))32()109(45)2(-?-??-; (2)(-6)×5×7 2)67(?-; (3)(-4)×7×(-1)×(-0.25);(4)4 1)23(158)245(?-??- 4、一个有理数与其相反数的积( ) A 、符号必定为正 B 、符号必定为负 C 、一定不大于零 D 、一定不小于 零 5、下列说法错误的是( ) A 、任何有理数都有倒数 B 、互为倒数的两个数的积为1 C 、互为倒数的两个数同号 D 、1和-1互为负倒数 拓展提高 1、3 2-的倒数的相反数是___。 2、已知两个有理数a,b ,如果ab <0,且a+b <0,那么( )

A 、a >0,b >0 B 、a <0,b >0 C 、a,b 异号 D 、a,b 异号,且负数的 绝对值较大 3、计算: (1))5(252449 -?; (2)12 5)5.2()2.7()8(?-?-?-; (3)6.190)1.8(8.7-??-?-; (4))251(4)5(25.0- ??-?--。 4、计算:(1))8141121()8(+-?-; (2))48()6143361121(-?-+--。 5、计算:(1))543()411(-?- (2)34.07 5)13(317234.03213?--?+?-?- 6、已知,032=-++y x 求xy y x 43 5212+--的值。 7、若a,b 互为相反数,c,d 互为倒数,m 的绝对值是1,求m cd b a 2009)(-+的 值。

七年级数学上册第2课时 分数化简及有理数的乘除混合运算

编号: 000222217954555385825983331 学校: 玄国虎市冥中之镇肖家塞小学* 教师: 古因丰* 班级: 大力士参班* 1.4.2 有理数的除法 第2课时 分数化简及有理数的乘除混合运算 一、导学 1.课题导入: 小学里我们学过,除号与分数线可以互相转换,利用这个关系,你能将下列分数化简吗? 4515-- ,1236-,7 14 -,这节课我们继续学习有理数的除法运算. 2.学习目标: (1)知识与技能 ①学会化简分子、分母中含有“-”号的分数. ②熟练地进行有理数的乘除混合运算. (2)过程与方法 经历分数化简及进行有理数乘除混合运算的过程,培养学生解决复杂问题的能力. (3)情感态度 敢于面对数学活动中的困难,能独立思考,也能交流合作. 3.学习重、难点: 重点:有理数乘、除混合运算.

难点:能准确、迅速地进行有理数乘、除混合运算. 4.自学指导: (1)自学内容:教材第35页例6、例7. (2)自学时间:6分钟. (3)自学要求:独立学习与小组合作学习相结合.注意例7第(1)小题中的拆分技巧,思考其依据. (4)自学参考提纲: ①化简分数的方法是怎样的? 分子分母同时除以它们的最大公约数. ②化简下列分数 4515-- ,1236-,714 -,-512 --,3,-13,-1 2,-10 ③分数的乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果. ④按例7的计算方法计算:(1)12317 ÷(-3); (2)(-0.75)× 16 5 ÷(-1.2). (1)1231 7 ÷(-3)=(123+17 )×-13 =123×(-13 )+17 ×(-13 ) =(-41)+(-121)=-41121 . (2)(-0.75)× 165÷(-1.2)=(-34)×165 ×(-5 6)=2. ⑤下列计算正确吗?为什么? -3÷(-1 3 )×(-3)=-3÷1=-3 不对,没按照运算顺序来.

七年级有理数乘除混合运算练习题(附答案)

七年级有理数乘除混合运算练习题 一、计算题 1.计算 (1)()1124??-÷- ??? . (2)()0.750.25-÷. (3)()00.12÷-. (4)()11.254 -÷. 2.计算. (1)()()50.750.34 -÷÷-. (2)()349731221??????- ? ????-÷? - . (3)()11150.6 1.75232??-?-?÷- ??? . (4)3777148128??????????+--+-÷- ? ? ? ??????????? ??. 3.计算 (1)4512117621??????÷÷ ? ? ????-??-? -. (2)()14812649??-÷?-÷ ??? . (3)11111345660????-+-÷- ? ????? . 4.计算 (1)()()755-÷-. (2)80.1253 -÷. (3)512557 -÷. (4)()()1.250.52÷-÷- 5.用简便方法计算 (1)()()()11.2548220??+?-?- ?? ?-?. (2)()532.465????-?-?+ ? ????? .

