多元遥感影像数据融合研究

多元遥感影像数据融合研究
多元遥感影像数据融合研究

(完整版)信息融合算法

信息融合算法 1 概述 信息融合又称数据融合,是对多种信息的获取、表示及其内在联系进行综合处理和优化的技术。经过融合后的传感器信息具有以下特征:信息冗余性、信息互补性、信息实时性、信息获取的低成本性。 1、组合:由多个传感器组合成平行或互补方式来获得多组数据输出的一种处理方法,是一种最基本的方式,涉及的问题有输出方式的协调、综合以及传感器的选择。在硬件这一级上应用。 2、综合:信息优化处理中的一种获得明确信息的有效方法。 例:在虚拟现实技术中,使用两个分开设置的摄像机同时拍摄到一个物体的不同侧面的两幅图像,综合这两幅图像可以复原出一个准确的有立体感的物体的图像。 3、融合:当将传感器数据组之间进行相关或将传感器数据与系统内部的知识模型进行相关,而产生信息的一个新的表达式。 4、相关:通过处理传感器信息获得某些结果,不仅需要单项信息处理,而且需要通过相关来进行处理,获悉传感器数据组之间的关系,从而得到正确信息,剔除无用和错误的信息。 相关处理的目的:对识别、预测、学习和记忆等过程的信息进行综合和优化。

2 技术发展现状 信息融合技术的方法,概括起来分为下面几种: 1)组合:由多个传感器组合成平行或互补方式来获得多组数据 输出的一种处理方法,是一种最基本的方式,涉及的问题有 输出方式的协调、综合以及传感器的选择。在硬件这一级上 应用。 2)综合:信息优化处理中的一种获得明确信息的有效方法。例: 在虚拟现实技术中,使用两个分开设置的摄像机同时拍摄到 一个物体的不同侧面的两幅图像,综合这两幅图像可以复原 出一个准确的有立体感的物体的图像。 3)融合:当将传感器数据组之间进行相关或将传感器数据与系 统内部的知识模型进行相关,而产生信息的一个新的表达式。 4)相关:通过处理传感器信息获得某些结果,不仅需要单项信 息处理,而且需要通过相关来进行处理,获悉传感器数据组 之间的关系,从而得到正确信息,剔除无用和错误的信息。 相关处理的目的:对识别、预测、学习和记忆等过程的信息 进行综合和优化。 3 算法描述 3.1 Bayes融合 Bayes融合是融合静态环境中多传感器低层数据的一种常用方法。

数据融合

多传感器数据融合技术及其应用 多传感器数据融合概念 数据融合又称作信息融合或多传感器数据融合,对数据融合还很难给出一个统一、全面的定义。随着数据融合和计算机应用技术的发展,根据国外研究成果,多传感器数据融合比较确切的定义可概括为充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。 多传感器数据融合原理 多传感器数据融合技术的基本原理就像人脑综合处理信息一样,充分利用多个传感器资源,通过对多传感器及其观测信息的合理支配和使用,把多传感器在空间或时间上冗余或互补信息依据某种准则来进行组合,以获得被测对象的一致性解释或描述。具体地说,多传感器数据融合原理如下: 1)N个不同类型的传感器(有源或无源的)收集观测目标的数据; (2)对传感器的输出数据(离散的或连续的时间函数数据、输出矢量、成像数据或一个直接的属性说明)进行特征提取的变换,提取代表观测数据的特征矢量Yi; (3)对特征矢量Yi进行模式识别处理(如,聚类算法、自适应神经网络或其他能将特征矢量Yi变换成目标属性判决的统计模式识别法等)完成各传感器关于目标的说明; 4)将各传感器关于目标的说明数据按同一目标进行分组,即关联; (5)利用融合算法将每一目标各传感器数据进行合成,得到该目标的一致性解释与描述。 多传感器数据融合方法

多传感器数据融合的常用方法基本上可概括为随机和人工智能两大类,随机类方法有加权平均法、卡尔曼滤波法、多贝叶斯估计法、Dempster-Shafer(D-S)证据推理、产生式规则等;而人工智能类则有模糊逻辑理论、神经网络、粗集理论、专家系统等。可以预见,神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。 卡尔曼滤波法 卡尔曼滤波主要用于融合低层次实时动态多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。如果系统具有线性动力学模型,且系统与传感器的误差符合高斯白噪声模型,则卡尔曼滤波将为融合数据提供唯一统计意义下的最优估计。卡尔曼滤波的递推特性使系统处理不需要大量的数据存储和计算。但是,采用单一的卡尔曼滤波器对多传感器组合系统进行数据统计时,存在很多严重的问题,例如:(1)在组合信息大量冗余的情况下,计算量将以滤波器维数的三次方剧增,实时性不能满足;(2)传感器子系统的增加使故障随之增加,在某一系统出现故障而没有来得及被检测出时,故障会污染整个系统,使可靠性降低。 多贝叶斯估计法 贝叶斯估计为数据融合提供了一种手段,是融合静态环境中多传感器高层信息的常用方法。它使传感器信息依据概率原则进行组合,测量不确定性以条件概率表示,当传感器组的观测坐标一致时,可以直接对传感器的数据进行融合,但大多数情况下,传感器测量数据要以间接方式采用贝叶斯估计进行数据融合。多贝叶斯估计将每一个传感器作为一个贝叶斯估计,将各个单独物体的关联概率分布合成一个联合的后验的概率分布函数,通过使用联合分布函数的似然函数为最小,提

