MDI工艺介绍

MDI工艺介绍
MDI工艺介绍

MDI

一MDI与聚氨酯简介

1、MDI

全称:二苯基甲烷二异氰酸酯MDI=Meter Dosage Inhaler

MDI为是纯MDI、聚合MDI、纯MDI与聚合MDI的改性物的总称。纯MDI是二苯基甲烷二异氰酸酯、聚合MDI是纯MDI与多苯基多亚甲基多异氰酸酯的混合物。MDI的主要用途是用来生产聚氨酯。

(1)物理性质:

纯MDI:常温下为白色到微黄色晶体,储藏温度为5度以下,保质期为三个月,包装一般为250公斤铁桶充氮包装(槽车充氮为10天保质期)。

聚合MDI:无色棕褐色液体,常温保存,保质期两年,包装一般为250公斤铁桶充氮包装。

(2)应用领域:

纯MDI:浆料、鞋底原液、氨纶、TPU、聚脲喷涂等等

聚合MDI:硬泡、CASE领域。硬泡下游:冰箱冰柜厂、集装箱、冷藏车、太阳能热水器和电热水

器、消毒柜、仿木家具、PU板材等等;CASE:胶粘剂、密封剂、涂料等

2、聚氨酯

全称:聚氨基甲酸酯 polyurethane

聚氨酯既有橡胶的弹性,又有塑料的强度和优异的加工性能,在隔热、隔音、耐磨、耐油、弹性等方面有突出优点,是既聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯和ABS(丙烯腈-丁二烯-苯乙烯共聚物)后的第六大塑料。

二、MDI的生产工艺流程

I.G.Farben于1930s首先制得了4,4'-二苯基甲烷二异氰酸酯(MDI),但由苯胺/甲醛缩合制得的同系混合物光气化制备的方法是1954年由Goodyear首先进行的,遗憾的是Goodyear并未将该方法实现商业化,而后于1960s美国的Carwin/Upjohn、欧洲的Bayer和ICI分别独立地发展了此工艺,使苯胺/甲醛缩合制得同系芳胺混合物,经再光气化、分离,制备MDI和PMDI成为今天普遍所采

用的工艺方法。

MDI的生产工艺流程图如下:

基本反应过程如下:

1.苯胺与甲醛的缩合反应

苯胺与25%~35%的盐酸催化剂首先反应生成苯胺盐酸盐溶液,然后滴37%左右的甲醛水溶液,在80℃下进行缩合反应1~2h,在升高温度达100℃左右时反应1h,进行重排反应,溶液用苛性钠水溶液进行中和,最后经水洗、分层、水洗、蒸馏等步骤制得含不同缩合度的二苯基甲烷二胺(MDA)混合物。在二胺缩合物中,二苯基甲烷二胺约占混合物的70%,其余多苯基甲烷多异氰酸酯组分约占30%。根据各制造商生产工艺条件的不同,其混合物的组份不完全相同。

在苯胺与甲醛的缩聚反应中,苯胺氨基上的氢原子比较活泼,易与甲醛进行低温

缩合,经分子重排也生成相应的胺的盐酸盐。

在合成中根据原料配比和工艺艺条件的变化,产物为n=0、1、2···等的混合物,当n=0时,在以后的一系列反应后即生成MDI;当n>0时,以后将生成缩合度不等的多苯基甲烷多异氰酸酯(PAPI)。

2.二胺缩合物的光气化反应

二胺缩合物的光气化反应,在工业上通常分为低温光气化和高温光气化二段进行。在低温光气化阶段,主要是使二胺与光气、氯化氢反应生成相应的二胺酰胺盐和盐酸盐。

在高温光气化阶段,主要是使二胺的酰胺盐和盐酸盐转化成相应的异氰酸酯。

在工业生产中,MDI和PMDI产品主要是根据上述反应合成出粗品MDI。然后,它们必须经过脱气、高真空蒸馏、提纯、分离等后处理工序,生产出纯MDI和不同缩合度的PMDI产品。

3.产品的稳定和改进

MDI产品的分离提纯是确保产品质量的重要手段。为保证产品水解氯含量符合技术指标要求,可以加人乙酰丙酮铜、二氧化铁等处理剂进行处理。由于MDI 是一种对热很敏感的化学品,为防止它在长期受热情况下产生自聚反应以及在超过250℃的蒸馏釜中产生高温分解而发生爆炸,通常MDI的蒸馏提纯设备必须具备快速形成很高真空的能力。目前普遍使用比较流行的薄膜蒸馏釜等闪蒸装备,

这类设备的特点是产品受热时间短、分离准确、蒸馏效率高。另外,加入某些热稳定剂,也能有助于产品热稳定性的提高。有专利介绍,在纯MDI产品中加入亚磷酸三苯酯和4,4′-硫双(6-叔丁基-3,3′-甲酚)的混合物对MDI有较好的稳定性,贮存不变黄。

纯MDI产品在室温下为白色结晶,但它在室温下长期贮存会产生自聚等反应,生成二聚体和脲类不溶性化合物,使产品色泽加深,熔化后液体浑浊,出现不溶性细微颗粒,影响产品品质,并会使制品性能下降。为此,对于纯MDI产品在出厂前应添加0.1%~5%的稳定剂,如磷酸三苯酯、甲苯磺酰异氰酸酯、碳酰异氰酸酯等。但它们的加入,会对聚氨酯制品机械性能和耐水性能有一定影响。据日本专利介绍,含苯环的芳基碳酰异氰酸酯对MDI的稳定性具有良好作用,同时对其制品性能不会产生什么不利影响。

此外,还有正碳酸四乙酯、正硅酸四乙酯、正硅酸四苯酯、铝酸三乙酯、三烷基胺、甲硼烷等也可作为MDI的贮存稳定剂。

三、选用MDI应注意的问题

1.纯MDI商品是白色至浅黄色固体,其主要化学成份是4,4′-MDI,另外两种异构体是:2,4′-MDI和2,2′-MDI。根据原料配比、各制造商的工艺合成路线不同,蒸馏出来的MDI中3种异构体的含量也有差别。作为工业商品,通常蒸馏生产出的MDI产品中3种异构体的比例控制在如下比例:

4,4′-MDI 60~99.5%

2,4'-MDI 0.5~40%

2,2′-MDI 0.0~2.0%

2.多苯基甲烷多异氰酸酯(Polyphenylmethane polyisocyanate)实际上是MDI的低聚体。国外习惯按最早UCC公司命名的商品名称,叫做PAPI,目前国内外许多厂家和生产者又称其为PMDI(Polymeric MDI,聚合MDI)或C-MDI (Crude MDI, 粗MDI)。

