基于labiew的图像处理综述

基于labiew的图像处理综述
基于labiew的图像处理综述

基于labview的图像处理综述

摘要:图像处理是指采用一定的算法,用计算机对图像进行处理和分析,以满足人眼视觉需求或者其他设备的需求。随着计算机,多媒体和数据通信技术的高速发展,数字图像处理近年来已经得到了极大的发展,在各个领域例如工业生产,教育,航空航天,医疗卫生,电子通信等都有了广泛的应用。labview是一款功能非常强大的图形化编程语言。它与传统的实验平台相比,虚拟化的仪器节约了大量的实验设备而使得实验过程能够进行下去,它在测试、测量、学科教学及自动化等领域中都具有广泛的运用。因为labview提供了大量的工具与函数,而这些工具和函数可用于数据采集、分析、显示和存储,同时它还提供了大量用于自动化测试测量领域的图形控件,这使得开发编程者可以在很短的时间内完成一套完整的从仪器连接、数据采集到分析、显示和存储的自动化测试测量系统。因此它被广泛地应用于通信、半导体、航空、电子设计生产、过程监控及学科教学等领域。Labview 提供了丰富的数据图形化函数和显示控件,使用起来极为方便,对于处理图像分析,labview中的强大的各种通信串口例如matlab script 节点以及它本身的图形化编程使得图像处理显得非常直观。这就显示了它在图像处理方面的极大优势。

关键词:图像处理,labview,虚拟仪器,图形化编程。

1.引言

图像处理是人类获取信息,表达信息和传递信息的重要手段。

利用计算机对图像进行去除噪声,增强,复原,分割,提取特征等的理论,方法和技术已经得到了广泛的运用。图像处理可以有很多种方法来实现,例如功能强大的matlab软件,pspise软件等都是分析图像处理的媒介软件。然而,跟图形化的labview相比,过程的不明朗化,非图形的显示化显示了这些软件的一些缺点。随着现代电子技术的发展,虚拟仪器出现了不可阻挡的优势。Labview就是美国NI公司推出的虚拟集成开发环境,使得编程在图形化的界面下得以进行,程序数据流按照连线的方向进行,使得用户一看便明了,它功能强大,涉及到了数据采集,图像处理,数学分析,信号处理,仪器控制等电路中的各个方面。Labview充分利用计算机的强大运算处理能力,通过友好的交互图形界面,图形化的显示结果对于图像处理都有一定的优势。另外,虚拟仪器与传统仪器比较,具有所需硬件少,购置费用低,可重复利用,软件科自行定义,技术更新快,开发与维护费用低,系统开放,方便与外设,网络连接等一系列的优点。于LabVIEW平台设计出的数字图像处理系统,可将编写的系统程序用数据流展示在控制面板上,便于用户读取和修改程序,互动性强且易于升级。利用它当中的matlab script的节点来调用matlab工具箱的图像处理函数,加上Labview本身的图像化显示和数据流的编程方式,使得图像处理的过程一目明了,图形化的显示结果也使得图像处理结果具有可观性,直观性。

2.图像处理发展国内外现状与展望

图像处理的发展与计算机以及硬件技术的发展是紧密联系的。

最早发表有关计算机处理图像信息文章的时间要追溯到20世纪50年代,随着计算机以及硬件技术的高速发展,性能大幅度提高,而价格却大幅度下降,有力地推动了图像处理技术的发展,图像处理系统的发展大致上可以划分为四个阶段。

(1)第一阶段:图像处理系统采用机箱式结构,主流计算机采用小型机,并采用双屏操作方式,所以系统的体积比较大,功能也比较强,当然价格也比较贵。

(2)第二阶段:图像处理系统主要特点是小型化,外形不再是机箱式而是插卡式,绝大部分都采用PC系列微机构成图像处理系统,计算机总线采ISA(Industrial Standard Architecture)总线,并采用双屏操作方式。图像卡的体积较小,一般图像卡都是采用大规模集成电路甚至是制作专用集成电路,从而使价格降低了。

(3)第三阶段:图像处理系统突出特点是单屏方式,以微机PCI总线(Peripheral Component Interconnect bus)为支持的单屏方式和以图像压缩传输为特点的图像通信方式成为主流方式,但仍然主要是依靠微机来进行图像处理,在Windows平台上编制图像处理软件包。

(4)第四阶段:自从小波理论与变换方法迅速发展,它克服了傅立叶分析不能用于局部分析等方面的不足,使得数字图像处理有了进一步的发展。小波分析被认为是信号与图像分析在数学方法上的重大突破。至今,图像处理已经在各个领域都有一定的发展。

随着科学技术的发展,数字图像处理技术的应用领域也将随之不断扩大。数字图像处理技术未来应用领域主要有以下七个方面:

(1)航天航空技术方面数字图像处理技术在航天航空技术方面的应用。

(2)生物医学领域数字图像分析的应用。

(3)电子通信工程中图像处理的应用。

(4)工业工程方面在工业工程领域中图像处理技术的应用。

(5)军事公安方面在军事方面图像处理和识别的应用。

(6)文化艺术方面的应用。

(7)其它方面的应用数字图像处理技术已经渗透到社会生活的各个领域,如地理信息系统中二维、三维电子地图的自动生成、修复等;教育领域各种辅助教学系统研究、制作中;流媒体技术领域等等。

labview最早是由美国的William Wolf 教授提出,由美国NI公司开发的一门功能强大的图形化编程语言。进入21世纪,科技的迅猛发展,与虚拟仪器相关的其他技术如仪器技术和软件技术取得了重大突破,这些技术的突破带动着虚拟仪器技术的研究飞速发展。目前,国内外的很多高等院校对虚拟仪器展开了相关的研究。labview具有的优势,使得labview得到了飞速的发展,广泛地被各个领域所接受。总之,虚拟仪器有很广阔的发展空间,并最终要取代大量的传统仪器成为仪器领域的主流产品,成为测量、分析、控制、自动化仪表的核心。

3.图像处理的主要内容

图像处理由于它的重要性已经在各个科学领域有了广泛的发展,其内容也非常的丰富。图像处理的结果可以是一幅数字图像,也

可以是数字图像的某些特征,图像处理技术的主要内容主要包括:图像获取,图像变换,图像增强,图像复原技术,图像编码技术,图像分割技术[4]。下面分别对这些内容进行详细的说明。

(1)图像获取:主要是指如何把一幅连续的光学图像表示成一幅数字图像,通常需要经过采样,量化和编码几个过程。

(2)图像变换:主要内容是将图像从空间域变化到另一个工作域,比如频率域,并在其中完成对图像的分析和处理,然后

通反变换得到处理后的图像。变换的方法主要有:傅里叶变

换,离散余弦变换,Radon变换,Fan-Beam变化,离散沃

尔什-哈达玛变换等。

(3)图像增强:图像增强是提高图像质量的重要手段。图像增强可以达到两个目的,第一:改善图像视觉质量,如图像对比

度的增强,图像亮度的提高,图像噪声的去除等。第二:满

足机器视觉的需求,更好的进行机器视觉处理。图像增强主

要分为空域增强和频域增强两大类。空域增强是直接在空间

域,即在图像平面本身完成图像的增强处理;频域增强是指

将图像进行傅里叶变换,变换到频率域进行处理,然后反变

换得到增强的图像。图像增强的方法主要有一下几种:灰度

级变换,主要包括线性灰度变换和非线性灰度变换;直方图

处理,主要有直方图均横化和直方图规定化;空域滤波,主

要包括平滑滤波器和锐化滤波器;频域增强,主要包括低通

滤波,高通滤波和同态滤波。

(4)图像复原技术:其研究的主要内容是图像的退化模型,根据退化图像产生的原因,对退化图像进行复原,得到一幅较高

质量的图像。图像复原技术主要有无约束图像复原和有约束

图像复原。

(5)图像编码技术:图像编码技术主要用于对图像数据进行压缩,以便于图像数据的存储和传输。图像编码技术根据过程

中是否存在信息损失可分为有损压缩编码和无损压缩编码。

无损压缩编码在压缩过程中不损失图像的信息,从而解压缩

时能够从压缩数据精确的恢复原始图像;有损压缩编码在编

码过程中会损失一些图像信息,所以在恢复原始图像时存在

一定程度的失真。图像编码技术主要有统计编码,预测编码,

变换编码和混合编码等。

(6)图像分割技术:图像分割技术指的是将图像分为若干部分的技术。图像分割技术的目的是将图像中包含的诸多信息分割

为较小的信息实体以供使用。图像分割技术包含边缘检测,

阈值分割,基于区域的图像分割等。

4.基于labview图像处理的几种实现方法

LabVIEW提供了多种图像处理的方法。其中NI公司的视觉采集软件提供的驱动和函数,既能够从数千种连接到NI 帧接收器上的不同相机上采集图像,也能够从连接在PC、PXI系统或笔记本计算机上标准端口的IEEE 1394和千兆位以太网视觉相机采集图像。LabVIEW中的视觉开发模块作为强大的机器视觉处理库,配有各类

函数,其中包括:边缘检测、颗粒分析、光学字符识别和验证、一维和二维代码支持、几何与模式匹配、颜色工具。该模块可与NI公司的所有软件、C++、Microsoft Visual Basic、Microsoft .NET 相互调用,为用户提供了相当便利的操作。用户可通过视觉开发模块的同步功能,实现与运动或数据采集测量的同步。NI公司提供的图像处理软件包Vision 8.5.1 Acquisition Software ,是专门为LabVIEW 8.5服务的。它可以在LabVIEW 8.5中完成各种关于图像处理、视觉运行的控制。

