ERDAS影像融合操作流程

ERDAS影像融合操作流程
ERDAS影像融合操作流程

影象融合流程

影像融合在影象解译模块和雷达影象处理模块中都有,但是雷达模块中的处理效果要相对好一些,下面就两个不同模块中的融合处理流程进行分别介绍。

一、影象解译模块(Interpreter)

1)单击,在弹出的Interpreter菜单中选则Spatial Enhancement

(空间增强)弹出Spatial Enhancement菜单,再选择Resolution Merge(分辨率融合)选项。

弹出对话框如下

在Resolution Merge对话框中需要设置下列参数

(1)确定高分辨率输入文件(high Resolution input file);

(2)选择影象波段;

(3)确定多光谱输入文件(multispectral input file);

(4)定义输出文件;

(5)选择融合方法。在分辨率变换中,erdas提供了三种融合方法Principal Component(主成分变换法)、Multipalcative(乘积变换)、Brovey transform(比值变换)。其图象分别如下:

Principal Component(主成分变换法)

Multipalcative(乘积变换)

Brovey transform(比值变换)

(6)选择重采样方法。系统提供了两种重采样方法Nearest Neighbor(邻近像元法)、Bilinbear Interpolation(二次线形内插)和Cubic Convolution(立方卷积)。其中

以Cubic Convolution方法最为平滑。

(7)确定Output Options输出图象选项。选择Lgnore Zero Stats,可以忽略像素值为

0的像素;

(8)确定Layer Selection(输出图象波段组合);

(9)确定Data Type(输出数据类型);

(10)击OK按钮执行操作。

2)在Spatial Enhancement菜单中选择wavelet Resolution Merge(小波融合),弹出对话框如下:

在wavelet Resolution Merge对话框中我们要设置参数:

(1)确定高分辨率输入文件(high Resolution input file);

(2)选择影象波段;

(3)确定多光谱输入文件(multispectral input file);

(4)定义输出文件;

(5)选择融合方法在小波融合中,erdas提供了三种融合方法Principal Component(主成分变换法)、ISH(色彩变换)、Single Band(单波段变换)。其图象分别如下:

Single Band(单波段变换)

ISH(色彩变换)

Principal Component(主成分变换法)

(6)选择重采样方法。系统提供了两种重采样方法Nearest Neighbor(邻近像元法)和Bilinbear Interpolation(二次线形内插)。

(7)如果选择ISH融合方法,则还需要确定ISH替换波段的成分。

(8)确定Layer Selection(输出图象波段组合);

(9)确定Data Type(输出数据类型);

(10)确定Output Options输出图象选项。选择Lgnore Zero Stats,可以忽略像素值为0的像素。

(11)确定输出影象波段组合。

(12)单击OK,关闭对话框。

二、雷达模块

在ERDAS图标面版工具条中,单击Radar/Radar Interpreter/Image Enhancement/Sensor merge命令,打开Sensor Merge对话框如下:

在Sensor Merge对话框中,需要设置如下参数;

(1)确定输入的Gray Scale Image(灰阶影象);

(2)选择影象波段;

(3)确定多光谱输入文件(multispectral input file);

(4)定义输出文件;

(5)选择融合方法。我们可以看到共有三种融合方法Principal Component(主成分变换法)、ISH(色彩变换)、Multiplycation(乘积变换);

(6)选择重采样方法。系统提供了三种重采样方法Nearest Neighbor(邻近像元法)、Bilinbear Interpolation(二次线形内插)和Cubic Convolution(立方卷

积)。其中以Cubic Convolution方法最为平滑。

(7)选择不同的融合方法有不同的操作步骤,分别如下:

A主成分变换

应用主成分变换技术,可以有四种选择来改变图象的灰阶:

·Resampe:按第一主成分(PC-1)来重新划分图象的灰阶。

·Hist.Match:将灰阶图象与第一主成分(PC-1)进行直方图匹配。

·Multiply:将灰阶图象划分为0~1的取值范围,与第一主成分(PC-1)的乘法运算。

·None:以输入的灰阶图象来代替第一主成分。

B 色彩变换

应用色彩变换时,有两种选择

·Intensity:将输入灰阶图象重新定阶到I(Intensity-亮度)的任意数值范围,然后代替I。

·Saturation:将输入灰阶图象重新定阶到S(Saturation-饱和度)的任意数值范围,然后代替S。

C 乘积变换

(8)确定Data Type(输出数据类型);

(9)确定Layer Selection(输出图象波段组合);