PMDI是褐色透明状液体,实际上它是含有不同官能度的多异氰酸酯混合物。通常要求MDI应占混合物总量的50%左右。因所含多苯基甲烷多异氰酸酯的缩合度不一样,除含有总量一半的纯MDI外,还含有缩合度大于l的多异氰酸酯。PMDI的结构成份如下图所示:

在实际生产中,各制造商根据产品使用目的、性能要求不同,控制反应工艺条件,可生产出一系列不同牌号的PMDI产品,如:

含纯MDI约35%的高聚合度产品,官能度为2.9~3.1;

含纯MDI约40%左右的中等聚合度的产品,聚合度约为2.7;

含纯MDI约65%的低聚合度产品,官能度为2.2~2.4 。

纺织涂层综述

浅谈织物涂层整理 北京度辰新材料股份有限公司李正雄 【摘要】简要介绍了织物涂层整理的发展历史和分类,评述了各织物涂层胶的化学结构,产品特点,制备方法,应用性能以及未来的发展趋势。 关键词:织物涂层整理防水透湿阻燃发展 1. 前言 纺织品涂层整理剂又称涂层胶,是一种均匀涂布于织物表面的高分子类化合物。它通过粘合作用在织物表面形成一层或多层薄膜,不仅能改善织物的外观和风格,而且能增加织物的功能,使织物具有防水,耐水压,通气透湿,阻燃防污以及遮光反射等特殊功能。早在二千多年前,古代中国人民就已经把涂层胶用于织物表面,那时多为生漆、桐油等天然化合物,主要用于防水布的制作。时至近代,出现了性能优越的多种合成聚合物类涂层胶。最初的产品存在只防水而不透湿的缺陷,涂层织物使用时有闷热感,舒适性差。为了改善涂层胶的通气透湿性,自70年代以来,科研人员通过对涂层胶化学结构的改性和变换涂层加工方法等手段研制出了一系列防水透湿型织物用涂层胶。近年来,功能型涂层胶和复合型涂层胶也有了较大的发展。 涂层胶的分类方法很多,按化学结构分类主要有: 1.聚丙烯酸酯类(PA); 2.聚氨酯类(PU); 3.聚氯乙烯类(PVC); 4.有机硅类; 5.合成橡胶类(如氯丁橡胶)。 此外,还有聚四氟乙烯、聚酰氨、聚酯、聚乙烯、聚丙烯和蛋白质类。目前主要应用的是聚丙烯酸酯类和聚氨酯类。按在使用上采用的介质不同分为溶剂型和水系型两种,溶剂型具有耐水压高,成膜性好,烘燥快,含固量低等优点,但同时又有在织物上渗透性强、手感粗硬,毒性大、易着火,需要溶剂回收装置、且回收费用高的缺陷。与溶剂型相比,水系型无毒、不燃、安全,成本低、不需回收,可制造厚涂产品,有利于有色涂层产品的生产,涂层亲水性好;其缺点是耐水压低,烘燥慢,在长丝织物上粘着较难。按涂层工艺及焙烘条件不同又有干式涂层胶和湿式涂层胶,低温交联涂层胶和高温交联涂层胶之分。干式和低温交联涂层胶因其涂层工艺简单,焙烘温度低,省力节能,它们是未来涂层织物发展的趋势[1][2]。

乙酸酐综述

文献综述 前言 本人的毕业设计为《2万t/a醋酸酐生产工艺设计》,目前来看,全球醋酐的生产和消费量为330万吨。其中亚洲早已是醋酐生产能力最大的地区[1]。而就中国而言,国内乙酸酐行业存在的问题是行业整体水平较低、生产规模小、合成技术落后、开工率偏低,从发展趋势看,醋酐市场的发展潜力巨大,为满足我国国内市场的消费与需要[2],醋酸酐的生产必将成为今后炙手可热的发展趋势。因此本文的叙述对今后国内外醋酐的发展具有一定的意义。 本文根据目前国内外学者对乙酸酐的合成生产的研究成果,借鉴他们的成功经验,将其进行整理总结,并在其发展趋势,现有缺陷,选择原因等加以个人想法。所取文献给与本文有很大的参考价值。本文主要查阅进几年有关乙酸酐生产技术及前景的文献期刊。

醋酸酐是一种重要的有机化工原料,其蒸气与空气形成爆炸性混合物遇明火、高热能引起燃烧爆炸。与强氧化剂可发生反应健康危害吸入后对有刺激作用引起咳嗽、胸痛、呼吸困难。眼直接接触可致灼伤蒸气对眼有刺激性。皮肤接触可引起灼伤[3]。主要用于制造醋酸纤维素、醋酸纤维漆、醋酸塑料、不燃性电影胶片、香烟过滤嘴和塑料制品等。此外在医药上可用于制备合霉素、地巴唑、阿斯匹林等;在染料工业中用于生产分散深蓝HGL、分散大红S- SWEL、分散黄棕S- 2REC 等;在香料工业中用于生产香豆素、乙酸龙脑酯、葵子麝香、乙酸柏木酯、乙酸松香酯、乙酸苯乙酯、乙酸香叶酯等。此外,醋酸酐还可用于制备漂白剂、乙酰化剂、脱水剂和聚合反应的引发剂等,用途十分广泛[4]。 1 醋酸酐的生产技术进展 目前,工业化的醋酐生产方法主要有醋酸热裂解法、乙醛氧化法和醋酸甲酯羰基合成法3 种[5]。 1.1醋酸裂解法 醋酸裂解法又称乙烯酮法, 是以醋酸为原料,磷酸铝为催化剂或乙酸甲酯在高温下反应制得乙酸酐。整个工艺过程分两步进行, 首先是气相醋酸裂解生成乙烯酮, 然后醋酸和乙烯酮经吸收生产粗酐,经精馏提纯制得成品乙酸酐。 该法的最大缺点是生产工艺流程复杂、副反应多、能耗大, 但由于技术成熟、生产的安全性高、对在醋酸裂解部分醋酸的质量要求并不高、可以使用其它装置和本身回收的醋酸, 因此在国外早期建设的装置应用该法, 目前我国仍普遍采用。 其中醋酸裂解的产物乙烯酮是一种重要的中间体, 它可以用于生产农药、食品防腐剂等, 这种产物在羰基化的工艺中不会出现, 因此, 该工艺的裂解部分是很有生命力的[3、6]。其反应流程如下: 1.2乙醛氧化法 乙醛氧化法分两步反应完成,首先乙烯在PdCl、CuCI催化剂的作用下,在温度为100~150℃、压力为0.3MPa的条下反应氧化生成乙醛;乙醛在醋酸锰