简单介绍三种方法方式实现:利用CIN节点调用外部编译好的C或者C++程序;利用MATLAB Script 节点编辑或调用MATLAB 程序;利用LabVIEW本身的图形编程语言编程实现。

CIN是位于LabVIEW框图程序窗口中的一个功能节点,用户可将需调用的外部代码编译成LabVIEW所能识别的格式后与此节点相连,当此节点执行时,LabVIEW将自动调用与此节点相连的外部代码,并向CIN传递特定数据结构。使用CIN节点有一些缺点:首先,要考虑外部程序的可移植性,并保证输入输出的数据类型LabVIEW的数据类型匹配;其次外部程序中任何数据类型的改变意味着要进行新一轮的编辑、编译、链接,并且这些工作要针对所有可能使用的平台;第三是CIN节点需要调用.lsb 格式的文件,而这种格式文件的创建过程十分复杂。

为了熟悉MATLAB的用户,LabVIEW提供了MATLAB Script 节点。可以在MA TLAB Script 节点中编辑MATLAB程序,并在

LabVIEW环境下运行,也可直接调入已经存在的MATLAB程序。程序运行时将自动调用MATLAB,所以要使用MATLAB Script节点,系统中必须装有MATLAB5.0以上版本。在将程序写入MATLAB Script节点前,应先在MATLAB中调通,并且要确保输入输出变量的数据类型正确无误。

用LabVIEW本身的图形语言来编程有很多的优势。LabVIEW 的G程序是独立于运行平台的,不需要依赖其他软件。而且作为一种图形化的、数据驱动的程序语言,LabVIEW可以更方便地实现给定的函数,而且程序更加清晰明了,修改起来也更加方便。同时利用子程序技术,可以大大提高程序的利用率。

参考文献:

[1]陈锡辉,张银鸿.LabVIEW8.20程序设计从入门到精通[M].北京:清华大学出版社,2007.

[2]杨乐平,李海涛,赵勇,杨磊,安雪滢.LabVIEW高级程序设计[M].北京:清华大学出版社.2003.

[3]宋凡峰.基于LabVIEW与MATLAB的现代光测图像处理系统[D].南京航空大学硕士学位论文.2007.

[4]刘刚,王立香,董延.MATLAB数字图像处理[M].北京:机械工业出社.2010.

[5]岂兴明,田京京,夏宁.LabVIEW入门与实战开发100例.北京:电子工业出版社.2011.

[6] 王磊,陶梅.精通Labview8.0[M].北京:电子工业出版社.2003.

[7] 刘刚,等.零点工作室.Labview8.20中文版编程及应用[M].北京:电子工业出版社,2008.

[8] 申焱华,王汝杰,雷振山.Labview入门与提高范例教程[M].北京:中国铁道出版社,2007.

[9]刘红显,黄文梅.LabVIEW的外部代码接口[j].湖南大学学报,2002,(6).

[10]National https://www.360docs.net/doc/149061252.html,bVIEW user manual [Z].1998.

[11]刘君华,郭会军等.基于LabVIEW的虚拟仪器设计[M].北京:电

子工业出版社.2003.

医学图像分割综述

医学图像分割综述郭爱心安徽大学摘要:图像分割是图像处理和分析的关键。随着影像医学的发展,图像分割在医学应用中具有重要意义。本文从医学应用的角度出发,对医学图像分割的意义、方法、评估标准和发展前景做出了简单综述。关键字:医学图像分割意义方法评估标准发展前景AReviewofMedicalImageSegmentation Ai- XinGuoAnhuiUniversityAbstract:Imagesegmentationisthekeyofimageprocessingandanalysis.Withthede velopmentofmedicalimage,imagesegmentationisofgreatsignificanceinmedicalapplications.Fromtheper spectiveofmedicalapplications,thispapermadeasimplereviewofthemedicalimagesegmentationonit’ssig nificance、methods、evaluationstandardsanddevelopmentprospects.words:Keymedical image,segmentation,sig nificance,methods,evaluation standards,developmentprospects1.医学图像分割的意义图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。医学图像包括CT、正电子放射层析成像技术(PET)、单光子辐射断层摄像(SPECT)、MRI(磁共振成像技术)、Ultrasound(超[2]声)及其它医学影像设备所获得的图像。医学图像分割是将原始的2D或3D图像划分成[1]不同性质(如灰度、纹理等)的区域,从而把感兴趣的区域提取出来。医学图像分割是一个非常有研究价值和研究意义的领域,对疾病诊断、图像引导手术以及医学数据可视化等有重要作用,为临床诊疗和病理学研究提供可靠的依据。医学图像处理有其复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像相比较,不可