(3)()312461014313???????+?-?- ? ? ??????? -. (4)()()()()181201250.0012-?????? ?--? -? . (5)513160522++-+????????-? ? ? ??????????? . (6)341000.70.03105??-?--+ ??? . (7)1314414??-? ?? ?. 6.计算 (1)8394????? ? ????-? -. (2)211135??+??? ???- ??? . (3)()54123116547????????-?+?-?-?+ ? ? ? ????????? . 7.若规定两数,a b 通过“※”运算得到4ab ,即4a b ab =※,如2642648=??=※,请你求出35※的值. 8.计算 (1)()1481341()1139?????÷- -÷+?-? ???? . (2)()453251??????÷÷- ? ????????-? -. (3)157136918????-+÷- ? ????? . 9.计算4312773??+?- ??? . 10.计算:()497-÷-= ,1121635 ??-÷= ??? ,()()()110441÷-+÷---?= ,()()270.5-÷-= . 11.计算下列各题 (1)()()4812-÷-. (2)112136??÷- ??? .

七年级上册有理数的加减乘除混合运算测试卷

有理数的加减乘除混合运算测试卷 一、选择题(3分×10=30分) 1. -1 2 的相反数是……………………………………………………( ) A.2 1- B.2 C.-2 D.12 2.数轴上的点A 、B 、C 、D 分别表示数a 、b 、c 、d ,已知点A 在点B 的右侧,点C 在点B 的左侧,点D 在点B 和点C 之间,则下列式子成立的是( ) A .a b c d <<< B .b c d a <<< C .c d b a <<< D .c d a b <<< 3.-3不是( ) A .负有理数 B .有理数 C .自然数 D .整数 4.4 ||5-的倒数是( ) A .45 B .45- C .54 D .54 - 5.一个数的绝对值等于它的相反数,这个数一定是( ) A .非正数 B .非负数 C .负数 D .正数 6.绝对值小于6的所有整数的和是………………………………( ) A 、15 B 、10 C 、0 D 、-10 7.若||8a =,||5b =,且0a b +>,那么a b -的值为( ) A .-13或13 B .3或13 C .-3或-13 D .3或-3 8.下列计算正确的是…………………………………………………………( ) A 、21-2 1×3=0 B 、23--(32-)=1 C 、6÷3×3 1 =6 D 、(12 1)2-(-1)2005 = 34 1 9.下列比较大小正确的是( ) A .22||55-=- B .5567->- C .1(5)| 5.5|2--<- D .7687 -<- 10.有理数a 、b 在数轴上的对应的位置如图所示,则……………( ) A .a + b <0 B .a + b >0 C .a -b = 0 D .a -b >0

有理数乘法练习题纯计算

一、计算题 1.)2()2 1(-?- 2.)511(321-? 3.(-1.5)×(-5) 4.41)54(6)5(?-??- 5.)41()59(65)3(-?-??- 6.)8()20 14()25.1(-?-?+ 7.)12()43(-?- 8.431)72(?- 9.(-3.6)×(-1)×0 10.25×(-11)×(-4) 11.(-9)×32 12.(-74)×56 13.(-132)×(-0.26) 14.(-2)×31×(-0.5) 15. (-4)×(-10)×0.5×(-3)

16.(-83)×34×(-1.8) 17.(-0.25)×(-74 )×4×(-7) 18. (-73)×(-54)×(-127) 19.(-8)×4×(-21)×(-0.75) 20. 4×(-96)×(-0.25)×481 21. 6.868×(-5)+6.868×(-12)+6.868 ×18 22.31×(-5)+31×(-13) 23.)56()14 381174(-?+- 24.)36()65(-?- 25.412)92(?-

26.(-78.6)×(-111)×0 27. 125×(-36)×(-8) 28.(-9)×32 29.(-132 )×(-0.26) 30.(-2)×31×(-0.5) 31.(-4)×(-10)×0.5×(-3) 32.(-83 )×34×(-1.8) 33.(-0.25)×(-74 )×4×(-7) 34.(-73)×(-54)×(-127 ) 35.(-8)×4×(-21 )×(-0.75)