遥感图像融合方法比较

1 绪论 1.1研究目的及意义 20世纪90年代中后期以后,搭载许多新型传感器的卫星相继升空,使得同一地区的遥感数据影像数目不断增多。如何有效地利用这些不同时相、不同传感器、不同分辨率的遥感数据便成为了遥感工作者研究的瓶颈问题,然而解决这一问题的关键技术就是遥感影像数据融合。 遥感数据融合就是对多个遥感器的图像数据和其他信息的处理过程,它着重于把那些在空间或时间上冗余或互补的多源数据,按一定法则(算法)进行处理,获得比单一数据更精确、更丰富的信息,生成一幅具有新的空间、波谱和时间特征的合成图像。 遥感是不同空间、时间、波谱、辐射分辨率提供电磁波谱不同谱段的数据。由于成像原理不同和技术条件的限制,任何一个单一遥感器的遥感数据都不能全面的反映目标对象的特征,也就是有一定的应用范围和局限性。各类非遥感数据也有它自身的特点和局限性。影像数据融合技术能够实现数据之间的优势互补,也能实现遥感数据与地理数据的有机结合。数据融合技术是一门新兴的技术,具有十分广阔的应用前景。所以,研究遥感影像数据融合方法是非常必要的。 1.2研究现状及发展的趋势 1.2.1研究现状 20世纪美国学者提出“多传感器信息融合”的概念认为在多源遥感影像数据中能够提取出比单一遥感影像更丰富、更有效、更可靠的信息。之后由于军事方面的要求,使得遥感影像数据融合技术得到了很大的发展,美、英,德等国家已经研制出了实用的遥感数据融合处理的系统和软件,同时进行了商业应用。 1)、融合结构 融合的结构可分为两类:集中式和分布式。集中式融合结构:各传感器的观测数据直接被送到中心,进行融合处理,用于关联、跟踪、识别等。分布式融合结构:每个传感器独立完成关联、识别、跟踪,然后由融合中心完成配准、多源关联的融合。 2)、融合的层次 图像融合可分为:像元级融合、特征级融合和决策级融合。 像元级融合是最低级的信息融合,可以在像素或分辨单位上进行,又叫做数据级融合。它是对空间配准的遥感影像数据直接融合,然后对融合的数据进行特征提取和属性说明。 特征级融合是由各个数据源中提取特征信息进行综合分析和处理的过程,是中间层次的融合。特征级融合分为目标状态信息融合和目标特征融合。 决策级融合是在信息表示的最高层次上进行融合处理。首先将不同传感器观测同一目标获得的数据进行预处理、特征提取、识别,以建立对所观测目标的初步理论,然后通过相关处理、决策级融合判别,最终获得联合推断结果,从而为决策提供依据。

遥感影像融合处理方法

遥感影像融合处理方法 摘要:本文介绍了遥感影像数据融合技术,并给出了融合的一些基本理论、融合处理一般步骤以及常用融合处理方法,最后简要描述了融合评价的方式方法等。 关键词:遥感影像融合融合评价 1、前言 将高分辨率的全色遥感影像和低分辨率的多光谱遥感影像进行融合,获得色彩信息丰富且分辨率高的遥感融合影像的过程,成为遥感影像融合。全色影像一般具有较高空间分辨率,多光谱影像光谱信息较丰富,为提高多光谱影像的空间分辨率,可以将全色影像融合进多光谱影像。通过影像融合既可以提高多光谱影像空间分辨率,又能保留其多光谱特性。 2、遥感影像融合一般步骤 遥感影像信息融合一般流程主要分为两个阶段:图像预处理,图像融合变换。 图像预处理主要包括:几何校正及影像配准。几何校正主要在于去除透视收缩、阴影等地形因素以及卫星扰动、天气变化、大气散射等随机因素对成像结果一致性的影响;影像配准的目的在于消除由不同传感器得到的影像在拍摄角度、时相及分辨率等方面的差异。 3 常用融合方式 3.1 IHS融合 IHS(亮度I、色度H、饱和度S)变换就是将影像从RGB彩色空间变换到IHS空间来实现影像融合的一种方法。由光学、热红外和雷达(微波)等方式得到的不同波段遥感数据,合成的RGB颜色空间是一个对物体颜色属性描述系统,而IHS色度空间提取出物体的亮度、色度、饱和度,它们分别对应每个波段的平均辐射强度、数据向量和的方向及其等量数据的大小。RGB颜色空间和IHS 色度空间有着精确的转换关系。IHS变换法只能用三个波段的多光谱影像融合和全色影像融合。 3.2 小波融合 小波变换,基于遥感影像的频域分析进行的,由于同一地区不同类型的影像,低频部分差别不大,而高频部分相差很大,通过小波变换对变换区实现分频,在分频基础上进行遥感影像的融合,常用于雷达影像SAR与TM影像的融合。