数字图像处理的发展现状及研究内容概述

数字图像处理的发展现状及研究内容概述人类传递信息的主要媒介是语音和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,所以作为传递信息的重要媒体和手段——图像信息是十分重要的,俗话说“百闻不如一见”、“一目了然”,都反映了图像在传递信息中独到之处。 目前,图像处理技术发展迅速,其应用领域也愈来愈广,有些技术已相当成熟并产生了惊人的效益,当前图像处理面临的主要任务是研究心的处理方法,构造新的处理系统,开拓更广泛的应用领域。 数字图像处理(Digital Image Processing)又称为计算机数字图像处理,它是指将数字图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和数字图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的数字图像处理的目的是改善数字图像的质量,它以人为对象,以改善人的视觉效果为目的。数字图像处理中,输入的是质量低的数字图像,输出的是改善质量后的数字图像,常用的数字图像处理方法有数字图像增强、复原、编码、压缩等。 1:数字图像处理的现状及发展 数字图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使数字图像处理成为一门引人注目、前景远大的新型学科。随着数字图像处理技术

的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。 人们已开始研究如何用计算机系统解释数字图像,实现类似人类视觉系统理解外部世界,这被称为数字图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。数字图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。如今数字图像处理技术已给人类带来了巨大的经济和社会效益。不久的将来它不仅在理论上会有更深入的发展,在应用上意识科学研究、社会生产乃至人类生活中不可缺少的强有力的工具。 数字图像处理进一步研究的问题,不外乎如下几个方面: (1)在进一步提高精度的同时着重解决处理速度问题。如在航天遥感、气象云图处理方面,巨大的数据量和处理速度任然是主要矛盾之一。 (2)加强软件研究、开发新的处理方法,特别要注意移植和借鉴其他学科的技术和研究成果,创造新的处理方法。 (3)加强边缘学科的研究工作,促进数字图像处理技术的发展。如:人的视觉特性、心理学特性等的研究,如果有所突破,讲对团向处理技术的发展起到极大的促进作用。

医学图像分割方法综述

医学图像分割方法综述 林瑶,田捷1 北京,中国科学院自动化研究所人工智能实验室,100080 摘要: 图像分割是一个经典难题,随着影像医学的发展,图像分割在医学应用中具有特殊的重要意义。本文从医学应用的角度出发,对医学图像分割方法,特别是近几年来图像分割领域中出现的新思路、新方法或对原有方法的新的改进给出了一个比较全面的综述,最后总结了医学图像分割方法的研究特点。 关键词:医学图像分割 综述 1.背景介绍 医学图像包括CT 、正电子放射层析成像技术(PET )、单光子辐射断层摄像(SPECT )、MRI (磁共振成像技术)、Ultrasound (超声)及其它医学影像设备所获得的图像。随着影像医学在临床医学的成功应用,图像分割在影像医学中发挥着越来越大的作用[1]。图像分割是提取影像图像中特殊组织的定量信息的不可缺少的手段,同时也是可视化实现的预处理步骤和前提。分割后的图像正被广泛应用于各种场合,如组织容积的定量分析,诊断,病变组织的定位,解剖结构的学习,治疗规划,功能成像数据的局部体效应校正和计算机指导手术[2]。 所谓图像分割是指将图像中具有特殊涵义的不同区域区分开来,这些区域是互相不交叉的,每一个区域都满足特定区域的一致性。 定义 将一幅图像,其中g x y (,)0≤≤x Max x _,0≤≤y Max y _,进行分割就是将图像划分为满足如下条件的子区域...: g 1g 2g 3 (a) ,即所有子区域组成了整幅图像。 (b) 是连通的区域。 g k (c) ,即任意两个子区域不存在公共元素。 (d) 区域满足一定的均一性条件。均一性(或相似性)一般指同一区域内的像素点之间的灰度值差异较小或灰度值的变化较缓慢。 g k 如果连通性的约束被取消,那么对像素集的划分就称为分类(pixel classification),每一个像素集称为类(class)。在下面的叙述中,为了简单,我们将经典的分割和像素分类通称为分割。 医学图像分割到今天仍然没有获得解决,一个重要的原因是医学图像的复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像比较,不可避免的具有模糊、不均匀性等特点。另外,人体的解剖组织结构和形状复杂,而且人与人之间有相当大的差别。这些都给医学图像分割的分割带来了困难。传统的分割技术或者完全失败,或者需要一些特殊的处理技术。因此,我们有必要针对医学应用这个领域,对图像分割方法进行研究。 为了解决医学图像的分割问题,近几年来,很多研究人员做了大量的工作,提出了很多实用的分割算法[2][3][4],随着统计学理论、模糊集理论、神经网络、形态学理论、小波理论等在图像分割中的应用日渐广泛,遗传算法、尺度空间、多分辨率方法、非线性扩散方程等近期涌现的新方法和新思想也不断被用于解决分割问题,国内外学者提出了不少有针对性的好分割方法。本文将主要介绍近几年这一领域中研究人员提出的新方法或对原有方法的新改进。需要指出的是,由于从不同的角度将得到不同的分类结果,本文中所涉及方法的分类并不是绝对的,而且许多分割方法还是多种简单方法的综合体,我们只能大致将它们分为属于最能反映其特点 1x x g N k k =),(),(y g y =∪φ=(y y g j k ∩),(),x g x 1 联系人:田捷 电话:82618465 E-mail:tian@https://www.360docs.net/doc/149061252.html,