有理数的乘除混合运算技巧

有理数的乘除混合运算技巧 进行有理数的乘除混合运算时,一般都是先确定符号,再定积的绝对值,下面介绍一些有关技巧,望同学们把握好,减少错误. 一、 先确定积的符号,再把乘除混合运算转化成乘法 例1. 计算 分析:三个或三个以上的有理数相乘除时,首先确定积的符号,然后再把乘除混合运算统一转化成乘法计算求值. 解:原式===. 说明:1.要把带分数转化为假分数;2.几个非零有理数相乘,积的符号由负因数的个数来确定.当负因数的个数为奇数个时,积为负; 当负因数的个数为偶数个时,积为正. 二、 利用运算律进行简便计算 1. 正用运算律 例2. 计算 分析:按照运算顺序,先算括号里面的加减运算而后再算乘法,不难,但不如运用分配律来得快些吧! 解: 原式=. 说明:进行有理数的乘除混合运算时,要注意所给算式的特点,灵活运用运算律,使运算变得简便且不易出错. 2. 逆用运算律 例3 计算 分析:注意到每项都有因数25,可以反过来使用分配律,提出因数25. 解: 原式=. 说明:当算式中的每项含有相同的数时,要逆用乘法的分配律来简化计算. ??? ??-43)212(21-÷?? ? ??-???? ??-43)25(21-÷?? ? ??-???? ??-43??? ??-???? ??-?5221203524213-=????-361856191??? ? ??--1210643618 536613691-=--=?-?-?()?? ? ??-?+?--?4125212543252541214325412521254325=?? ??????? ??-++?=??? ??-?+?+?

有理数的乘除乘方混合运算习题

有理数的乘法、除法、乘方练习 一、有理数的乘法运算法则: (一)没有0因数相乘的情况下:1、由负因数的个数确定符号 ----------+???奇数(如1,3,5,)个负因数,积为“—”偶数(如2,4,6, )个负因数,积为“”,可省略,再把绝对值相乘---------- (二)有一个以上的0因数相乘,积为0 (三)适用的运算律: 1.2.()3.()a b b a a b c a b c a b c d a b a c a d ?=??? ??=???? ?+-=?+?-?? (四)策略:在有理数的乘、除中,碰到小数就 ,碰到带分数就 练习:1、(–4)×(–9)= 2、(– 52)×81 = 3、(–253)×13 5= 4、(–12)××0×9×100 5、10.12512(16)(2)2-??-?- 6、(-6)×(-4)-(-5)×10 7、(- 103-254+ )×(-100) 8、(–11)×52+(–11)×95 3 二、有理数的倒数: (一)定义:如 ,则称a 与b 互为倒数;其中一个是另一个的倒数。 (二)几种情况下的倒数: 1、整数:2的倒数是 ;12-的倒数是 ;0没有倒数 发现:①互为倒数的两数必然 ;②把整数的分母看成 ,然后分子与分母 2、分数:12的倒数是 ;23 -的倒数是 ; 112的倒数是 ;223-的倒数是 ; 发现:求倒数时,碰到带分数,必须化为

练习:求下列各数的倒数: 4.25-是 235 是 1.14-是 三、有理数的除法法则:(a b a b ÷=?的 )即看到除法,就转化为 练习: 1、(-18)÷(-9) 2、-3÷(-3 1) 3、0÷(–105) 4、(-2)÷(-1.5)×(-3) 5、 -÷(-151)×(-26 1) 6、[65÷(-21-31)+281]÷(-181) 四、乘方:(一)在n a 中,a 称为 ;n 称为 ;n a 称为 。 (二)几个不同表达式的意义 1、n a = ; 4、()n a b = ; 2、()n a -= ; 5、n a b = ; 3、n a -= ; 6、n a b -= ; (三)、负数的奇次幂是___ __,负数的偶次幂是 _ ____。正数的任何次幂都是 , 0的任何正整数次幂都是 ,1的任何正整数次幂都是 。 练习:1、42-()的意义是_______ _,结果是____; 42-的意义是___________ ,结果是___。 2、下列各组数中,其值相等的是( ) A. 23和32 B. 32-()和32- C. 23-和23-() D. 232-?()和232-?() 3、计算:①23-= ;②2 23?= ;③223=(-) ;④223-= 4、若212)||02 x y ++-=(,则2011()xy =

初一有理数乘除法练习题

3.有理数的乘除法 一.主要知识点 1.有理数乘法法则: ⑴两个有理数相乘:同号得正,异号得负;并把绝对值相乘;任何数与0相乘都得0 ⑵多个有理数相乘:可以从左至右依次相乘,因数有0,则积为0 ⑶乘积是1的两个数互为倒数,若b a ,互为倒数,则1=ab ;b a 1=,a b 1= 2.有理数乘法一般步骤: ⑴先观察各因式中有没有0,有0则乘积为0;若没有0,先确认符号 ⑵确定乘积的符号,若因数是两个数,则同正异负;若因数不止两个数;要全部考虑, 因数中负数个数为偶数个时,乘积为正,因数中负数个数为奇数个时,乘积为负 ⑶确定符号后,再把绝对值相乘 3.有理数乘法运算律: ⑴乘法交换律:ba ab = ⑵乘法结合律:)()(bc a c ab = ⑶乘法分配律:ac ab c b a +=+)( 4.有理数的除法: 法则一:除以一个不为0的数,等于乘这个数的倒数 b a b a 1?=÷)0(≠b 法则二:两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不为0的 数都得0 注:运用法则一,将除法全部转化为乘法,然后运用法则二,进行计算 除法性质:)(bc a c b a ÷=÷÷ 5.有理数乘除混合运算:只有乘除法时从左至右依次计算,有括号的先算括号里面的 6.有理数乘除混合运算的一般步骤: ⑴同一级运算中,要从左到右依次计算 ⑵乘除混合运算时,将除法转换为乘法,算式化成连乘的形式,带分数化成假分数,小 数都统一成分数