果葡糖浆生产工艺综述

果葡糖浆生产工艺综述 宋俊梅徐京凯 (山东轻工业学院济南250353) 摘要::主要介绍了果葡糖浆及其用途和生产工艺过程、异构化条件、系统及生产运行要点等,通过分析认为,正确的工艺设计、精准的工艺控制、熟练的系统操作和科学的工艺管理是保证高效生产果葡糖浆的关键,并就这些关键因素做了相关阐述。 关键词:果糖,果葡糖浆,异构酶,异构化,工艺控制,生产工艺 1 果葡糖浆的物理特性和甜味特性 果葡糖浆( Fructose corn syrups) 也称高果糖浆或异构糖浆, 它是以酶法糖化淀粉所得的糖化液经葡萄糖异构酶的异构作用, 将其中的一部分葡萄糖异构成果糖。 果葡糖浆按其生产发展和产品组分质量分数( w ) 的不同划分为3 代, 第1 代果葡糖浆称为葡果糖浆, 简称42 糖, 其糖分组成中w ( 果糖) 为42% ( 以干基计) , w ( 葡萄糖) 为50% , w ( 低聚 糖) 为5% , 其质量分数为71%, 甜度约等于蔗糖; 第2 代果葡糖浆称为果葡糖浆, 简称55 糖, 其糖分组成为w ( 果糖) 为55% , w ( 葡萄糖) 为40% , w ( 低聚糖) 为5% , 其质量分数为77%, 甜度约为蔗糖的1. 1 倍; 第3 代果葡糖浆称为高果糖浆, 简称90 糖, 其糖分组成为w ( 果糖) 为90%, w( 葡萄糖) 为7% , w ( 低聚糖) 为3% , 其质量分数为80% , 甜度为蔗糖的1. 4 倍。 果葡糖浆无色无嗅, 常温下流动性好, 使用方便, 在饮料生产和食品加工中可以部分甚至全部取代蔗糖, 而且, 较其更具有淳厚的风味, 应用于饮料中可以保持果汁饮料的原果香味。果葡糖浆的优点, 主要来自于其成分组成中的果糖, 并随果糖含量的增加更为明显。果糖服用后, 在人体小肠内吸收速度慢, 而在肝脏中代谢快, 代谢中对胰岛素依赖小, 故不会引起血糖升高, 这对糖尿病患者有利。在医药上, 吡喃果糖可加快乙醇的代谢作用, 可用于治疗乙醇中毒。静脉注射500mL 质量分数为40%的果糖溶液可达效果。美国果糖液也有取代葡萄糖大输液的迹象。此外它在食品工业中还有以下优点: 1) 甜度高。果糖的甜度为蔗糖的1. 5 倍, 并且具有两种分子构型: 型和型, 型果糖的甜度是型果糖的3 倍, 低温时部分型果糖转化为型果糖, 而使甜度增加。根据这一特性, 果葡糖浆最适合于清凉饮料和冷饮食品的生产。 2) 风味好。果葡糖浆的主要成分和性质接近于天然果汁和蜜蜂, 具有蜂蜜和水果清香。味感方面, 味觉甜度比蔗糖浓, 且有清凉感, 用于果汁饮料生产时, 可以突出原果香味。此外, 果葡糖浆和蔗糖混合使用可使甜味丰满, 风味更好。3) 保湿性好。果糖为无定形单糖, 吸湿性大, 具有良好的保水分能力和耐干燥能力, 这一特性可使面点保持新鲜松软, 从而延长了产品货架期。 4) 渗透压大。果葡糖浆的主要成分是单糖, 其渗透压高于双糖( 如蔗糖) , 用于蜜饯、果脯生产时可以缩短糖渍时间。高渗透压还可以抑制微生物生长, 从而具有防腐保鲜作用。 5) 热量低。果糖的甜度高, 发热量低, 食用后增加脂肪少, 适于怕热及肥胖的人饮用。 6) 营养丰富。单糖可直接进入血液为人体吸收, 因而较快参与新陈代谢。在生产以加快恢复肌体功能、消除疲劳为特点的食品中已成为难以取代的糖源。虽然

纯碱工业发展简史

纯碱工业发展简史 在很早以前,人们就开始使用天然碱湖中的碱以及海草灰中的碱供洗涤和制造玻璃之用,现在保存下来的最古老的埃及玻璃大约是公元前1800 年制造的。在我国1700 年前的著名药书“本草纲目”中记载“菜蒿蓼之属、晒干、烧灰、以原水淋汁,去垢发面。”可见当时对碱的制造和用途都有一定程度的了解。无论中外,在18 世纪中叶以前,碱的来源不外是植物灰或碱湖中的天然碱。到18 世纪末叶,随着生产力的发展,天然碱的产量已远不能满足玻璃、肥皂、皮革等工业需要。因此人工制碱的问题就被提出来了。在英法七年战争时法国所需的植物碱来源断绝,于是在1775 年法国科学院悬赏征求制碱方法。1787 年医生路布兰经四年多的研究获得var cpro_psid ="u2572954"; var cpro_pswidth =966; var cpro_psheight =120; 了成功。他的方法是先用硫酸和食盐互相作用得到硫酸钠,然后再将硫酸钠和石灰石、煤炭在900 ~1000 ℃共熔得碳酸钠。这一方法的成功,不仅为工业提供了纯碱,而且由于一种化学产品通过人工合成,因而对化学和化工的发展以及人类对客观世界的认识,都起了重要的作用。这一制碱方法,通常称为路布兰法或硫酸钠法。但是路布兰法存在着不少缺点:熔融过程系在固相中进行,并且需要高温;设备生产能力不充分;设备腐蚀程度严重;工人的劳动条件恶劣及所得到的纯碱质量不高。这些缺点促使人们去研究新的制碱方法。1861 年,比利时人索尔维原是一名工人,在煤气厂从事稀氨水的浓缩工作,发现用食盐水吸收氨和二氧化碳时可以得到碳酸氢钠,于是获得用海盐和石灰石为原料制取纯碱的专利,这种方法也就被称之为索尔维制碱法。因为在生产过程中需用氨起媒介作用,故又称为氨碱法。其主要过程是氨盐水吸收二氧化碳而得碳酸氢钠,然后将碳酸氢钠煅烧放出CO 2 和H 2 O 而成碳酸钠。1863 年建厂,1872 年获得成功。由于氨碱法可以连续生产,生产能力大,原料利

肥料生产与加工

《肥料生产与加工》课程 课程综述 专业:xxxxxxxxxxxxxx 班级:xxxxxxxxxxxx 姓名:xxxx 学号:xxxxxxx 序号: xxxxx

目录 1复混肥的概念和发展 (3) 1.1复混肥的概念和表示方法 (3) 1.2复混肥的发展 (4) 2 复混肥的特点、分类和发展趋势 (4) 2.1复合肥的特点和作用 (4) 2.1.1复合肥的特点 (4) 2.1.2复合肥的作用 (5) 2.2复混肥分类和发展趋势 (5) 2.2.1复混肥的分类 (5) 2.2.2复合肥料的发展趋势 (6) 3复混肥的生产工艺 (6) 3.1复混肥的生产工艺 (6) 3.1.1生产原料 (6) 3.1.2生产方法 (7) 4复混肥研究存在的问题及科学施用的方法 (7) 4.1存在问题 (7) 4.2科学施肥方法 (8) 4.2.1复混肥料的施用的原则 (8) 4.2.2施用方法 (8) 4.2.3施肥量(配方)的确定 (8) 4.2.4料施用量 (8)