图像处理论文

图像处理技术近期发展及应用 摘要:图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。 关键字:图像处理发展技术应用 1.概述 1.1图像的概念 图像包含了它所表达的物体的描述信息。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。视像等。 1.2图像处理技术 图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。 1.3优点分析 1.再现性好。数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。 2.处理精度高。按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。 3.适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。 4.灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 2.近期发展及应用领域

机器视觉技术发展现状文献综述

机器视觉技术发展现状 人类认识外界信息的80%来自于视觉,而机器视觉就是用机器代替人眼来做 测量和判断,机器视觉的最终目标就是使计算机像人一样,通过视觉观察和理解 世界,具有自主适应环境的能力。作为一个新兴学科,同时也是一个交叉学科,取“信息”的人工智能系统,其特点是可提高生产的柔性和自动化程度。目前机器视觉技术已经在很多工业制造领域得到了应用,并逐渐进入我们的日常生活。 机器视觉是通过对相关的理论和技术进行研究,从而建立由图像或多维数据中获机器视觉简介 机器视觉就是用机器代替人眼来做测量和判断。机器视觉主要利用计算机来模拟人的视觉功能,再现于人类视觉有关的某些智能行为,从客观事物的图像中提取信息进行处理,并加以理解,最终用于实际检测和控制。机器视觉是一项综合技术,其包括数字处理、机械工程技术、控制、光源照明技术、光学成像、传感器技术、模拟与数字视频技术、计算机软硬件技术和人机接口技术等,这些技术相互协调才能构成一个完整的工业机器视觉系统[1]。 机器视觉强调实用性,要能适应工业现场恶劣的环境,并要有合理的性价比、通用的通讯接口、较高的容错能力和安全性、较强的通用性和可移植性。其更强调的是实时性,要求高速度和高精度,且具有非接触性、实时性、自动化和智能 高等优点,有着广泛的应用前景[1]。 一个典型的工业机器人视觉应用系统包括光源、光学成像系统、图像捕捉系统、图像采集与数字化模块、智能图像处理与决策模块以及控制执行模块。通过 CCD或CMOS摄像机将被测目标转换为图像信号,然后通过A/D转换成数字信号传送给专用的图像处理系统,并根据像素分布、亮度和颜色等信息,将其转换成数字化信息。图像系统对这些信号进行各种运算来抽取目标的特征,如面积、 数量、位置和长度等,进而根据判别的结果来控制现场的设备动作[1]。 机器视觉一般都包括下面四个过程:

数字图像处理技术的研究现状及其发展方向

目录 绪论 (1) 1数字图像处理技术 (1) 1.1数字图像处理的主要特点 (1) 1.2数字图像处理的优点 (2) 1.3数字图像处理过程 (3) 2数字图像处理的研究现状 (4) 2.1数字图像的采集与数字化 (4) 2.2图像压缩编码 (5) 2.3图像增强与恢复 (8) 2.4图像分割 (9) 2.5图像分析 (10) 3数字图像处理技术的发展方向 (13) 参考文献 (14)

绪论 图像处理技术基本可以分成两大类:模拟图像处理和数字图像处理。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以改变处理内容。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科,因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 1数字图像处理技术 1.1数字图像处理的主要特点 (1)目前数字图像处理的信息大多是二维信息,处理信息量很大,因此对计

图像处理文献综述

文献综述 理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显着的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不尽如人意。20世纪80年代,Marr和Canny相继提出了一些更为系统的理论和方法,逐渐使人们认识到边缘检测的重要研究意义。随着研究的深入,人们开始注意到边缘具有多分辨性,即在不同的分辨率下需要提取的信息也是不同的。通常情况下,小尺度检测能得到更多的边缘细节,但对噪声更为敏感,而大尺度检测

图像处理文献综述

文献综述 1.1理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不

ebnnuqc医学_图像处理技术

^ | You have to believe, there is a way. The ancients said:" the kingdom of heaven is trying to enter". Only when the reluctant step by step to go to it 's time, must be managed to get one step down, only have struggled to achieve it. -- Guo Ge Tech 医学图像处理技术 摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。关键词:医学图像处理;图像分割;图像配准;图像融合;纹理分析 1.引言 近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对 人体部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明 曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的 准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。 本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。 2.医学图像三维可视化技术 2.1三维可视化概述 医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。