多信息融合技术概述

本次讲座主要讲了多源数据融合的定义、应用领域、所具有的优势、信息融合的级别、通用处理结构、主要技术方法、要解决的几个关键问题和未来的主要研究方向。下面就围绕这几个方面进行阐述。 多源信息融合是一种多层次,多方面的处理过程,包括对多源数据进行检测、相关、组合和估计,从而提高状态和身份估计的精度,以及对战场态势和威胁的重要程度进行实时完整的评估。简单说,多源信息融合就是对多源信息进行综合处理,从而得出更为准确、可靠的结论。例如我们感知天气,通过我们的体表感觉温度的高低,通过眼睛观察天气的晴朗或阴雨,通过耳朵听风的大小,然后将这些信息通过大脑的综合处理,对天气有一个总体的感知定位。 多源信息融合在各个领域都有着广泛的应用。如军事上进行战场监视、图像融合,包含医学图像融合等、工业智能机器人(对图像、声音、电磁等数据进行融合,以进行推理,从而完成任务)、空中交通管制(由导航设备、监事和控制设备、通信设备和人员四部分组成)、工业过程监控(过程诊断)、刑侦(将人的生物特征如指纹、虹膜、人脸、声音等信息进行融合,可提高对人身份识别的能力)、遥感等。 信息融合技术越来越受到人们的重视,这时因为它在信息处理方面具有一定的优势。增强系统的生存能力,也就是防破坏能力,改善系统的可靠性;可以在时间、空间上扩展覆盖范围;提高可信度,降低信息的模糊度,如可以使多传感器对同一目标或时间加以确定;提高空间分辨率,多传感器信息的合成可以获得比任一单传感器更高的分辨率;增加了测量空间的维数,从而使系统不易受到破坏。 信息融合的级别有多种分类方法,若按数据抽象的层次来分,可分为数据级融合、特征级融合和决策级融合。数据级融合是直接对传感器的观测数据进行融合处理,然后基于融合后的结果进行特征提取和判断决策。数据级融合的精度高,但由于数据量大,故处理的时间长,代价高,数据通信量大,抗干扰能力差,并且要求传感器是同类的。多应用在多源图像复合、同类雷达波形的直接合成等。特征级融合是先由每个传感器抽象出自己的特征向量(比如目标的边缘、方向、速度等信息),融合中心完成的是特征向量的融合处理。这种融合级别实现了可观的数据压缩,降低了通信带宽的要求,有利于实现实时处理,但却损失了一部分有用信息,使融合性能有所降低。决策级融合是先由每个传感器基于自己的数据作出决策,然后融合中心完成的使局部决策的融合处理。这种级别的融合数据损失量大,相对来讲精度低,但却抗干扰能力强,通信量小,对传感器依赖小,不要求同质传感器,融合中心处理代价低。 图1、集中式结构 多源数据融合的通用结构有集中式结构、分布式结构和混合式结构。集中式结构是所有传感器的数据直接送给融合中心进行处理,结构如图1所示。 分布式结构是融合中心收到的是经过局部处理的数据,结构如图2所示。混合式结构是

数据融合方法优缺点

数据融合方法 随着交通运行状态评价研究的不断发展,对数据的准确性和广泛覆盖性提出了更高的要求,在此基础上,不同的数据融合模型被引进应用于交通领域中来计算不同检测设备检测到的数据。现阶段,比较常用的数据融合方法主要有:表决法、模糊衰退、贝叶斯汇集技术、BP神经网络、卡尔曼滤波法、D.S理论等方法。 1现有方法应用范围 结合数据融合层次的划分,对数据融合方法在智能交通领域的应用作以下归纳总结: 表数据融合层次及对应的方法 2各种融合方法的优缺点 主要指各种融合方法的理论、应用原理等的不同,呈现出不同的特性。从理论成熟度、运算量、通用性和应用难度四个方面进行优缺点的比较分析,具体内容如下: (1)理论成熟度方面:卡尔曼滤波、贝叶斯方法、神经网络和模糊逻辑的理论已经基本趋于成熟;D—S证据推理在合成规则的合理性方