复混肥的生产和加工技术 xxxxx (长江大学农学院农业资源与环境系) [摘要]:复合肥料是由化学方法或混合方法制成的含作物营养元素氮、 磷、钾中任何两种或三种的化肥。其作用是满足不同生产条件下农业需要的多种养分的综合需要和维持生长平,大量用于现代农业。本文系统论述了复合肥料的概念、分类、科学施肥方法、复合工艺及作用机理。讨论了复合肥料发展和研究现状;综合分析了我国复合肥料在生产和应用方面存在的问题,并提出科学而施 用方法。 [关键词]:复合肥料;评价方法;施肥 化肥在农业生产中具有非常重要的作用,在发展中国家的粮食生产中,增产粮食的55%归功于化肥的使用[1] 。然而,肥料在实际使用中普遍存在利用率低的问题。如2004年全国生产合成氨42222 万吨,全国吨氨平均工艺综合能耗标煤7613 万吨,但是用这么多的能源生产的化肥对不同地区、不同作物的利用率最高才40%,在大棚蔬菜区及露地冲施肥化肥利用率甚至低于10%[2]。同时,化肥的利用率低下不仅仅对能源造成严重浪费和巨大的损失,还极大的污染境。传统意义上的肥料由于营养元素的可溶性,在其施入土壤后在作物尚未利用之前就会发生严重流失或固定,这种施肥方式将造成土壤板结或沙化,造成水源富营养化,严重污染水源,严重危害自然环境。另外,施入土壤中的化学氮肥约有1/3 进入大气圈, 其生成的N2O 破坏臭氧层产生温室效应;约有1/3 的肥料经土壤淋溶进入水圈 [3~5],造成我国大部分地区食物(尤其蔬菜)中NO3—N 含量严重超标, 在人畜体内易形成致癌物质—亚硝胺。因此,如何提高化肥利用率,更进一步使粮食增产,减少因大量施用化肥而造成的能源浪费、环境污染,发展可持续高效农业已成为国内外共同关注的问题。 1复混肥的概念和发展 1.1复混肥的概念和表示方法 同时具有氮、磷、钾三种养分或至少有两种养分标明量的肥料。复合肥料是由化学方法或(和)混合方法制成的含作物营养元素氮、磷、钾中任何两种或三

醋酐生产工艺文献综述

文献综述 前言 本文根据目前国外学者对醋酐合成工段工艺设计的研究成果,借鉴他们的成功经验,在此基础上,查阅了大量资料,并吸取其它醋酐生产厂家的经验,力求使各工艺条件达到理想操作状态,整个生产过程达到最优化,为醋酐装置的工艺设计提供参考。本文主要查阅近几年有关醋酐工艺设计的文献期刊。 本文主要从简介、性质、生产方法和比较、应用、市场发展及预测等方面对醋酐进行了详细的论述。

一、产品简介 1.1.1 产品性质 醋酐又名醋酸酐、乙酐,分子式C 4H 6 O 3 ,相对密度1.080,熔点-73℃,沸点139℃。折 光率1.3904,闪点54℃,自燃点 400℃。常温下是一种有强烈的乙酸气味的无色透明液体,具有吸湿性,可溶于氯仿和乙醚并可缓慢地溶于水形成乙酸,与乙醇作用生成乙酸乙酯。醋酐是一种有毒化学药品,半数致死量约为(大鼠,经口)1780mg/kg;质量浓度为0. 36 mg/m3时即可对眼产生刺激,0. 18 mg/m3时就能改变人的脑电图像,还能引起细胞组织蛋白质变质;其蒸气刺激性更强,极易烧伤皮肤及眼睛,如经常接触会引起皮炎和慢性结膜炎[1]。 1.1.2 产品用途 醋酐的化学性质非常活泼,可用作酯化剂,与乙醇反应生成乙酸乙酯;在水中缓慢水解成醋酸,在热水中分解成醋酸;也可用作酰化剂、硝化或者磺化的脱水剂等[1]。 醋酐是最重要的精细化工原料之一,目前主要用作醋酸纤维素、香烟过滤嘴、胶卷和胶片、纺织用醋酸纤维和赛璐珞塑料等,其次是用于医药、染料、香料和有机合成中的乙酰化剂。醋酐还有许多未开发或者刚开发出来的应用领域,如洗涤剂、炸药、液晶显示器等,尤其在液晶显示器方面市场前景较广[1]。 未来醋酐的消费重点在医药、燃料、农药和二醋酸纤维素,二者占总消费量的75%以上。醋酐在医药方面主要用做合成药物中间体的乙酰化剂和脱水剂。在染料领域中主要用于分散染料的生产,少量用于活性染料、还原染料等。农药行业中醋酐主要用于乙酰甲胺磷、三氯杀虫酯、霜脲氰、氟磺胺草醚、吡嘧磺隆等的生产,还可用于三酸甘油酯、氯乙酸和聚四亚甲基乙二醇醚(PTMEG)等的生产。除上述用途外,醋酐最大的应用在于生产醋酸纤维素,尤其是醋酸纤维素经抽丝加工成香烟过滤咀是目前醋酐最大的应用,截至2008年国香烟过滤嘴仍主要依赖进口,因此醋酸纤维素市场将成为未来国醋酐最大的潜在市场[2.,3]。 二、醋酐的生产方法和比较 1.3 产品生产方法 文献记载醋酐的工业化生产方法主要有三种:乙醛氧化法、乙烯酮法、甲醇羰基化法。其中甲醇羰基化法以其流程短、质量好、消耗低、三废少等优势正逐渐取代另外两种方法。

纯碱工学-小苏打生产

小苏打生产 第一节小苏打生产原理 一、相平衡 工业上通常用碳酸钠溶液碳酸化制造小苏打,也称为重碳酸化,化学反应式如下所示: Na2CO3(aq)+CO2(g)+H2O(l)=2NaHCO3(s)+59.789kJ/mol 这个反应并不能完全进行,反应程度取决于Na2CO3、NaHCO3的相互平衡条件,碳酸钠、碳酸氢钠-H2O系统相图的研究,提供了上述碳酸化过程制定工艺条件的依据。 由系统相图可以看出,ABCD区域为碳酸氢钠结晶区,AB线以上为倍半碳酸钠Na2CO3·NaHCO3·2H2O结晶区,AC线左侧为水的结冰区和十水碱Na2CO3·10H2O结晶区,左上侧为七水碱结晶区,右上侧还存在Na2CO3·3NaHCO3结晶区。 表中数据表明,进塔碱液Na2CO3浓度应控制在77~81tt以下。