(10)确定Output Options输出图象选项。选择Lgnore Zero Stats,可以忽略像素值为0的像素。

(11)单击OK按钮执行操作。

三、例子

(一)、分辨率融合

(二)、传感器融合

Sensor merge 对话框

对于第一种方法也可以用这种方法来检查。

医学影像学的发展与现状

医学影像发展与医学影像技术学的形成 医学影像是临床医学中发展最快的学科之一,它发展速度快,更新周期短,每1~2年就出现一项新技术。显著的特点是从疾病的形态学诊断发展到疾病的功能诊断,从大体形态诊断发展到分子水平诊断,以及定性和定量的诊断,从诊断的临床辅助科室发展到临床治疗的介入科室。以致在医学影像学的基础上形成了医学影像诊断学、医学影像治疗学和医学影像技术学等亚学科。 1895年德国物理学家伦琴发现X线,并把X线用于人体检查,开创了放射医学的先河。在此后的100多年内X线检查占着主导地位,幷广泛地用于临床,使得放射医学逐渐形成一个独立的学科,对临床疾病的诊断起着举足轻重的作用。当时的放射科医生来源有二,在大的教学医院的主要是医疗系毕业的学生,中小医院主要是放射中专班毕业的学生。此时放射科技术人员,在大的教学医院有解放前教会医院培养的技术人员和自己培养的学徒,中小医院的放射科诊断和技术没分家。在20世纪60~80年代,放射科医生基本上是正规学校毕业的学生,而技术人员则是招工顶职、复员军人、护士改行,或者是初高毕业生。 随着科学技术的发展,医学影像发展很快,新的医学影像设备不断涌现,新的影像技术不断产生,医学影像检查和治疗在临床的作用越来越大,应用范围不断扩展。对人员的要求越来越高。20世纪60年代出现影像增强技术,使得放射科以上在黑暗房间的检查彻底解放出来;20世纪70年代出现CT成像技术,该设备以高的密度分辨率使得放射科结束只能观察人体的骨骼和骷髅的历史,还能够观察人体的软组织病变,解决了传统X线难以解决的诊断难题,尤其是三维成像技术,为临床疾病的诊断和治疗开辟广阔的前景;20世纪80年代出现MR 成像技术,它以更高的软组织分辨率和多方位多参数的检查技术,能够观察人体更加细微的病变,解决普通X现、CT和心血管造影难以解决的问题,同时具有无辐射损伤和无创伤的特点,在人体的功能成像和分子水平有其独特的优势;20世纪80年代出现介入放射学,它通过微小的创伤解决了临床上某些疾病难以处理或创伤大的问题,使得放射科成为继内科和外科后的第三大治疗学科;20世纪80~90年代出现CR和DR成像技术,使得放射科进入全面的数字化X线检查,在成像质量、工作效率、图像保存和劳动强度等方面显示极大的优越性;20世纪90年代出现激光打印技术,使放射科技术人员彻底告别暗室手工冲洗胶片的历史,提高了工作效率,降低了劳动强度,保证了图像质量,幷实现了数字化图像的传输和打印;超声技术近来发展越来越快,临床应用范围越来越广,它以无创伤、效率高、诊断准确而受到广大的临床科室亲眯;核素扫描技术近年来发展很快,临床应用范围也不断扩大,它是真正意义上的功能水平和分子水平的成像。20世纪90年代后出现了PACS,实现了医学影像的大融合,将各种数字化的图像串联起来,可进行数字化图像的远程传输和远程会诊,并与医院的HIS、CIS、RIS等进行联网,实现了数字化医院。 由于医学影像设备的不断发展,医学影像技术的日新月异,医学影像学的CT、MR、介入、普放,超声和核医学等亚学科逐渐建立,医学影像技术学科也逐渐形成。 医学影像学的发展经历了三个阶段;X线的临床应用,放射学的形成,医学影像学的形成。总体走向是建立现代医学影像学:从大体形态学向分子、生理、功能代谢/基因成像过渡;从胶片采集、显示向数字采集/电子传输发展;对比剂从一般性组织增强向组织/疾病特异性增强发展。;介入治疗,以及与内镜、微创治疗/外科的融合、发展。具体走向是:影像信息更加具有敏感性、直观性、特异性、早期性;图像分析由定性向定量发展:由显示诊断信息向提供手术路径方案发展;图像采集与显示:由二维模拟向三维全数字化发展;图像存储由胶片硬拷贝向软拷贝无胶片化,乃至图像传输网络化发展;从单一图像技术向综合图像技术发展

遥感影像融合处理方法

遥感影像融合处理方法 摘要:本文介绍了遥感影像数据融合技术,并给出了融合的一些基本理论、融合处理一般步骤以及常用融合处理方法,最后简要描述了融合评价的方式方法等。 关键词:遥感影像融合融合评价 1、前言 将高分辨率的全色遥感影像和低分辨率的多光谱遥感影像进行融合,获得色彩信息丰富且分辨率高的遥感融合影像的过程,成为遥感影像融合。全色影像一般具有较高空间分辨率,多光谱影像光谱信息较丰富,为提高多光谱影像的空间分辨率,可以将全色影像融合进多光谱影像。通过影像融合既可以提高多光谱影像空间分辨率,又能保留其多光谱特性。 2、遥感影像融合一般步骤 遥感影像信息融合一般流程主要分为两个阶段:图像预处理,图像融合变换。 图像预处理主要包括:几何校正及影像配准。几何校正主要在于去除透视收缩、阴影等地形因素以及卫星扰动、天气变化、大气散射等随机因素对成像结果一致性的影响;影像配准的目的在于消除由不同传感器得到的影像在拍摄角度、时相及分辨率等方面的差异。 3 常用融合方式 3.1 IHS融合 IHS(亮度I、色度H、饱和度S)变换就是将影像从RGB彩色空间变换到IHS空间来实现影像融合的一种方法。由光学、热红外和雷达(微波)等方式得到的不同波段遥感数据,合成的RGB颜色空间是一个对物体颜色属性描述系统,而IHS色度空间提取出物体的亮度、色度、饱和度,它们分别对应每个波段的平均辐射强度、数据向量和的方向及其等量数据的大小。RGB颜色空间和IHS 色度空间有着精确的转换关系。IHS变换法只能用三个波段的多光谱影像融合和全色影像融合。 3.2 小波融合 小波变换,基于遥感影像的频域分析进行的,由于同一地区不同类型的影像,低频部分差别不大,而高频部分相差很大,通过小波变换对变换区实现分频,在分频基础上进行遥感影像的融合,常用于雷达影像SAR与TM影像的融合。