面还存有异议;表决法的理论还处于逐步完善阶段。 (2)运算量方面:运算量较大的有贝叶斯方法、D.S证据推理和神经网络,其中贝叶斯方法会因保证系统的相关性和一致性,在系统增加或删除一个规则时,需要重新计算所有概率,运算量大;D.S证据推理的运算量呈指数增长,神经网络的运算量随着输入维数和隐层神经元个数的增加而增长;运算量适中的有卡尔曼滤波、模糊逻辑和表决法。 (3)通用性方面:在这六种方法中,通用性较差的是表决法,因为表决法为了迁就原来产生的框架,会割舍具体领域的知识,造成其通用性较差;其他五种方法的通用性相对较强。 (4)应用难度方面:应用难度较高的有神经网络、模糊逻辑和表决法,因为它们均是模拟人的思维过程,需要较强的理论基础;D.S证据推理的应用难度适中,因其合成规则的难易而定:卡尔曼滤波和贝叶斯方法应用难度较低。 3 适用的交通管理事件 之前数据融合技术在交通领域中的应用多是在例如车辆定位、交通事件识别、交通事件预测等交通事件中,但是几乎没有数据融合技术在交通运行状态评价的应用研究,而本文将数据融合技术应用在交通运行状态评价中,为了寻找到最适用于交通运行状态评价的数据融合技术方法,有必要将之前适用于其它交通管理事件的数据融合技术进行评价比较。 表2 各种融合方法适用的交通管理事件的比较

数据融合技术

数据融合技术的研究方法及现状 学科专业:模式识别与智能系统 姓名:高鸽 学号:S2******* 日期:2012年4月

常用数据融合方法 多传感器数据融合涉及到多方面的理论和技术,如信号处理、估计理论、不确定性理论、最优化理论、模式识别、神经网络、人工智能、小波分析理论和支持向量机等。很多学者从不同角度出发提出了多种数据融合技术方案。表1对现有比较常用的数据融合方法进行了归纳,主要分为经典方法和现代方法两大类。 目前,人们已开始将多传感器信息融合应用于复杂工业过程控制系统,文献[25]提出的复杂工业过程综合集成智能控制系统便是其中的一种。 表1 常用的数据融合方法 1)加权平均法 加权平均法是最简单直观地实时处理信息的融合方法。基本过程如下: 设用n 个传感器对某个物理量进行测量, 第i 个传感器输出的数据为i X , 其中,i= 1,2,…,n, 对每个传感器的输出测量值进行加权平均, 加权系数为i w ,得到的加权平均融 合结果为:i 1 =n i i X w X =∑ 加权平均法将来自不同传感器的冗余信息进行加权平均, 结果作为融合值。应用该方法必须先对系统和传感器进行详细分析, 以获得正确的权值。

2)极大似然估计 极大似然估计是静态环境中的常用方法,能将信息融合取为使似然函数得到估计值。 3)Kalman 滤波 Kalman 滤波用于动态环境中冗余信息的实时融合。对线性模型系统, 且噪声是高斯分布的白噪声, 可获得最优融合信息统计。非线性模型, 可采用扩展Kalman 滤波。系统模型有变化或系统状态有渐/ 突变时, 可采用基于强跟踪的Kalman 滤波。 4)贝叶斯估计法 贝叶斯估计属静态环境信息融合方法,信息描述为概率分布,适用于具有加高斯噪声的不确定信息处理。 贝叶斯推理技术主要用来进行策略层融合,它是通过把先验信息和样本信息合成为后验分布,对检测目标作出推断。设来自第i 个传感器的信息为 i s ,i=1,2,…k ,则数据融合后 目标d 的后验概率是: 1 1 1 ()(|) |()(|)()(|) k i i k k i i i i i P d P d P P d P d P d P d s s s s ===+∏∏∏(d )= 缺点:对先验概率比较敏感,并且要找到一个合适的先验分布并不容易。 4)D-S 法 Dempster-Shafter (简称D-S 法)是目前数据融合技术中比较常用的一种方法。该方法通常用来表示对于检测目标的大小、位置及存在与否进行推断。它实际上是广义的贝叶斯方法。根据人的推理模式,采用了概率区间和不确定区间来决定多证据下假设的似然函数来进行推理。由各种传感器检测到的信息提取的特征参数构成了该理论中的证据,利用这些证据构造相应的基本概率分布函数,对于所有的命题赋予一个信任度。基本概率分布函数及其相应的分辨框合称为一个证据体。因此,每个传感器就相当于一个证据体。多个传感器数据融合,实际上就是在同归分辨框下,用Dempster 合并规则将各个证据体合并成一个新的证据体。产生新证据体的过程就是D-S 法数据融合。 5)聚类分析法 聚类分析定义相似性函数或关联度量以提供任何两个特征向量间“接近”程度或不相似程度的值, 依隶属度将样本归并到某类。可分成硬聚类和模糊聚类和可能性聚类等方法。 6)模糊逻辑法 针对数据融合中所检测的目标特征具有某种模糊性的现象,有人利用模糊逻辑方法对检测目标进行识别和分类。建立标准检测目标和待识别检测目标的模糊子集是此方法的研究基础。但模糊子集的建立需要有各种各样的标准检测目标,同时又必须建立合适的隶属函数。实际上,确定隶属函数比较麻烦,目前还没有规范的方法可遵循。又由于