基于图像处理的森林火灾检测文献综述

本科毕业论文(设计) 文献综述 学生姓名文慧学号091014429 专业机械设计制造 班级机械09-4 及其自动化 指导教师郑嫦娥

基于红外图像处理的森林火灾识别方法研究 1国内外现状 国内外很多公司、科研机构和大学院校都对图像型火灾探测技术进行过大量的研究。 Bosque 公司的BSDS 系统采用红外和普通摄像机进行双波段监控,在准确识别森林火灾的同时还可以区别其它现象的干扰,误报率较低。在大空间火灾监控方面有ISLI 公司和Magnox Electric 公司联合开发的用于电站火灾监控的VSD-8 系统。该系统以视频运动检测软件为主体,使用各种滤波器技术,并与人工智能相结合,进行电站内的火灾监控。 国内相关单位对于图像型火灾探测技术也进行了深入的研究。其中,中国科技大学的火灾科学国家重点实验室的研究处于国际领先的地位。依托火灾科学重点实验室的科大立安公司已经研制出双波段火灾探测器LIAN-DC,并通过相关反面的验收,投入实际应用。同时,上海交通大学,西安交通大学都曾在火灾探测方面进行过积极的研究,并在工程实践中提出过一些算法,其探测手段主要集中在使用红外型摄像机,探测系统的抗干扰性还有待提高。 迄今为止,国内外图像型火灾探测系统还存在误报率高,自动灭火算法误差大等问题。还有待提出更多更好的探测算法以及算法的实现方法。 2常用的探测系统 国内外科研机构和各大公司开发的众多火灾探测系统基于各种火灾识别模式,常见的是感烟探测系统、感温探测系统、火焰探测系统、气体探测系统和复合式探测系统等,感烟探测系统占有量最高,约70%~80%。 2.1感烟探测系统 感烟式火灾探测器主要是利用烟雾传感器探测火灾中产生的烟雾气溶胶,如中国科技大学提出高灵敏度红外图像式烟雾相对浓度测试系统,该系统利用利

图像处理文献综述

文献综述 近年来,随着计算机视觉技术的日益发展,图像处理作为该领域的关键方向受到越来越多研究人员的关注与思考。在现在的日常生活中,由于通信设备低廉的价格和便捷的操作,人们越来越喜欢用图像和视频来进行交流和分享,消费性的电子产品在消费者中已经非常普遍,例如移动手机和数码相机等等。在这个纷繁多变的世界,每天都有数以万计的图像产生,同时信息冗余问题也随之而来。尽管在一定的程度上,内存技术的增加和网络带宽的提高解决了图像的压缩和传输问题,但是智能的图像检索和有效的数据存储,以及图像内容的提取依然没有能很好的解决。 视觉注意机制可以被看做是人类对视觉信息的一个筛选过程,也就是说只有一小部分重要的信息能够被大脑进行处理。人类在观察一个场景时,他们往往会将他们的注意力集中在他们感兴趣的区域,例如拥有鲜艳的颜色,光滑的亮度,特殊的形状以及有趣的方位的区域。传统的图像处理方法是将整幅图像统一的处理,均匀的分配计算机资源;然而许多的视觉任务仅仅只关系图像中的一个或几个区域,统一的处理整幅图像很明显会浪费过多的计算机资源,减少处理的效率 [1,2]。因此,在计算机视觉领域,建立具有人类视觉系统独特数据筛选能力的数学模型显得至关重要。受高效的视觉信息处理机制的启发,计算机视觉领域的显著性检测应运而生。图像显著性检测是通过建立一定的数学模型,让计算机来模拟人类的视觉系统,使得计算机能够准确高效的定位到感兴趣的区域。 一般来说,一个信号的显著性可以表示为其和周围环境的差异性。正是因为这个信号和周围的其他信号的迥异性,使得视觉系统不需要对环境中的所有感兴趣的区域进行逐个的扫描,显著的目标会自动从环境中凸显出来。另外,一些心理学研究表明人类的视觉机制不仅仅是由低级的视觉信号来驱动的,基于记忆、经验等的先验知识同样能够决定场景中的不同信号的显著性,而这些先验知识往往是和一些高层次的事件以及视觉任务联系在一起的。基于当前场景的视觉显著性机制是低级的,慢速的。而基于先验知识的显著性机制通常是和高层次的任务关联在一起的,其效率通常低于由视觉信号驱动的显著性机制。人眼视觉系统通过显著性原理来处理复杂的视觉感知是不争的事实,这种显著性的处理机制使得复杂背景下的目标检测、识别有了很大程度的提升。 在模式识别、计算机视觉等领域,越来越多的计算机工作者致力于开发显著性计算模型,用以简单的表达图像的主要信息。这些显著性模型的检测结果是一个显著性灰度图,其每个像素点的灰度值表示了该像素的显著性,灰度值越大,表明该像素越显著。从信息处理的方式看,显著性模型大致可以分为两类:自顶向下(任务驱动)和自底向上(数据驱动)的方法。 自顶向下的显著性检测方法之所以是任务驱动,这是因为该类模型通常是和某一特定的任务相关。在同样的场景或模式下,检测到的结果因任务的不同而不同是自顶向下模型最突出的特点。例如在目标检测中,检测者需要首先告诉需要检测的目标是什么,检测到的显著性图则表示目标可能出现的位置。自顶向下的显著性检测方法的依据是:如果研究者事先知道需要检测目标的颜色、形状或者方向等特征,那么该检测算法自然会高效的检测到需要检测的目标。因此,自顶向下的算法通常需要人工标记,或是从大量的包含某种特定目标的图像中学习该类目标的特征信息,这些学习方法一般是监督的;然后求测试图像对于训练学习得到的信息的响应,从而得到测试图像的显著性图。现存的一些自顶向下的算法在某些特定的目标上取得了一定的效果,不过这些算法往往只对某些特定的目标有效,对于复杂多变的自然图像,该类算法存在很大的缺陷。自顶向下的模型是慢速的、任务驱动的,有意识的,以及封闭回路的。由于自顶向下模型的特点,其应用受到了很大的限制。