二.解题方法与思路 1.复杂的因数相乘: ⑴分数与小数:算式中既有小数又有分数时,可根据题目将其统一为小数或统一为分数 ⑵带分数的乘法:算式中有带分数,应该把带分数化为假分数后再相乘 2.有理数乘除混合运算确定符号,看算式中负因数的个数,“奇负偶正” 3.乘法运算律的推广: ⑴乘法交换律和结合律适用于三个或三个以上因数相乘,任意交换位置,积不变 ⑵乘法分配律:不止适用于3个数,可以更多am ac ab m c b a +++=+++......)......( ⑶分配律的逆用:对于某些乘法算式,只有逆用分配律才能使计算更简便 4.乘除混合计算时观察重点有:①因数中有无0因数 ②观察能否使用运算律 ③观察有无互为倒数的数 5.相反数、绝对值、倒数,与有理数的乘除运算,经常放在一起,应正确理解 三.考点例题 考点一:考查有理数乘法法则 例1.计算:⑴=-?-)5()6( ⑵=?-4 11)21( ⑶?-)4(0.25= 例2.求下列各数的倒数:4-; 98-; 125.0; 3 21; 96 考点二:多个有理数相乘的运算 例3.计算:⑴=-?-?-)4()3()2( ⑵=-?-??-)6()2(3)5( ⑶)6(0)2()1(-??-?- 例4.计算:⑴=??? ??-??-?-145712)2.4()6.5( ⑵)25.4(0992)5()4(+???? ? ??-?-?+ 例5.在6-,5-,1-,3,4,7中任取三个数相乘,所得的积最小为,最大为

初一数学有理数乘除法练习题.

1.4.1有理数乘法(1) 随堂检测 1、填空: (1) 5X(-4)= (2)(-6 )X4= (3)( -7 )X(-1 )= 4 3 (4) (- 5 )X) = —; (5) 9 (才 1 (7)( -3 )X( 3) 1 (6)(石) 2、填空: (1) _______________ -7的倒数是________ ,它的相反数是____ ,它的绝对值是________ 2 (2) 2-的倒数是_______ ,-2.5的倒数是 _____ ; 5 (3) ___________________________ 倒数等于它本身的有理数是 _________________________________ 。 3、计算: (1) ( 2) 7 2 ⑵(-6)XX( 6)7 ; 5 8 3 (3)( -4 )X7X(-1 )X(-0 . 25 );( 4) (刃)15(?) 4、一个有理数与其相反数的积( ) A、符号必定为正 B、符号必定为负 C、一定不大于零 D、一定不小于零

5、下列说法错误的是( ) C 、互为倒数的两个数同号 D 、1和-1互为负倒数 典例分析 1 4 计算(3—) ( 2—) 4 5 分析:在运算过程中常出现以下两种错误: ①确定积得符号时,常常与加法法则 1 4 13 14 91 中的和的符号规律相互混淆,错误地写成(3-) ( 2-) ( -3)(--) 一 ; 4 5 4 5 10 ②把乘法法则和加法法则混淆,错误地写成 1 4 14 1 (3 ) (2 ) (3) (2) ( ) 6 o 为了避免类似的错误,需先把假分数 4 5 4 5 5 化成带分数,然后再按照乘法法则进行运算。 课下作业 拓展提高 2 1、 -的倒数的相反数是 。 3 2、 已知两个有理数a,b ,如果ab v 0,且a+b v 0,那么( ) A 、a >0,b >0 B 、a v 0,b >0 C 、a,b 异号 D 、a,b 异号,且负数 的绝对值较大 3、计算: A 、任何有理数都有倒数 B 、互为倒数的两个数的积为1 1 4 解:(辽)(2 5) 13 91 4 5 10

相关文档
最新文档