高分辨率遥感图像融合方法的比较正式

包头师范学院 本科学年论文 论文题目:高分辨率遥融图像融合方法比较院系:资源与环境学院 专业:地理信息系统 学号:0912430022 姓名:郭殿繁 指导教师:同丽嘎 撰写学年:2010 至2011 学年 二零一零年十二月

摘要:目前,遥感中高分辨率全色遥感影像和低空间分辨率的多光谱遥感影像融合是影像融合技术应用的主流。本文通过对遥感影像四种融合方法的研究,并且用呼和浩特市快鸟影像图像融合举例,加深对四种融合方法的理解和理论应用,最后通过截取呼和浩特市快鸟影像的原始多波段彩色影像和原始高分辨率全色波段影像的一部分进行四种融合方法来进行精度的比较,以ENVI4.7软件作为平台,最终得出,Gram-Schmidt变换效果最好,HSV变换融合效果最差。 关键词:图像融合;PCA变换;Gram-Schmidt变换;Brovey变换;HSV变换;精度比较 Abstract: At present, the remote sensing high resolution full-color remote sensing image and low spatial resolution multi-spectral remote sensing image fusion is image fusion technology application of mainstream. This article through to four kinds of remote sensing image fusion method with the principle and analysis, and in Hohhot, fast image image fusion for example, the bird to deepen the understanding of four fusion method and theory, and finally by intercepting the original image Hohhot fast bird multichannel color image and primitive high-resolution full-color band image on the part of four fusion method for precision compared to ENVI4.7 software as a platform to finally arrive, the best effect, Schmidt transform - the worst. Fusion result transformation HSV. Key words: image fusion, PCA transform; Schmidt transform; the - Brovey transform; HSV transform; Precision;

多传感器数据融合算法.

一、背景介绍: 多传感器数据融合是一种信号处理、辨识方法,可以与神经网络、小波变换、kalman 滤波技术结合进一步得到研究需要的更纯净的有用信号。 多传感器数据融合涉及到多方面的理论和技术,如信号处理、估计理论、不确定性理论、最优化理论、模式识别、神经网络和人工智能等。多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。 多传感器信息融合技术通过对多个传感器获得的信息进行协调、组合、互补来克服单个传感器的不确定和局限性,并提高系统的有效性能,进而得出比单一传感器测量值更为精确的结果。数据融合就是将来自多个传感器或多源的信息在一定准则下加以自动分析、综合以完成所需的决策和估计任务而进行的信息处理过程。当系统中单个传感器不能提供足够的准确度和可靠性时就采用多传感器数据融合。数据融合技术扩展了时空覆盖范围,改善了系统的可靠性,对目标或事件的确认增加了可信度,减少了信息的模糊性,这是任何单个传感器做不到的。 实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。信号级融合方法最简单、最直观方法是加权平均法,该方法将一组传感器提供的冗余信息进行加权平均,结果作为融合值,该方法是一种直接对数据源进行操作的方法。卡尔曼滤波主要用于融合低层次实时动态多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。 多传感器数据融合虽然未形成完整的理论体系和有效的融合算法,但在不少应用领域根据各自的具体应用背景,已经提出了许多成熟并且有效的融合方法。多传感器数据融合的常用方法基本上可概括为随机和人工智能两大类,随机类方法有加权平均法、卡尔曼滤波法、多贝叶斯估计法、产生式规则等;而人工智能类则有模糊逻辑理论、神经网络、粗集理论、专家系统等。可以预见,神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。 数据融合存在的问题 (1)尚未建立统一的融合理论和有效广义融合模型及算法; (2)对数据融合的具体方法的研究尚处于初步阶段; (3)还没有很好解决融合系统中的容错性或鲁棒性问题; (4)关联的二义性是数据融合中的主要障碍; (5)数据融合系统的设计还存在许多实际问题。 二、算法介绍: 2.1多传感器数据自适应加权融合估计算法: 设有n 个传感器对某一对象进行测量,如图1 所示,对于不同的传感器都有各自不同的加权因子,我们的思想是在总均方误差最小这一最优条件下,根据各个传感器所得到的测量值以自适应的方式寻找各个传感器所对应的最优加权因子,使融合后的X值达到最优。