医学影像技术名词解释

PACS系统是Picture Archiving and Communication Systems的缩写,意为影像归档和通信系统。它是应用在医院影像科室的系统,主要的任务就是把日常产生的各种医学影像(包括核磁,CT,超声,各种X 光机,各种红外仪、显微仪等设备产生的图像)通过各种接口(模拟,DICOM,网络)以数字化的方式海量保存起来,当需要的时候在一定的授权下能够很快的调回使用,同时增加一些辅助诊断管理功能。它在各种影像设备间传输数据和组织存储数据具有重要作用。 MRI也就是磁共振成像,英文全称是:Magnetic Resonance Imaging。在这项技术诞生之初曾被称为核磁共振成像,到了20世纪80年代初,作为医学新技术的NMR成像(NMR imaging)一词越来越为公 众所熟悉。随着大磁体的安装,有人开始担心字母“N”可能会对磁共 振成像的发展产生负面影响。另外,“nuclear”一词还容易使医院工作人员对磁共振室产生另一个核医学科的联想。因此,为了突出这一检查技术不产生电离辐射的优点,同时与使用放射性元素的核医学相区别,放射学家和设备制造商均同意把“核磁共振成像术”简称为“磁共振成像(MRI)”。

电子计算机X射线断层扫描简称X—CT或CT,就是利用x射线对人体进行断层扫描后,由探测器收得的模拟信号再变成数字信号,经电子计算机计算出每一个像素的衰减系数,再重建图像,而能显示出人体各部位的断层结构的装置。它以断层的图像形式,较清晰地显示人体组织的细微差别。彻底解决了内部重叠显示问题,而且能将人体各种组织对x线的吸收系数以相当精确的数字表示出来,因而对软组织中的病变也能正确诊断。CT要区分不同的密度组织,则用C T 值来表示,其范围取—1000至十1000,以空气为—1000,水为0,骨骼为十1000 超声(Ultrasound,简称US)医学是声学、医学、光学及电子学相结合的学科。凡研究高于可听声频率的声学技术在医学领域中的应用即超声医学。包括超声诊断学、超声治疗学和生物医学超声工程,所以超声医学具有医、理、工三结合的特点,涉及的内容广泛,在预防、诊断、治疗疾病中有很高的价值。

谈医学影像的融合(一)

谈医学影像的融合(一) 科技的进步带动了现代医学的发展,计算机技术的广泛应用,又进一步推动了影像医学向前迈进。各类检查仪器的性能不断地提高,功能不断地完善,并且随着图像存档和传输系统(PACS)的应用,更建立了图像信息存储及传输的新的模式。而医学影像的融合,作为图像后处理技术的完善和更新,将会成为影像学领域新的研究热点,同时也将是医学影像学新的发展方向。所谓医学影像的融合,就是影像信息的融合,是信息融合技术在医学影像学领域的应用;即利用计算机技术,将各种影像学检查所得到的图像信息进行数字化综合处理,将多源数据协同应用,进行空间配准后,产生一种全新的信息影像,以获得研究对象的一致性描述,同时融合了各种检查的优势,从而达到计算机辅助诊断的目的〔1,2〕。本文将从医学影像融合的必要性、可行性、关键技术、临床价值及应用前景5个方面进行探讨。 1医学影像融合的必要性 1.1影像的融合是技术更新的需要随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。 1.2影像的融合弥补了单项检查成像的不足目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。 1.3影像的融合是临床的需要影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。 2医学影像融合的可行性 2.1影像学各项检查存在着共性和互补性为影像的融合奠定了基础尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT 检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT 检查则可以弥补功能测定的不足。 2.2医学影像的数字化技术的应用为影像的融合提供了方法和手段现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。 3医学影像融合的关键技术 信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织

ENVI中的融合方法

ENVI下的图像融合方法 图像融合是将低空间分辨率的多光谱影像或高光谱数据与高空间分辨率的单波段影像重采样生成成一副高分辨率多光谱影像遥感的图像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。图像融合的关键是融合前两幅图像的精确配准以及处理过程中融合方法的选择。只有将两幅融合图像进行精确配准,才可能得到满意的结果。对于融合方法的选择,取决于被融合图像的特征以及融合目的。 ENVI中提供融合方法有: ?HSV变换 ?Brovey变换 这两种方法要求数据具有地理参考或者具有相同的尺寸大小。RGB输入波段必须为无符号8bit数据或者从打开的彩色Display中选择。 这两种操作方法基本类似,下面介绍Brovey变换操作过程。 (1)打开融合的两个文件,将低分辨率多光谱图像显示在Display中。 (2)选择主菜单-> Transform -> Image Sharpening->Color Normalized (Brovey),在Select Input RGB对话框中,有两种选择方式:从可用波段列表中和从Display窗口中,前者要求波段必须为无符号8bit。 (3)选择Display窗口中选择RGB,单击OK。 (4) Color Normalized (Brovey)输出面板中,选择重采样方式和输入文件路径及文件名,点击OK输出结果。 对于多光谱影像,ENVI利用以下融合技术: ?Gram-Schmidt ?主成分(PC)变换 ?color normalized (CN)变换 ?Pan sharpening 这四种方法中,Gram-Schmidt法能保持融合前后影像波谱信息的一致性,是一种高保真的遥感影像融合方法;color normalized (CN)变换要求数据具有中心波长和FWHM,;Pansharpening融合方法需要在ENVI Zoom中启动,比较适合高分辨率影像,如QuickBird、IKONOS等。 这四种方式操作基本类似,下面介绍参数相对较多的Gram-Schmidt操作过程。 (1)打开融合的两个文件。