基于matlab的图像预处理技术研究文献综述

毕业设计文献综述 题目:基于matlab的图像预处理技术研究 专业:电子信息工程 1前言部分 众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。 图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动

医学图像处理综述

医学图像处理综述 墨南-初夏2010-07-24 23:51:56 医学图像处理的对象是各种不同成像机理的医学影像。广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。 (1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。对x射线的吸收衰减不同形成x射线影像。(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。 (2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。MRI 受到世人的广泛重视,其技术尚在迅速发展

过程中。 (3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。NMI不仅可以提供静态图像,而且可提供动态图像。 (4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。但是,它的动态实时成像能力是别的成像模式不可代替的 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体.这往往需要借助医生的经验来判定。至于准确地确定病变体的空间位置、大小、几何形状及与周围 生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图像处理技术对二维切片图象进行分析和处理。实现对人体器官,软组织和病变体的分割提取,三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分

数字图像处理技术的现状及其发展方向(笔记)

数字图像处理技术的现状及其发展方向 一、数字图像处理历史发展 数字图像处理(Digital Image Processing)将图像信号转换成数字信号并利用计算机对其进行处理。 1.起源于20世纪20年代。 2.数字图像处理作为一门学科形成于20世纪60年代初期,美国喷气推进实验室(JPL)推动了数字图像处理这门学科的诞生。 3.1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph),1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。 4.从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论。 二、数字图像处理的主要特点 1.目前数字图像处理的信息大多是二维信息,处理信息量很大,对计算机的计算速度、存储容量等要求较高。 2.数字图像处理占用的频带较宽,在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本也高,这就对频带压缩技术提出了更高的要求。 3.数字图像中各个像素是不独立的,其相关性大。因此,图像处理中信息压缩的潜力很大。 4.由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,要分析和理解三维景物必须作合适的假定或附加新的测量。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。 5.一方面,数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大,作为图像质量的评价还有待进一步深入的研究;另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究,这些都是心理学和神经心理学正在着力研究的课题。 三、数字图像处理的优点 1.再现性好;图像的存储、传输或复制等一系列变换操作不会导致图像质量的退化。 2.处理精度高;可将一幅模拟图像数字化为任意大小的二维数组,现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高。 3.适用面宽;图像可以来自多种信息源,图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,因而均可用计算机来处理。 4.灵活性高;数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 四、数字图像处理过程及其主要进展 常见的数字图像处理有:图像的采集、数字化、编码、增强、恢复、变换、

机器视觉文献综述

文献综述 河北科技师范学院 文献综述 题目:基于计算机视觉测量技术 姓名:张力坤 一.国内外现状 机器视觉自起步发展到现在,已有将近20年的发展历史。应该说机器视觉作为一种应用系统,其功能特点是随着工业自动化的发展而逐渐完善和发展的。 目前全球整个视觉市场总量大概在70~80亿美元,是按照每年8.8%的增长速度增长的。而在中国,这个数字目前看来似乎有些庞大,但是随着加工制造业的发展,中国对于机器视觉的需求将承上升趋势。 何谓机器视觉? 简言之,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。 正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。在中国,这种应用也在逐渐被认知,且带来最直接的反应就是国内对于机器视觉的需求将越来越多。 机器视觉在国内外的应用现状在国外,机器视觉的应用普及

数字图像处理主题综述汇总

数字图像处理主题综述 姓名: 学号: 201203284 班级: 计科11202 序号: 31 院系: 计算机科学学院 主题: 医学图片处理

目录 1.引言 (3) 2.医学图像三维可视化技术 (3) 3.医学图像分割 (4) 4.医学图像配准和融合 (6) 5.医学图像纹理分析 (8) 6.应用 (9) 7.总结 (10) 8.参考文献 (10)