态势感知中的数据融合和决策方法综述x

态势感知中的数据融合和决策方法综述 作者简介:盖伟麟(1987-),男,硕士研究生,主研方向:网络与信息安全,态势感知;辛丹、王璐,硕士研究生;欣,讲 师、博士;胡建斌,副教授、博士。 收稿日期:2013-03-05 修回日期:2013-05-08 E-mail:gaiweilin54070225163. 态势感知中的数据融合和决策方法综述 盖伟麟a,辛丹a,王璐b,欣a,胡建斌b (大学a. 软件与微电子学院;b. 信息科学技术学院,100871) 摘要: 在赛博空间态势感知的相关研究中,处理不确定、不精确的多源异构信息是态势认识过程中需要解决的一个重要问题。为正确处理这些信息,提高对态势的认识,使得到的态势更具有正确性、时效性和全局性,研究数据融合方式和决策方式等现存的处理技术并进行综述。数据融合包含贝叶斯网络、D-S 证据理论、粗糙集理论、神经网络、隐马尔科夫模型及马尔科夫博弈论等方式,决策方式涵盖认知心理学、逻辑学、风险管理等。研究结果表明,目前的技术焦点呈现多样性,但在态势生成应用及验证方面仍有较大的改进空间。 关键词:赛博空间;态势感知;多源异构;数据融合;决策 Review of Date Fusion and Decision-making Methods in Situation Awareness GAI Wei-lina, XIN Dana, WANG Lub, LIU Xina, HU Jian-binb (a. School of Software and Microelectronics; b. School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China) 【Abstract】In the research of cyberspace situation awareness, how to deal with uncertain, inaccurate multi-source heterogeneous information is an important problem which needs to be solved in the process of situational understanding. In order to accurately handle with the information, improve the awareness of the situation, make the situation more accuracy, timeliness and overall, the paper reviews the existing technology focus, mainly including data fusion methods and decision-making methods. Data fusion methods mainly includes Bayesian network, D-S evidence theory, rough set theory, neural network, hidden Markov model and Markov game theory methods, and decision-making mainly includes cognitive psychology, logic and risk management methods. Research results show that current technology focuses present diversity, but still has great space for improvement in both the situation generation application and verification. 【Key words】cyberspace; situation awareness; multi-source heterogeneous; data fusion; decision-making DOI: 10.3969/j.issn.1000-3428.2014.05.005 计算机工程 Computer Engineering 第40 卷第5 期

利用ENVI软件进行遥感图像的融合和增强实习报告

遥感图像处理实习报告 实验内容:影像融合与增强 班级:测绘1102班 学号:13 姓名: 指导老师:陈晓宁、黄远程、竞霞、史晓亮 西安科技大学 测绘科学与技术学院 二零一三年一月 实习三影像融合与增强

一、实习内容: 1.掌握ENVI中各种影像融合方法,并比较各方法的优缺点; 2.熟悉ENVI图像增强操作; 3.本实习的数据源为上节已经过校正的资源三号多光谱和全色影像。 二、实习目的: 1.了解和认识各种图像融合方法的原理、内容及要点; 2.熟悉、熟练操作ENVI软件中各种图像融合的方法、步骤并学会加以比较; 3.学习利用ENVI软件进行各种图像增强处理操作; 4.学会定性、定量分析比较图像融合的差异。 三、实习步骤: 1.图像融合: 三波段融合: HSV和Color Normalized (Brovey)变换: 1)从ENVI主菜单中,选择File → Open Image File,分别加载校正后的资源三号多光谱与全色影像到可用波段列表Available Bands List中; 2)选择多光谱3,2,1波段(可以根据需要选择)对应R,G,B,点击Load RGB将多光谱影像加载到显示窗口display#1; 3)在ENVI的主菜单选择Transform → Image Sharpening → HSV; 4)在Select Input RGB Input Bands对话框中,选择Display #1,然后点击OK。 5)从High Resolution Input File对话框中选择全色影像,点击OK。 6)从HSV Sharpening Parameters对话框中,选择重采样方法,并输入输出路径和文件名,点击OK。即可完成HSV变换融合;

遥感图像的假彩色合成

北京化工大学 学士学位论文 遥感图像的假彩色合成 姓名:刘晓璐 班级:信息与计算科学0304班 学号:200362102

遥感图像的假彩色合成 摘要:遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内及其我国的许多政府部门,科研单位和公司得到了广泛的应用。在遥感数据源向着更高光谱分辨率和更高空间分辨率发展的同时,处理技术也更加成熟;在应用上,结合了地理信息系统(GIS)和全球定位系统(GPS),向着更系统化,更定量化方向发展,使遥感数据的应用更加广泛和深入。 假彩色增强是将一幅彩色图像映射为另一幅彩色图像,从而达到增强彩色对比,使某些图像达到更加醒目的目的。 本文的主要目的就是大遥感的多光谱图像用自然彩色显示。在遥感的多光谱图像中,有些是不可见光波段的图像,如近红外,红外,甚至是远红外波段。因为这些波段不仅具有夜视能力,而且通过与其他波段的配合,易于区分地物。 用假彩色技术处理多光谱图像,目的不在于使景物恢复自然的彩色,而是从中获得更多的信息。为了实现这样的目的,本文采用了MATLAB数学软件编程的方法以及运用Envi4.2 软件直接编辑图像这两种方法,并对其进行对比,得出最优的合成图像。 关键词:图像融合,假彩色合成,彩色增强,灰度级,RGB图像,