二、反应动力学 碳酸钠溶液吸收二氧化碳生产碳酸氢钠的反应,取决于温度、溶液浓度、气体分压和反应平衡常数。碳酸氢钠的结晶速度常数与温度有关,因此控制温度是控制结晶速度的重要因素之一;同时尽可能提高气体CO2浓度,这是制取大粒结晶的重要因素。

第二节小苏打生产工艺流程和工艺条件小苏打的生产工艺流程可分为两部分:①碳酸钠溶液制备;②碳酸化及其他工序。 碳酸钠溶液的制备: 生产小苏打的碳酸钠溶液通常可以用轻质纯碱溶解、天然碱溶解、重碱湿分解以及炉气碱粉回收四种方法。对于大中型纯碱厂附设小苏打车间,采取重碱湿分解和回收炉气碱粉两种方法作为小苏打生产原料来源,具有重大经济意义。 轻质纯碱为原料:将轻质纯碱或次品碱、扫地碱等回收至纯碱加入化碱槽,加入小苏打滤液和补充冷凝液,进行溶解,在搅拌下以间接蒸汽加热。为出去铁分等杂志,通常加入硫化钠,保持温度80~85℃,制备成含碱度100~105tt,Na2CO370~80tt,含硫化钠0.004~0.010tt的碱液备用。 碳酸化及其他工序: 首先,在碳酸化前先进入澄清桶进行澄清,出去不溶性杂质,沉淀物定期从锥底排放;澄清液送过滤器除去更细微的杂质颗粒。过滤器一般采用刚玉管或纹石管过滤器,也可以采用烧结管过滤器。 过滤后碱液用泵送入碳酸化塔上部,由上而下与底部通入的CO2气体逆流接触,进行碳酸化反应,生成碳酸氢钠结晶。 碱液吸收CO2进行反应生成碳酸氢钠放出热量使溶液自身升温,在塔高2/3出(旧式塔不冷却),以利于加速CO2吸收和促进结晶成长,NaHCO3晶浆从塔底取出。

曼海姆法硫酸钾反应炉爆炸事故分析

曼海姆法硫酸钾反应炉爆炸事故分析 2001年12月1日18时57分,某公司硫酸钾车间1#反应炉(曼海姆法硫酸钾反应炉)用临时火嘴烘炉,在停临时火嘴换正式燃烧器升温点火时,发生爆炸事故,造成1#反应炉毁坏,幸未造成人员伤亡。 一、事故原因分析 1.工艺操作方面 (1)按反应炉岗位操作工序的规定:“烘炉时必须严格按烘炉升温曲线进行,并注意保证炉内温度均匀上升,升温速率和总的烘烤时间要同时被控制”。根据事故发生前后当班记录和有关人员反映,用临时烧嘴烘炉2天时间,炉温最高升到35oC,故改用正式燃烧器点火烘炉。由于热备期间,炉内呈现负压状态,操作工熄灭临时火嘴抽出炉外时,炉内吸入空气。另外,操作时烟气引风机和空气鼓风机的开停等情况,当班记录没有准确记载,而且点火操作时,没有同当班调度和有关领导取得联系批准,故导致点火时发生异常情况爆炸。 (2)操作工在正式燃烧器点火操作前的3分钟内,连续让硫酸钾化验室做2次测爆分析,存在先测爆点火熄灭,再测爆点火爆炸的可能。 (3)也存在炉内置换不彻底留有死角,导致点火爆炸的可能。 2.设备管理方面 (1)1#反应炉11月29日维修完工,按规程应直接用正式燃烧器点火烘炉,并应严格按照安全技术规程操作。然而该车间却是先用临时火嘴烘炉,未达到升温目的,才改用正式燃烧器,并在点火烘炉过程中发生爆炸事故。 (2)干气蝶阀不严,炉内存在可燃气置换不彻底。其中干气含氢气20%~25%,甲烷12%~18%,乙烷、乙烯25%~30%,丙烷、丙烯1%~2%,碳四烃0.1%~0.8%,可燃气组分含量高达75%以上。故阀门渗漏也可能导致爆炸事故。 3.测爆分析方面 硫酸钾化验室在点火烘炉过程中,进行测爆分析2次,测爆结果是混合气体浓度均为0.1%,而出具的化验报告上混合气体浓度都是0,并且事故发生后确认测爆仪器灵敏好用。故化验员提供了不准确数据,是事故发生的又一因素。 二、事故教训

醋酐工艺流程说明

4.2.2 醋酐工艺流程说明 4.2.2.1 流程概述 本装置以醋酸为原料经裂解、吸收、蒸馏、回收工序,制得醋酐产品。 a) 醋酸裂解工序 醋酸裂解工序流程示意图见图4.2-1。 b) 乙烯酮吸收工序 乙烯酮吸收工序流程示意图见图4.2-2。 ①乙烯酮的吸收 由裂解炉产生的乙烯酮气体和废气首先进入第一吸收塔(T-201)底部,与塔顶部喷淋的醋酸,醋酐的混合液逆向接触,使大部分乙烯酮被吸收生成醋酐,塔底出来的粗醋酐浓度为85wt%,进入粗醋酐贮罐中。

图4.2-1 醋酸裂解工艺流程示意图

第一吸收塔吸收液从粗醋酸酐罐(V-301)下部用第一吸收塔循环液泵(P-201)与来自第二吸收塔底部的循环液一起打入第一吸收塔循环冷却器经工业冷却带走反应热后进入第一吸收塔顶部。 第一吸收塔操作真空度:640mmHg;操作温度:35~40℃。 在第一吸收塔中未被吸收的乙烯酮气体,连同废气从塔顶出来进入第二吸收塔底部,与从塔顶喷淋下来的吸收液逆向接触,在第二吸收塔中,乙烯酮气体几乎全部被吸收掉,生成的粗醋酐及醋酸混合液与第一吸收塔循环液合并,同时取出一部分作为循环液进入第二吸收塔循环液泵(P-202)作循环吸收液用。 来自蒸馏系统吸收的醋酸与来自醋酸高位槽(V-401)的冰醋酸根据第一吸收塔排出的粗醋酐的浓度加入到第二吸收塔循环液中。循环液泵打入第二吸收塔冷却器(E-202)用工业水冷却到25℃左右进入第二吸收塔顶部作喷淋吸收液用。 ②尾气洗涤 由第二吸收塔顶部出来的尾气在洗涤塔(T-203)中用循环洗涤液贮槽(V-201)中的水洗涤其中的醋酸蒸汽。洗涤液用循环泵(P-203)输送经冷却器用冷冻盐水冷却后进入洗涤塔。洗涤液循环使用,当稀醋酸浓度提高到20%后,将此醋酸用循环液泵打至稀醋酸回收工序稀醋酸贮槽。 由洗涤塔顶出来的尾气,再经尾气洗涤塔用水洗涤,然后,进入水环真空泵,分离罐,经液封槽进入裂化炉作燃料之用。 尾气洗涤塔的废水经液封槽放入下水,控制废水含酸小于0.09wt%操作温度20℃。 裂化、吸收系统所需要的真空度,全部由水环真空泵(P-204)提供。