遥感图像融合方法比较

1 绪论 1.1研究目的及意义 20世纪90年代中后期以后,搭载许多新型传感器的卫星相继升空,使得同一地区的遥感数据影像数目不断增多。如何有效地利用这些不同时相、不同传感器、不同分辨率的遥感数据便成为了遥感工作者研究的瓶颈问题,然而解决这一问题的关键技术就是遥感影像数据融合。 遥感数据融合就是对多个遥感器的图像数据和其他信息的处理过程,它着重于把那些在空间或时间上冗余或互补的多源数据,按一定法则(算法)进行处理,获得比单一数据更精确、更丰富的信息,生成一幅具有新的空间、波谱和时间特征的合成图像。 遥感是不同空间、时间、波谱、辐射分辨率提供电磁波谱不同谱段的数据。由于成像原理不同和技术条件的限制,任何一个单一遥感器的遥感数据都不能全面的反映目标对象的特征,也就是有一定的应用范围和局限性。各类非遥感数据也有它自身的特点和局限性。影像数据融合技术能够实现数据之间的优势互补,也能实现遥感数据与地理数据的有机结合。数据融合技术是一门新兴的技术,具有十分广阔的应用前景。所以,研究遥感影像数据融合方法是非常必要的。 1.2研究现状及发展的趋势 1.2.1研究现状 20世纪美国学者提出“多传感器信息融合”的概念认为在多源遥感影像数据中能够提取出比单一遥感影像更丰富、更有效、更可靠的信息。之后由于军事方面的要求,使得遥感影像数据融合技术得到了很大的发展,美、英,德等国家已经研制出了实用的遥感数据融合处理的系统和软件,同时进行了商业应用。 1)、融合结构 融合的结构可分为两类:集中式和分布式。集中式融合结构:各传感器的观测数据直接被送到中心,进行融合处理,用于关联、跟踪、识别等。分布式融合结构:每个传感器独立完成关联、识别、跟踪,然后由融合中心完成配准、多源关联的融合。 2)、融合的层次 图像融合可分为:像元级融合、特征级融合和决策级融合。 像元级融合是最低级的信息融合,可以在像素或分辨单位上进行,又叫做数据级融合。它是对空间配准的遥感影像数据直接融合,然后对融合的数据进行特征提取和属性说明。 特征级融合是由各个数据源中提取特征信息进行综合分析和处理的过程,是中间层次的融合。特征级融合分为目标状态信息融合和目标特征融合。 决策级融合是在信息表示的最高层次上进行融合处理。首先将不同传感器观测同一目标获得的数据进行预处理、特征提取、识别,以建立对所观测目标的初步理论,然后通过相关处理、决策级融合判别,最终获得联合推断结果,从而为决策提供依据。

ERDAS影像融合操作流程

影象融合流程 影像融合在影象解译模块和雷达影象处理模块中都有,但是雷达模块中的处理效果要相对好一些,下面就两个不同模块中的融合处理流程进行分别介绍。 一、影象解译模块(Interpreter) 1)单击,在弹出的Interpreter菜单中选则Spatial Enhancement (空间增强)弹出Spatial Enhancement菜单,再选择Resolution Merge(分辨率融合)选项。 弹出对话框如下

在Resolution Merge对话框中需要设置下列参数 (1)确定高分辨率输入文件(high Resolution input file); (2)选择影象波段; (3)确定多光谱输入文件(multispectral input file); (4)定义输出文件; (5)选择融合方法。在分辨率变换中,erdas提供了三种融合方法Principal Component(主成分变换法)、Multipalcative(乘积变换)、Brovey transform(比值变换)。其图象分别如下: Principal Component(主成分变换法)

Multipalcative(乘积变换) Brovey transform(比值变换) (6)选择重采样方法。系统提供了两种重采样方法Nearest Neighbor(邻近像元法)、Bilinbear Interpolation(二次线形内插)和Cubic Convolution(立方卷积)。其中 以Cubic Convolution方法最为平滑。 (7)确定Output Options输出图象选项。选择Lgnore Zero Stats,可以忽略像素值为