False color mapping for image fusion Abstract: A pixel-based color-mapping algorithm is presented that produces a fused false color rendering of two gray-level images representing different sensor modalities. The resulting images have a higher information content than each of the original images and retain sensor specific image information. The unique component of each image modality is enhanced in the resulting fused color image representation. First, the component of two original input images is determined. Second, the common component of each image. Third, the unique component of each image modality is subtracted from the image of the other modality. This step serves to enhance the representation of sensor-specific details in the final fused result. Finally, a fused color image is produced by displaying the images resulting from the last step through, respectively, the red and green channels of a color display. The method is applied to fuse thermal and visual images. The results show that the color mapping enhances the visibility of certain details and preserves the specificity of the sensor information. The fused images also have a fairly natural appearance. The fusion scheme involves only operations on corresponding pixels. The resolution of the input images. Before fusing, the contrast of the images can be enhanced and their noise can be reduced by standard image processing techniques. The color mapping algorithm is computationally simple. This implies that the investigated approaches can eventually be applied in real time and that the hardware needed is not too complicated or too voluminous(an important consideration when it has to fit in an airplane, for instance). Key words: image fusion, false color mapping, color enhances, gray-level, RGB images

数据融合各种算法整理汇总

数据融合各种算法及数学知识汇总 粗糙集理论 理论简介 面对日益增长的数据库,人们将如何从这些浩瀚的数据中找出有用的知识? 我们如何将所学到的知识去粗取精?什么是对事物的粗线条描述什么是细线条描述? 粗糙集合论回答了上面的这些问题。要想了解粗糙集合论的思想,我们先要了解一下什么叫做知识?假设有8个积木构成了一个集合A,我们记: A={x1,x2,x3,x4,x5,x6,x7,x8},每个积木块都有颜色属性,按照颜色的不同,我们能够把这堆积木分成R1={红,黄,蓝}三个大类,那么所有红颜色的积木构成集合X1={x1,x2,x6},黄颜色的积木构成集合X2={x3,x4},蓝颜色的积木是:X3={x5,x7,x8}。按照颜色这个属性我们就把积木集合A进行了一个划分(所谓A的划分就是指对于A中的任意一个元素必然属于且仅属于一个分类),那么我们就说颜色属性就是一种知识。在这个例子中我们不难看到,一种对集合A的划分就对应着关于A中元素的一个知识,假如还有其他的属性,比如还有形状R2={三角,方块,圆形},大小R3={大,中,小},这样加上R1属性对A构成的划分分别为: A/R1={X1,X2,X3}={{x1,x2,x6},{x3,x4},{x5,x7,x8}} (颜色分类) A/R2={Y1,Y2,Y3}={{x1,x2},{x5,x8},{x3,x4,x6,x7}} (形状分类) A/R3={Z1,Z2,Z3}={{x1,x2,x5},{x6,x8},{x3,x4,x7}} (大小分类) 上面这些所有的分类合在一起就形成了一个基本的知识库。那么这个基本知识库能表示什么概念呢?除了红的{x1,x2,x6}、大的{x1,x2,x5}、三角形的{x1,x2}这样的概念以外还可以表达例如大的且是三角形的 {x1,x2,x5}∩{x1,x2}={x1,x2},大三角{x1,x2,x5}∩{x1,x2}={x1,x2},蓝色的小的圆形({x5,x7,x8}∩{x3,x4,x7}∩{x3,x4,x6,x7}={x7},蓝色的或者中的积木{x5,x7,x8}∪{x6,x8}={x5,x6,x7,x8}。而类似这样的概念可以通过求交运算得到,比如X1与Y1的交就表示红色的三角。所有的这些能够用交、并表示的概念以及加上上面的三个基本知识(A/R1,A/R2.A/R3)一起就构成了一个知识系统记为R=R1∩R2∩R3,它所决定的所有知识是 A/R={{x1,x2},{x3,x4},{x5},{x6},{x7},{x8}}以及A/R中集合的并。 下面考虑近似这个概念。假设给定了一个A上的子集合X={x2,x5,x7},那么用我们的知识库中的知识应该怎样描述它呢?红色的三角?****的大圆? 都不是,无论是单属性知识还是由几个知识进行交、并运算合成的知识,都不能得到这个新的集合X,于是我们只好用我们已有的知识去近似它。也就是在所有的现有知识里面找出跟他最像的两个一个作为下近似,一个作为上近似。于是我们选择了“蓝色的大方块或者蓝色的小圆形”这个概念: {x5,x7}作为X的下近似。选择“三角形或者蓝色的”{x1,x2,x5,x7,x8}作为它的上近似,值得注意的是,下近似集是在那些所有的包含于X的知识库