1.引言 近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对人体内部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明 曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。 本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。 2.医学图像三维可视化技术 2.1 三维可视化概述 医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。 2.2关键技术: 图像分割是三维重构的基础,分割效果直接影像三维重构的精确度。图像分割是将图像分割成有意义的子区域,由于医学图像的各区域没有清楚的边界,为了解决在医学图像分割中遇到不确定性的问题,引入模糊理论的模糊阀值、模糊边界和模糊聚类等概念。快速准确的分离出解剖结构和定位区域位置和形状,自动或半自动的图像分割方法是非常重要的。在实际应用中有聚类法、统计学模型、

基于matlab数字图像处理的开题报告

毕业设计(论文)开题报告 题目:基于Matlab的数字图像处理 学生姓名:学号: 专业:通信工程 指导教师: 2011年 3 月 13 日

一.文献综述: 随着人类社会的进步和科学技术的发展,人们对信息处理和信息及交流的要求越来越高。人们传递信息的主要媒介是语音和图像。在接受的信息中,听觉信息占20%,视觉信息占60%,其它如味觉,嗅觉,触觉总的加起来不超过20%。图像信息处理是人们视觉延续的重要手段。人的眼睛只能看到波长为380到780nm的可见光部分,而迄今为止人类发现可成像的射线已有很多种,他们扩大了人类认识客观世界的能力。 数字图像处理是一个跨科学的前沿科技领域,在工程学,计算机科学,信息学,统计学,物理,化学,生物医学,地址,海洋,气象,农业,冶金等许多科学中的应用取得了巨大的成功和显著地经济效益。 图像是当光辐射能量照在物体上,经过他的反射或透射,或有发光物体本身发出的光能量,在人的视觉器官中所重现出的物体的视觉信息。图像一般用Image表示,是视觉景物的某种形式的标记和记录。通俗的说,图像是指利用技术手段把目标原封不动的再现。由于图像感知的主题是人类,所以不仅可以将图像看作是二维平面上或三维立体空间中具有明暗或颜色变化的分布,还可以包括人的心理因素对图像接收和理解所产生的影像。 一般认为图片是图像的一种类型,在一些教科书中将其定义为“经过核实的光照后可见物体的分布”,图片强调了现实世界中的可见物体。图形是指人为的图形,如图画,动画等人造的二维或三维图形,他强调应用一定的数学模型生成图形。图形学是研究应用计算机生成,处理和显示图形的一门学科。它涉及利用计算机将有概念或数学描述所表示的物体图像进行处理和现实的过程,侧重点在于根据给定的物体描述数学模型,光照及想象中的摄像机的成像几何,生成一幅图像的过程。 而图像处理进行的却是与其相反的过程,提示基于画面进行二维或三维物体模型的重建,这在很多场合是十分重要。 从20世纪60年代起,随着电子计算机技术的进步,数字图像处理技术得到了飞跃发展。数字信号处理(DSP)技术通常是指利用采集,滤波,检测,均衡,变换,调制,压缩,去噪,估计等处理,已得到符合人们需要的信号形式。图像信号的数字处理是指将图像作为图像信号的数学处理技术,按照人们通常的习惯,也成为数字图像处理技术。最常见的使用计算机对图像进行处理,他是在以计算机为中心的包括各种输入,输出,存储及显示设备内的数学图像处理系统上进行的。

数字图像处理发展及现状

数字图像处理的发展及现状 网络092 张海波 0904681468 摘要: 简述了数字图像处理技术的发展及应用现状,系统分析了数字图像处理技术的主要优点,不足及制约其发展的因素,阐述了数字图像处理技术研究的主要内容和将来的研究重点,概述了数字图像处理技术未来的应用领域,并提出了该技术未来的研究方向。 关键词:数字图像;图像处理;现状与展望;计算机技术 1 前言: 图像处理技术基本可以分成两大类:模拟图像处理(Analog Image Processing)和数字图像处理(Digtal Image Processing)。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以处理内容[1]。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理(Geometrical Processing)、算术处理(Arithmetic Processing)、图像增强(Image Enhancement)、图像复原(Image Restoration)、图像重建(Image Reconstruction)、图像编码(Image Encoding)、图像识别(Image Recognition)、图像理解(Image Understanding)。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科[2],因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 2 数字图像处理技术发展: 数字图像处理技术使20世纪60年代随着计算机技术和 VLSY Very Large Scale Integration的发展而产生、发展和不断成熟起来的一个新兴技术领域,它在理论上和实际应用中都取得了很大的成就。 视觉是人类最重要的感知手段,图像又是视觉的基础[3]。早期图像处理的目的是改善图像质量,它以人为对象,以改善人的视觉效果为目的。图像处理中输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片进行图像处理,如几何校正、灰度变换、去除噪声等,并考虑了太阳位置和月球环境的影响。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,获得了月球的地形图、彩色图及全景镶嵌图,为人类登月创举奠定了基础,也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术探测研究中,数字图像处理技术都发挥了巨大的作用。 数字图像处理技术取得的另一个巨大成就是在医学上。1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT

相关文档
最新文档