多模态医学图像的融合研究

第22卷 第2期2004年6月 广西师范大学学报(自然科学版)JOU RNAL O F GUAN GX INORM AL UN I V ERS ITY V o l .22 N o.2June 2004收稿日期:2004203218 基金项目:广西教育厅科研基金资助项目 作者简介:王修信(1963—),男,广西桂林人,广西师范大学副教授,硕士. 多模态医学图像的融合研究 王修信1,张大力2 (11广西师范大学物理与信息工程学院,广西桂林541004;21清华大学自动化系,北京100084) 摘 要:图像融合作为一种有效的信息融合的技术,已广泛用于医学图像、军事、遥感、机器视觉等领域.基于 小波变换的图像融合是一种新的多尺度分解像素级融合方法,利用小波变换分别对CT ,M R I 医学图像进行 分解处理,按照融合规则构造融合图像对应的各小波系数,再根据融合图像的各小波系数重构融合图像,重构 后的融合图像完好地显示源图像各自的信息.实验图像使用互信息量化判据来评价融合效果,结果表明小波 变换比传统的像素级加权平均融合算法效果更好. 关键词:医学图像;融合;小波变换 中图分类号:T P 391141 文献标识码:A 文章编号:100126600(2004)022******* 医学影像学为临床提供了超声图像、X 射线、 电子计算机体层扫描(CT )、磁共振成像(M R I )、数字减影成像(D SA )、正电子发射体层扫描(PET )、单光子发射断层成像(SPECT )等多种模态影像信息[1~3].不同的医学影像可以提供人体相关脏器和组织的不同信息,如CT 和M R I 提供解剖结构信息,而PET 和 SPECT 提供功能信息 .在实际临床应用中,单一模态图像往往不能提供医生所需要的足够信息,通常需要将不同模态图像融合在一起,得到更丰富的信息以便了解病变组织或器官的综合信息,从而做出准确的诊断或制订出合适的治疗方案.例如,CT 利用各种组织器官对X 射线吸收系数的不同和计算机断层技术对人体进行成像,它对于骨、软组织和血管的组合成像效果很好,而对软组织则近乎无能为力.M R I 利用水质子信息成像,对软组织和血管的显像灵敏度比CT 高得多,但对骨组织则几乎不显像.由此可见不同成像技术对人体同一解剖结构所得到的形态和功能信息是互为差异、互为补充的,因此对不同影像信息进行适当的集成便成为临床医生诊断和治疗疾病的迫切需要. 小波变换具有多分辨率分析特点,可聚焦到分析对象的任意细节,特别适合图像信号非平稳信源的处理[4].基于小波变换的图像融合是一种新的多尺度分解像素级融合方法,已有的应用研究主要是热图像和可视图像的融合[5,6].本文利用小波变换分别对CT ,M R I 医学图像进行分解处理,按照融合规则构造融合图像对应的各小波系数,再根据融合图像的各小波系数重构融合图像,重构后的融合图像完好地显示源图像各自的信息.实验图像使用互信息量化判据来评价融合效果,结果表明小波变换比传统的像素级加权平均融合算法效果更好. 1 基于小波变换的图像融合原理 小波变换是用一族小波函数系去逼近一信号,而小波函数系是通过一个基本小波函数在不同尺度下经伸缩和平移构成[7]. 7a ,b (x )=1?a ? 7x -b a , a ,b ∈R ,a ≠0其中a 为伸缩因子,b 为平移因子. 对于二维情况,设V 2j (j ∈Z )是空间L 2(R 2)的一个可分离多分辨率分析,对每一个j (j ∈Z )来说,尺度

三种图像融合方法实际操作与分析

摘要:介绍了遥感影像三种常用的图像融合方式。进行实验,对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像,简要分析比较三种图像融合方式的各自特点,择出本次实验的最佳融合方式。 关键字:遥感影像;图像融合;主成分变换;乘积变换;比值变换;ERDAS IMAGINE 1. 引言 由于技术条件的限制和工作原理的不同,任何来自单一传感器的信息都只能反映目标的某一个或几个方面的特征,而不能反应出全部特征。因此,与单源遥感影像数据相比,多源遥感影像数据既具有重要的互补性,也存在冗余性。为了能更准确地识别目标,必须把各具特色的多源遥感数据相互结合起来,利用融合技术,针对性地去除无用信息,消除冗余,大幅度减少数据处理量,提高数据处理效率;同时,必须将海量多源数据中的有用信息集中起来,融合在一起,从多源数据中提取比单源数据更丰富、更可靠、更有用的信息,进行各种信息特征的互补,发挥各自的优势,充分发挥遥感技术的作用。[1] 在多源遥感图像融合中,针对同一对象不同的融合方法可以得到不同的融合结果,即可以得到不同的融合图像。高空间分辨率遥感影像和高光谱遥感影像的融合旨在生成具有高空间分辨率和高光谱分辨率特性的遥感影像,融合方法的选择取决于融合影像的应用,但迄今还没有普适的融合算法能够满足所有的应用目的,这也意味着融合影像质量评价应该与具体应用相联系。[2] 此次融合操作实验是用三种不同的融合方式(主成分变换融合,乘积变换融合,比值变换融合),对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多