数据融合技术概述

数据融合是WSN中非常重要的一项技术,也是目前的一个研究热点,通过一定算法将采集到的数据进行各种网内处理,去除冗余信息,减少数据传输量,降低能耗,延长网络生命周期。本文以从降低传输数据量和能量方面对数据融合方法进行分类,介绍其研究现状。 1.与路由相结合的数据融合 将路由技术和数据融合结合起来,通过在数据转发过程中适当地进行数据融合,减轻网络拥塞,延长网络生存时间[1]。 1.1查询路由中的数据融合 定向扩散(directed diffusion)[2]作为查询路由的代表,数据融合主要是在其数据传播阶段进行,采用抑制副本的方法,对转发过的数据进行缓存,若发现重复数据将不予转发,该方法有很好的能源自适应性,但是他只能在他选择的随机路由上进行数据融合,并不是最优方案。 1.2分层路由中的数据融合 Wendi Rabiner Heinzelman 等提出了在无线传感器网络中使用分簇概念,其将网络分为不同层次的LEACH 算法[3] :通过某种方式周期性随机选举簇头,簇头在无线信道中广播信息,其余节点检测信号 并选择信号最强的簇头加入,从而形成不同的簇。每个簇头在收到本簇成员后进行数据融合处理,并将结果发送给汇集节点。LEACH算法仅强调数据融合的重要性,但未给出具体的融合方法。TEEN是LEACH 算法的改进[4],通过缓存机制抑制不需要转发的数据,进一步减少数据融合过程中的数据亮。

1.3链式路由中的数据融合 Lindsey S 等人在L EACH 的基础上,提出了PEGASIS 算法[5]每个节点通过贪婪算法找到与其最近的邻居并连接,从而整个网络形成一个链,同时设定一个距离Sink 最近的节点为链头节点,它与Sink进行一跳通信。数据总是在某个节点与其邻居之间传输,节点通过多跳方式轮流传输数据到Sink 处,位于链头节点和源节点之间的节点进行融合操作,最终链头节点将结果传送给汇聚节点。链式结构使每个节点发送数据距离几乎最短,比LEACH节能,但增大了数据传送的平均延时,和传输失败率。PEDAP (power efficient data gathering and aggregation protocol) [6]协议进一步发展了PEGASIS 协议,其核心思想是把WSN 的所有节点构造成一棵最小汇集树(minimum spanning tree) 。节点不管在每一轮内接收到多少个来自各子节点的数据包,都将压缩融合为单个数据包,再进行转发,以最小化每轮数据传输的 总能耗。然而,PEDAP 存在难以及时排除死亡节点(非能量耗尽) 的缺点。 2.基于树的数据融合 现有的算法有最短路径树(SPT)、贪婪增量树(GIT)、近源汇集树(CNS)和Steiner树以及他们的改进算法。Zhang [7]提出 DCTC(dynamic convey tree based collaboration) 算法。通过目标附近的节点协同构建动态生成树,协同组节点把测量数据沿确定的生成树向根节点传输,在传输过程中,汇聚节点对其子生成树节点的数 据进行数据融合。Luo [8-9]了MFST (minimum fusion steiner t ree)

浅析多源遥感数据融合原理及应用

浅析多源遥感数据融合原理 摘要: 本文介绍了遥感影像融合技术, 系统阐述了几种常见的遥感影像融合方法及其优缺点。首先,阐述了多源遥感影像数据融合的目的、意义以及多源遥感影像数据融合的基本理论;然后介绍了多源遥感影像数据融合的层次和常用方法,在分析和探讨多源遥感影像数据融合原理、层次、结构及特点的基础上,归纳了多源遥感影像数据融合方法,然后通过实验,对不同方法融合后的成果图进行比较,每种方法都有其自身的优点和不足之处,这就决定了它们在应用方面的不同,采用乘积方法变换、Brovey比值变换和PCA变换融合方法融合后的图像,其光谱保真程度逐渐降低.Muhiplieative(乘积)变换融合较好地保留了多光谱波段的光谱分辨率和空间信息,融合图像的光谱保真能力较好,详细程度较高;PCA变换融合和Brovey变换;融合和影像质量一般.与PCA变换融合比较,Brovey变换融合的空间信息的详细程度较低,但相对好的保留了多光谱波段的光谱分辨率。 关键词: 遥感影像融合融合层次融合方法优缺点对比

目录 1、绪论 (1) 2、多源遥感数据融合的基本理论 (1) 2.1 多源遥感数据融合的概念 (3) 2.2多源遥感数据融合的原理 (4) 2.3多源遥感数据融合层次 (4) 2.3.1 像元级融合 (4) 2.3.2 特征级融合 (4) 2.3.3 决策级融合 (5) 3、多源遥感数据融合常用方法 (5) 3.1 主成分变换(PCT) (5) 3.2 乘积变换 (5) 3.3 Brovey比值变换融合 (5) 4、实验与分析 (6) 5、结语 (8) 参考文献 (9) 致谢 (10)

相关文档
最新文档