果糖生产工艺

果糖生产工艺 生产工艺2010-01-22 15:59:13阅读415评论14 字号:大中 小订阅 生产果糖的方法是用淀粉做原料,淀粉水解后经固定化葡萄 糖异构酶转化为糖,其中含有42%的果糖和58%的葡萄糖,这种混合物称为果葡糖浆或高果糖浆。 一、葡萄糖和果糖异构化反应 葡萄糖为醛己糖,果糖为酮己糖,二者互分同分异构体,在 一定条件下可以相互转化。 1、碱性异构化反应 在碱性条件下,葡萄糖通过1、2烯二醇生成果糖、D、甘露糖,由于碱异构化达到反应平衡点所需时间长,转化率较低,糖的分解反应显著,还原糖损失过多,产生有色物质和酸性物质, 影响颜色和味道,精致较困难,故在工业上未曾使用。 通过碱性异构化反应,葡萄糖转化成果糖的转化率一般约达2127%,糖分损失约1015%,采用较高的反应温度,较短的反应时间和较高的糖浓度,碱性催化效果有一定的提高,异构转化率可达到3335%,糖分损失为23%,在碱性催化剂中以氢氧化钠的催化效果较好。 2、葡萄糖异构酶反应 葡萄糖在异构酶作用下可转变成果糖的,但这种催化反应是

可逆的,即葡萄糖向也可以向果糖的转变,因此异构酶作用在理 论上可使50%的葡萄糖转为果糖,达到平衡点。 葡萄糖异构酶在较高下可催化果糖发生异构生成阿洛酮糖 和甘露糖,但在7或以下进行,只有微量的产生。对食品应用无影 响。 由于异构化最后阶段反应速度慢,为了抑制和降低糖的分解,减少糖分损失,一般在果糖含量达4243%便终止反应。由葡萄糖向果糖转变的反应是吸热反应,异构化反应温度升高,平衡 点向果糖移动,但超过70 C以上进行反应时,酶易受热活力消失,糖分也会受热分解,产生有色物质,所以实际工业上的反应温度是有一定限制的。 硼酸盐能与果糖生成络和结构,使转化率提高到8090%,且硼酸盐能回收重复使用,可回收率还达不到规模生产的要求,影 响实际应用效果。 二、果葡糖浆生产工艺 在葡萄糖异构酶的催化作用下,葡萄糖液中的一部分转变为果糖,因为它的糖分组成是果糖和葡萄糖的混合糖浆,故称为果 葡糖浆。由玉米淀粉得来的果葡糖浆叫高果玉米糖浆(),从其它淀粉比如大米、木薯、马铃薯、小麦等得到的果葡糖浆称为高果糖浆()。果葡糖浆有42型(含果糖42%), 55型(55%), 90 型 (90%),分别表示为42、55和90。 42果葡糖浆经色谱分离,可得果糖含量高达90%以上的糖浆

氨碱法纯碱生产的主要原料概述讲课教案

氨碱法纯碱生产的主要原料概述

氨碱法纯碱生产的主要原料概述 一、原盐(食盐) 1、原盐的物化性质及成份规格: 原盐是氨碱法纯碱生产的主要原料。原盐的主要成份为氯化钠,化学分子式为NaCL,纯氯化钠为无色等轴晶体,但是由于原盐是由许多晶体机和而成,晶体之间的缝隙中往往含有卤水或者空气,因而变成白色而且不透明体,同时又因含有泥沙等杂质,使原盐常呈现灰褐色,氯化钠晶体通常是正六面体。 (1)食盐的物化性质: 氯化钠的分子量 58.45 熔点 800℃ 沸点 1440℃ 20℃时比热 0.867(J/g℃) 25℃时密度 2.161t/m3 原盐中因为含有氯化镁等杂质,容易吸收空气中的水分而潮解。氯化钠易溶于水,其溶解热为——4.9KJ/mol,溶解过程为吸热反应,当制成饱和盐水时,可使溶液温度降低6℃多。氯化钠的溶解度随温度升高没有明显的变化,这一性质与绝大多数易溶物质溶解度随着温度升高而增加的性质不同,所以其水溶液(卤水)在冷冻工业中被用作载冷体。 (2)食盐的质量标准: 作为制碱工业的原料,要求原盐中的主要成份NaCL含量尽可能高,而泥沙及其他杂质,特别是钙、镁杂质越低越好。因为食盐中的氯化镁、硫酸镁、硫酸钙等杂质,在盐水精制、吸氨、碳化过程中,会生成炭酸镁、碳酸钙及其他

复盐等,使塔器与管道堵塞,这些杂质如不能在碳化以前清除掉,就会较多地混入纯碱中,使产品的品位降低,因此用于氨碱法的食盐一般需要符合以下标准: NaCL% ≥ 90%;水分% ≤ 4.2%;Mg2+% ≤0.8%;SO 4 2-%≤ 0.8%。 2、原盐的需要用量 氨碱法纯碱生产的全过程,可以归结为一个综合的化学反应方程式。即 CaCO 3+2NaCL= CaCL 2 +Na 2 CO 3 2×58.45 106 X 1000kg 按照上述反应方程式,可以计算出生产1t纯碱理论上所需要的氯化钠量 X=58.45×2×1000/106=1103kg 所求出的X 是指生产每吨纯碱(含Na 2CO 3 100%) 所需要的纯的氯化钠(折 NaCL100%) 的量。实际生产中,由于食盐中只有90%左右的氯化钠,而且又只能有70-75%的NaCL可以转化为Na2CO3, Na+离子至少损失27%以上,加之过程中跑、冒、滴、漏等各项损失,实际耗用食盐的量远远超过上述理论用量,这样使每生产1吨工业纯碱所需耗用的原盐实物量高达1.6—1.7t之多。氨碱法制碱的食盐消耗量是很大的,纯碱工业从来就是用盐大户,因此必须保证有大量、廉价的原盐供应,才能维持生产并在经济上获益。就其纯度而言,矿盐多数要比海盐为高,并可以采用注入高压水压裂地下化盐方法进行开采,得到接近饱和的卤水,节省设备和人力,降低成本。十分适用于由湿法精制盐水的氨碱法生产,不过要铺设卤水输送管道或久盐矿附近建厂均存在其他制约因素,而我国又以盛产海盐为主,尽管其质量不如矿盐,也仍然是氨碱厂原料的天然宝库,所以我国大多数碱厂是以海盐为原料,临海发展纯碱生产。