光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像。 2. 源文件 1 、 imagerycolor.tif ,SPOT图像,分辨率10米,有红、绿、两个红外共四个波段。 2 、imagery-5m.tif ,SPOT图像,分辨率5米。 3. 软件选择 在常用的四种遥感图像处理软件中,PCI适合用于影像制图,ENVI在针对像元处理的信息提取中功能最强大,ER Mapper对于处理高分辨率影像效果较好,而ERDAS IMAGINE的数据融合效果最好。[3] ERDAS IMAGINE是美国Leica公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。 2012年5月1日,鹰图发布最新版本的ERDAS IMAGINE,所有ERDAS 2011软件用户都可以从官方网站上下载最新版本 ERDAS IMAGINE 11.0.5. 新版本包括之前2011服务包的一些改变。相比之前的版本,新版本增加了更多ERDAS IMAGINE和GeoMedia之间的在线联接、提供了更为丰富的图像和GIS产品。用户使用一个单一的产品,就可以轻易地把两个产品结合起来构建一个更大、更清

医学图像融合技术及运用

医学图像融合技术及使用 1医学图像融合技术 1.1图像融合的内涵图像融合是指将多源图像传感器所采集到的关于同一目标的图像经过一定的图像处理,提取各自的有用信息,最后综合 成同一图像以供观察或进一步处理。从信息论的角度讲,融合后的图像将比组成它的各个子图像具有更优越的性能,综合整体信息大于各部分信息之和,也就是说,融合的结果应该比任何一个输入信息源包含更多 的有用信息,即1+1>2,这就是图像信息的融合2。 1.2医学图像融合的分类一个完整的医学图像融合系统应该是各种成像设备、处理设备与融合软件的总和。因为融合图像的应用目的不同,决定了医学图像融合具有各种各样的形式。根据被融合图像成像方式 不同,可分为同类方式融合和交互方式融合。同类方式融合(也称单模 融合,mono2mo2dality)是指相同成像方式的图像融合,如SPECT图像间融合,MR图像间融合等;交互方式融合(也成多模融合,multi2mo2dality)是指不同成像方式的图像融合,如SPECT与MR图像融合,PET与CT图像融合等。按融合对象不同,可分为单样本时间融合、单样本空间融合以及模板融合。单样本时间融合:跟踪某一病人在一段时间内对同一脏 器所做的同种检查图像实行融合,可用于对比以跟踪病情发展和确定该检查对该疾病的特异性;单样本空间融合:将某个病人在同一时间内(临床上将一周左右的时间视为同时)对同一脏器所做几种检查的图像 实行融合,有助于综合利用多种信息,对病情做出更确切的诊断;模板融合:是将病人的检查图像与电子图谱或模板图像实行融合,有助于研究某些疾病的诊断标准。另外,还能够将图像融合分为短期图像融合(如 跟踪肿瘤的发展情况时在1~3个月内做的检查图像实行融合)与长期图像融合(如治疗效果评估时实行的治疗后2~3年的图像与治疗后当时的图像实行融合)。综上所述,依据不同的分类原则,医学图像融合有多种方式,在实际应用中,临床医师还能够根据各种不同的诊断与治疗目的 持续设计出更多的融合方式。

医学图像融合技术及运用

医学图像融合技术及运用 1医学图像融合技术 图像融合的内涵图像融合是指将多源图像传感器所采集到的关于同一目标的图像经过一定的图像处理,提取各自的有用信息,最后综合成同一图像以供观察或进一步处理。从信息论的角度讲,融合后的图像将比组成它的各个子图像具有更优越的性能,综合整体信息大于各部分信息之和,也就是说,融合的结果应该比任何一个输入信息源包含更多的有用信息,即1+1>2,这就是图像信息的融合[2]。 医学图像融合的分类一个完整的医学图像融合系统应该是各种成像设备、处理设备与融合软件的总和。由于融合图像的应用目的不同,决定了医学图像融合具有各种各样的形式。根据被融合图像成像方式不同,可分为同类方式融合和交互方式融合。同类方式融合是指相同成像方式的图像融合,如SPECT图像间融合,MR图像间融合等;交互方

式融合是指不同成像方式的图像融合,如SPECT与MR图像融合,PET与CT图像融合等。按融合对象不同,可分为单样本时间融合、单样本空间融合以及模板融合。单样本时间融合:跟踪某一病人在一段时间内对同一脏器所做的同种检查图像进行融合,可用于对比以跟踪病情发展和确定该检查对该疾病 的特异性;单样本空间融合:将某个病人在 同一时间内对同一脏器所做几种检查的图 像进行融合,有助于综合利用多种信息,对 病情做出更确切的诊断;模板融合:是将病 人的检查图像与电子图谱或模板图像进行 融合,有助于研究某些疾病的诊断标准。另外,还可以将图像融合分为短期图像融合与长期图像融合。综上所述,依据不同的分类原则,医学图像融合有多种方式,在实际应 用中,临床医师还可以根据各种不同的诊断与治疗目的不断设计出更多的融合方式。 医学图像融合的主要技术方法与步骤 医学图像融合的过程是一个渐进的过程,不同的融合方法有各自具体的操作和处理,但是,不管应用何种技术方法,图像融合一般

像素级图像融合

毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号: 2 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞.................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

医学影像学的发展与现状

医学影像发展与医学影像技术学的形成 ◆医学影像是临床医学中发展最快的学科之一,它发展速度快,更新周期短,每1~2年就出现 一项新技术。显著的特点是从疾病的形态学诊断发展到疾病的功能诊断,从大体形态诊断发展到分子水平诊断,以及定性和定量的诊断,从诊断的临床辅助科室发展到临床治疗的介入科室。以致在医学影像学的基础上形成了医学影像诊断学、医学影像治疗学和医学影像技术学等亚学科。 ◆1895年德国物理学家伦琴发现X线,并把X线用于人体检查,开创了放射医学的先河。在 此后的100多年内X线检查占着主导地位,幷广泛地用于临床,使得放射医学逐渐形成一个独立的学科,对临床疾病的诊断起着举足轻重的作用。当时的放射科医生来源有二,在大的教学医院的主要是医疗系毕业的学生,中小医院主要是放射中专班毕业的学生。此时放射科技术人员,在大的教学医院有解放前教会医院培养的技术人员和自己培养的学徒,中小医院的放射科诊断和技术没分家。在20世纪60~80年代,放射科医生基本上是正规学校毕业的学生,而技术人员则是招工顶职、复员军人、护士改行,或者是初高毕业生。 ◆随着科学技术的发展,医学影像发展很快,新的医学影像设备不断涌现,新的影像技术不断 产生,医学影像检查和治疗在临床的作用越来越大,应用范围不断扩展。对人员的要求越来越高。20世纪60年代出现影像增强技术,使得放射科以上在黑暗房间的检查彻底解放出来; 20世纪70年代出现CT成像技术,该设备以高的密度分辨率使得放射科结束只能观察人体的骨骼和骷髅的历史,还能够观察人体的软组织病变,解决了传统X线难以解决的诊断难题,尤其是三维成像技术,为临床疾病的诊断和治疗开辟广阔的前景;20世纪80年代出现MR成像技术,它以更高的软组织分辨率和多方位多参数的检查技术,能够观察人体更加细微的病变,解决普通X现、CT和心血管造影难以解决的问题,同时具有无辐射损伤和无创伤的特点,在人体的功能成像和分子水平有其独特的优势;20世纪80年代出现介入放射学,它通过微小的创伤解决了临床上某些疾病难以处理或创伤大的问题,使得放射科成为继内科和外科后的第三大治疗学科;20世纪80~90年代出现CR和DR成像技术,使得放射科进入全面的数字化X线检查,在成像质量、工作效率、图像保存和劳动强度等方面显示极大的优越性;20世纪90年代出现激光打印技术,使放射科技术人员彻底告别暗室手工冲洗胶片的历史,提高了工作效率,降低了劳动强度,保证了图像质量,幷实现了数字化图像的传输和打印;超声技术近来发展越来越快,临床应用范围越来越广,它以无创伤、效率高、诊断准确而受到广大的临床科室亲眯;核素扫描技术近年来发展很快,临床应用范围也不断扩

谈医学影像的融合

科技的进步带动了现代医学的发展,计算机技术的广泛应用,又进一步推动了影像医学向前迈进。各类检查仪器的性能不断地提高,功能不断地完善,并且随着图像存档和传输系统(PACS)的应用,更建立了图像信息存储及传输的新的模式。而医学影像的融合,作为图像后处理技术的完善和更新,将会成为影像学领域新的研究热点,同时也将是医学影像学新的发展方向。所谓医学影像的融合,就是影像信息的融合,是信息融合技术在医学影像学领域的应用;即利用计算机技术,将各种影像学检查所得到的图像信息进行数字化综合处理,将多源数据协同应用,进行空间配准后,产生一种全新的信息影像,以获得研究对象的一致性描述,同时融合了各种检查的优势,从而达到计算机辅助诊断的目的[1,2]。本文将从医学影像融合的必要性、可行性、关键技术、临床价值及应用前景5个方面进行探讨。 1医学影像融合的必要性 1.1影像的融合是技术更新的需要随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。 1.2影像的融合弥补了单项检查成像的不足目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。 1.3影像的融合是临床的需要影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。2医学影像融合的可行性 2.1影像学各项检查存在着共性和互补性为影像的融合奠定了基础尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT检查则可以弥补功能测定的不足。 2.2医学影像的数字化技术的应用为影像的融合提供了方法和手段现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。 [!--empirenews.page--] 3医学影像融合的关键技术信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织脏器在空间描述上的一致性。它是影像融合的基本。(2)影像融合首先要实现相关图像的对位,也就是点到点的一一对应。而图像分辨率越高,图像细节越多,实现对位就越困难。因而,在进行高分辨率图像(如CT图像和MRI图像)的对位时,目前借助于外标记。(3)建立图像数据库用以完成典型病例、典型图像数据的存档和管理以及信息的提取。它是融合的数据支持。(4)数据理解在于综合处理和应用各种成像设备所得信息,以获得新的有助于临床诊断的信息[1]。图像融合的方法主要有4种:(1)界标配对:界标作为两种图像相对应的融合点且决定融合的

ERDAS 影像融合方法汇总(chimneyqin)

ERDAS 影像融合方法汇总 影像融合是指将多源信道所采集到的关于同一目标的影像数据经过影像处理和计算机技术等,最大限度的提取各自信道中的有利信息,最后综合成高质量的影像,以提高影像信息的利用率、改善计算机解译精度和可靠性、提升原始影像的空间分辨率和光谱分辨率,利于监测。 ERDAS IMAGINE 提供多种影像融合方法,且支持带RPC模型的影像融合处理。 1、 (1 4个波段(蓝/ 像也为 Step4: 利用低通滤波器(5×5)对多光谱影像进行滤波处理,输出多光谱滤波影像。 Step5: 利用相减法对全色锐化影像、全色滤波影像进行相减处理,并将全色锐化影像按照权重融合到多光谱滤波影像各个波段,输出新多光谱影像。 (2)参数说明

Input Sensor Type 待融合影像传感器类型,分为Quickbird、IKONOS、Format三种传感器。输入影像要求:多光谱和全色分辨率比为4:1、同时获取、为同一个传感器,全色为单波段,多光谱为4波段。 Sharpening Filter Center Value3×3锐化卷积窗口中心值,其他值都为-1,默认值根据传感器变化,范围值为11、14、17、20、23、1000,小的中心值会产生更好的锐化效果。一般来说,大分辨率影像锐化程度要求低,小分辨率影像锐化程度要求高,若全色影像已经经过锐化处理,此处选择1000。 Pan Contribution Weight融合时全色图像所占的比重(权重),范围为0.7-1.3,默认值根据传感器变化,小的锐化值会产生更好的锐化效果。 Create image of subset area根据子区的坐标来定义融合影像范围。 Create image of full area输出所有区域的融合影像,这个范围是全色和多光谱影像的交集(intersect)。该项勾选时才可设置融合影像成果名称和存放路径。 Null Value 设置输出图像空值的数值。 Mask input Null Values 勾选该项时,可设置输出图像空值。

刍议影像融合推动医学影像领域发展

刍议影像融合推动医学影像领域发展 科技的进步不仅是带动了工商业的发展,同时也推动了医学发展,计算机技术被广泛用于影像医学中。现在医学上的各种检查仪器越来越精密,功能更加完善,图像信息的存储和传输为医学的研究和诊断提供了更好的依据。医学影像的融合就是影像信息的融合,是借助计算机技术辅助诊断病情的。医学影像的融合是医学影像学新的发展方向,本文对医学影像的融合进行分析,探讨影像融合对医学影像发展的影响和作用。 标签:医学影像;影像融合;诊断 1.影像融合 医学影像融合其实就是利用计算机技术,将影像信息进行融合。其中包括将图像信息进行数字化处理,再进行数据协同和匹配,得到一个新的影像信息来获得对病情更好的观测,以计算机为辅助手段,使诊断更加准确、具象。 1.1影像融合的发展趋势 医学影像学是近年来发展的比较快的临床学科之一,其中的超声、放射等早就被应用到医学的诊断上,但是,面对不同病人的各种症状,单一的影像检查已经不足以作为诊断的依据。因此,影像融合越来越成为医学中的焦点,人们更希望通过多重的影像检查、比较和分析,使检查结果更准确,更好的辅助临床疾病的治疗。影响融合的发展提高了医学诊断的综合水平,对于推动影像学的发展有重要的意义。而且,医学影像的融合不仅可以对诊断锦上添花,还可以为治疗提供帮助。例如:X线、超声、聚焦和磁共振结合在一起进行治疗。影响融合的发展是势在必行的,而且将推动医学影像学的更新与发展。 1.2影像融合的必要性 (1)医学技术的更新与发展需要影响融合 计算机技术被广泛应用于各个领域中,这也包括医学影像学。随着新技术的发展和实施,图像后期处理技术也需要不断的提高,影像的融合技术就是后处理技术的新发展。前后技术的同步才能更好的将影像学的好处发挥出来。 (2)影像融合使检查更全面准确 影像学的检查手段是很多的,从B超到射线再到CT等,每项检查都是有针对性的,但是正因为这样又有一定的局限性。每项检查都有单一局限性,只能准确的体现一方面的数据值,不利于诊断病情。影像的融合弥补了这一缺陷。 (3)临床诊断需要影像融合

利用ENVI软件进行遥感图像的融合和增强实习报告

遥感图像处理实习报告 实验内容:影像融合与增强 班级:测绘1102班 学号:13 姓名: 指导老师:陈晓宁、黄远程、竞霞、史晓亮 西安科技大学 测绘科学与技术学院 二零一三年一月 实习三影像融合与增强

一、实习内容: 1.掌握ENVI中各种影像融合方法,并比较各方法的优缺点; 2.熟悉ENVI图像增强操作; 3.本实习的数据源为上节已经过校正的资源三号多光谱和全色影像。 二、实习目的: 1.了解和认识各种图像融合方法的原理、内容及要点; 2.熟悉、熟练操作ENVI软件中各种图像融合的方法、步骤并学会加以比较; 3.学习利用ENVI软件进行各种图像增强处理操作; 4.学会定性、定量分析比较图像融合的差异。 三、实习步骤: 1.图像融合: 三波段融合: HSV和Color Normalized (Brovey)变换: 1)从ENVI主菜单中,选择File → Open Image File,分别加载校正后的资源三号多光谱与全色影像到可用波段列表Available Bands List中; 2)选择多光谱3,2,1波段(可以根据需要选择)对应R,G,B,点击Load RGB将多光谱影像加载到显示窗口display#1; 3)在ENVI的主菜单选择Transform → Image Sharpening → HSV; 4)在Select Input RGB Input Bands对话框中,选择Display #1,然后点击OK。 5)从High Resolution Input File对话框中选择全色影像,点击OK。 6)从HSV Sharpening Parameters对话框中,选择重采样方法,并输入输出路径和文件名,点击OK。即可完成HSV变换融合;

相关文档
最新文档