醋酸甲酯羰基合成醋酐的工艺进展

所谓羰基合成醋酐就是指醋酸甲酯与CO进行羰基合成过程。根据羰基合成所处的状态可分为液相法和气相法,反应的起始原料可以是甲醇(直接法),也可以是醋酸甲酯(间接法)。以甲醇为原料生产醋酐有两条路线,一是甲醇与醋酸先酯化,然后醋酸甲酯羰基化生产醋酐;二是醋酸甲酯羰基化生产醋酐,部分醋酐产品与甲醇反应提供原料醋酸甲酯。 液相羰化法依斯曼柯达公司采用反应蒸馏工艺制造醋酐。醋酸(含水量小于0.5%)与甲醇在塔式反应器内进行酯化反应,生成的醋酸甲酯产品直接由塔顶蒸出,用硫酸作催化剂。自羰化工序循环的醋酸进入反应蒸馏塔的上部,新鲜的由塔底部进入,两种反应物料逆向流动,酯化反应蒸发在每块板上进行。由于反应蒸馏在每个塔板上蒸发除去醋酸甲酯,这就大大促进了酯化反应,提高了转化率。原料甲醇和酯化反应生成的水与产物醋酸甲酯形成共沸物,如醋酸甲酯95%与水5%;醋酸甲酯81%与水19%(均为质量分数)。原料醋酸也是萃取剂,又可以把剩余的共沸物中的甲醇反应掉。因此产品很容易提纯。这种反应蒸

馏技术要比其它类型酯化技术先进合理,国内也有很多单位在研究。在反应区塔盘上的停留时间的选择是很重要的参数,它直接影响到萃取的效率,这些逆流塔盘可以是高效的金属丝网、泡罩塔和逆流的槽式塔盘,均具有较长的停留时间,可达到24h。产品纯度非常之高,转换率也很高,反应产物与反应物分子比较接近化学当量。反应段的温度控制在65~85℃之间、塔的操作压力为大气压,催化剂硫酸浓度为95%~98% (质量分数),在塔的萃取蒸馏段的底部进入,与醋酸的质量比为0.01,反应物的停留时间随硫酸浓度增加而增加。由于反应物是高腐蚀性的,所以塔的再沸器需要特种材料。反应蒸馏的塔顶冷凝器采用部分冷凝,冷凝液回流进塔,未冷凝的气相醋酸甲酯供给羰基化反应工序。回流比控制在1.5~1.7,回流比超过2.0时转化率会迅速下降。 反应产物与H2/CO物质的量比有密切相关,氢的比例增大,羰化产率也增大。因为H2能使[Rh(CO)2I4]-还原为具有活性的[Rh(CO) I2]-,但过高的H2浓度会增加副产物醋酸乙烯,一般原料CO中含 2 H22%~7%,可以增加催化剂的活性与寿命。在羰化工序中来自酯化工序的醋酸甲酯与等当量的碘甲烷混合进入进料罐中,用泵将催化剂复合物经进料预热器将物料温度升到180℃,然后将此液相物料从反应器(带有搅拌器)上部进入反应器,操作压力2.45MPa,反应气体(主要是CO和少量H2)由循环压缩机打循环,以保持催化剂的活性。反应转换率为75%,选择性大于95%,反应温度以循环的反应液通过废热锅炉来控制。未反应气体通过冷凝后除去冷凝液,由循环压缩机压入反应器内。反应产物经控制后进入带有夹套的闪蒸器中,闪蒸器压力降至

(生产管理知识)淀粉糖的生产工艺和种类

淀粉糖的生产工艺和种类 生产工艺有酸法、酶法、酸酶法三种,不同的工艺,其甜度、胶粘性、增稠性、保潮性、吸湿性、渗透压力、颜色稳定性、焦化性、还原性、发酵性是不同的,不管哪种工艺都是一个复杂的水解过程。淀粉水解过程存在三种主要反应:一是水解为葡萄糖;二是水解成葡萄糖后重新复合成异麦芽糖等复合糖;三是葡萄糖分解生成5-烃甲基糖醛及酸丙酸色素物质。 1.酸法水解。有盐酸、草酸,其中盐酸的水解淀粉能力高,但酸法水解缺乏专一性,同时产生复合反应,温度愈高,复合反应愈多,生成的有色物质多,颜色深,用酸量多,需中和碱量大,因之产生的灰分也多。 2.酶法水解。具有高度的专一性,副产物少,纯度高,糖色浅,因之减少了净化工序和净化剂的用量,与酸法相比,可以转化较高浓度的固形物,提高效率,减少损耗,降低成本,所得母液还可以利用,而且在常温常压下进行,设备工艺都比较简单。 3.酸酶法。投料资度18~20Bx°,为酸法的两倍,节省费用,缩短时间,DE值(糖化率)可达96%,纯度高,糖液色浅,容易结晶析出,用酸量少,仅为酸法的20%,产品质量高。 淀粉糖产品由于是淀粉水解而得,因此,淀粉水解的速度、水解的程度、液化、糖化、净化、结晶、淀粉原料、催化效率以及工艺设备性能等,均能影响淀粉糖液的质量。淀粉品种不同,化学结构不同,对液化亦有不同的影响。淀粉中的蛋白质、脂肪、灰分等杂质均能影响催化效率,降低酸的有效浓度,尤其是淀粉中的含氮物质对热稳定性有明显的影响。硫酸铵受热分解产生氮与羧甲基糠醛作用,能产生大量有色物质,迅速焦化。玉米中的植酸盐要消耗部分酸。总之不管什么液化方法,都存在不溶性淀粉颗粒,这种淀粉颗粒能与脂肪形成络合物,呈螺旋结构,不容易水解,降低了糖化率。

纯碱生产工艺简介

纯碱生产工艺简介 纯碱生产工艺主要分天然碱法和合成碱法,而合成碱法又分氨碱法和联碱法。 1.天然碱 目前全世界发现天然碱矿的仅有美国、中国、土耳其、肯尼亚等少数国家,其中以美国的绿河天然碱矿最有名。绿河地区的天然碱矿床,有42个含倍半碳酸钠的矿层。已知矿层厚度在1.2m以上(最厚达11m),含矿面积在670km2(最大达2007km2)的有25层,位于地表以下198~914m,,计算倍半碳酸钠(Na2CO3.NaHCO3.2H2O)储量为613亿t,即使全世界所有碱厂全部停产,美国天然碱也可供世界1300年纯碱用量。绿河地区各公司主要采用机械化开采。地面加工装置,主要采用一水碱流程生产重质纯碱。美国各天然碱厂目前的市场运作方法是:国内,各厂进行有序竞争;国外出口,各厂联合,成立一个专营出口的组织“ANSAC”(美国天然碱公司),美国天然碱不但质量好,而且生产成本仅为60美元/吨左右,远低于我国合成纯碱成本90美元/吨-100美元/吨左右,因此它具有很强的竞争力。 而位于河南省桐柏县的天然碱矿,总储量达1.5亿吨,远景储量3亿~5亿吨,占全国天然碱储量的80%,位居亚洲第一、世界第二位。内蒙古伊化集团在桐柏建立了以天然碱为主的化工园区,其优质的低盐重质纯碱设计年产量达100万吨。 天然碱生产工艺主要有三种:

a. 倍半碱流程 矿石开采-溶解-澄清除去杂质-循环母液-三效真空结晶-240度煅烧 b. 卤水碳化流程 天然卤水-碳化塔碳化为重碱-干燥-煅烧为粗碱-用硝酸钠在155度漂白-煅烧,煅烧用二氧化碳由自备电厂提供 c. 一水碱流程 矿石开采-破碎到7厘米以下-200度停留30分钟-粗碱-溶解、澄清-三效真空结晶-240度煅烧 天然碱法的主要优点是: a.成本低,每吨约60美元左右,而合成碱为90-100美元,完 全可以抵消运输成本。 b.质量方面盐分非常低,往往小于0.10%,产品粒度也非常好。 缺点是因为倍半碱矿容易和芒硝矿共生,产品中硫酸根含量比氨碱法要高,但现在用户对硫酸根的要求基本不高,所以这个缺点影响不大。 2.氨碱法(索尔维法) 我公司使用的就是氨碱法,中国的大碱厂中,潍坊、唐山、连云港,大化和天碱的一部分,青海,吉兰泰都是采用氨碱法。 a.氨碱法主要优点是产品质量好,可以生产低盐碱,硫酸盐的 含量也非常低。缺点是:a.有石灰和蒸馏工序,原材料消耗 高,原盐的利用率低,而氨碱法只能达到73-76%(就是转化

碳酸钾生产工艺综述

碳酸钾生产工艺综述 谢英惠,张 涵 (河北工业大学化工学院,天津 300130) 摘 要: 简要介绍了生产碳酸钾各种工艺方法及特点,特别介绍了用天然沸石作为离子交换剂,海水提取制备碳酸钾的新工艺。该工艺具有原料来源广泛,成本低的特点。 关键词: 碳酸钾;市场;沸石;离子交换 中图分类号:T Q131.1 文献标识码:A 文章编号:1673-6850(2008)03-0001-03 Revie w of Potassiu m Carbonate Pr oducti on X I E Yinghui,ZHANG Han (School of Che m ical Engineering,Hebei University of Technol ogy, Tianjin 300130,China ) Abstract: W e mainly intr oduced the vari ous methods of p r oducing potassiu m carbonate and their characteristics .A ne w method of p r oducing potassiu m carbonate fr om sea water using natural ze 2olite as the mediu m of i on exchange is es pecially intr oduced .I n the technol ogy,the s ource of ra w materials comes fr om a variety of s ources and the costs are cheap. Key words: potassiu m carbonate;market;zeolite;i on exchange 收稿日期:2007-11-13 作者简介:谢英惠(1958-),男,河北定州人,教授,研究方向为海水资源利用,化工新产品研制等。 1 生产概述 碳酸钾(又名钾碱),白色粉末状或细颗粒状结 晶,是一种重要的无机化工基础原料,有很强的吸湿性,易结块,易溶于水且水溶液呈碱性。20世纪70年代初我国开发成功并投入工业化生产,当时主要应用于合成氨厂合成气的净化,也可用作无氯钾肥,需求量较少。80年代以后,我国碳酸钾的需求量迅速增长,应用日趋广泛:化学工业中大量用作化肥脱碳剂,工业气体中硫化氢、二氧化碳的清除剂;橡胶的防老剂;玻璃工业中被大量用于制造计算机显示器,电视机显像管玻壳,电子管,精密玻璃器皿及各种装饰用特殊玻璃;在农业生产中是一种良好的无氯钾肥,其含有的碳酸根是植物进行光合作用的原料,且对土壤有疏松作用;此外碳酸钾还被广泛应用于电焊条、油墨、照相药品、聚酯、炸药、制革、电镀、 陶瓷、建材、水晶、钾肥皂以及医药的生产[1] 。 2 生活需求概况 [2] 我国碳酸钾生产始于20世纪60年代,经历了草木灰法、路布兰法和电解法,但都规模很小,没有 形成工业化生产。70年代初,山东鲁南化肥厂首创 了离子交换法生产碳酸钾,开创了碳酸钾工业生产的新局面,并于80年代初形成规模。80年代以后,随着国内经济的快速发展,尤其是电视机、计算机显示器行业及化肥工业的发展,碳酸钾市场需求激增,碳酸钾行业高速发展。1997年至1998年上半年碳酸钾市场疲软,但下半年以后市场复苏,国内的山西文通、鲁南化工厂等生产大厂均大幅度扩产。至2001年底我国碳酸钾的实际产量达到了12.86 万t,超过日本成为亚洲最大的碳酸钾生产国家。 随着彩电、计算机在发展中国家的普及和应用,可以预见今后对碳酸钾仍会有较大的需求;此外,我国化肥工业、食品工业发展很快,国内医药、食品、橡胶等多种行业已启动,这对碳酸钾的需求也有所增加;随着生产成本的进一步降低,碳酸钾作为无氯钾肥的可能性越来越大,在多种经济作物、高中档蔬菜等的生产中有很大的潜在市场。 随着发展中国家的快速发展,近几年世界范围内电视机和计算机需求的迅猛增长,使碳酸钾的需 1  第37卷第3期 盐业与化工

醋酐生产工艺介绍

醋酐生产工艺介绍 想了解醋酐生产工艺吗?今天我到好多网站上都没有找到,忽然想起好久之前注册的万客化工网,或许会有吧,没想到还真让我找到了,呼呼~~ 生产工艺 工业化的醋酐生产工艺有三种:乙醛氧化法、乙烯酮法和醋酸甲酯羰基化。 1.1 乙醛氧化法 乙醛氧化法技术来源为加拿大Sha Winigan化学公司。生产工艺如下:乙醛和氧在60℃、101 kPa或70℃、600-700kPa条件下进行氧化反应,用氧气或空气作氧化剂,以醋酸乙酯为溶剂,醋酸钴为催化剂,醋酸铜为促进剂。乙醛与氧气(过量约1%-2%)反应首先生成过氧醋酸,过氧醋酸再与乙醛反应生成醋酐和醋酸。在此条件下,乙醛转化率为95%,醋酐及醋酸产率的质量比为56:44。醋酐的总收率为70%-75%。通过改变工艺条件,可以提高醋酐的产率。反应方程式为: CH3CHO+O2→CH3COOOH; CH3COOOH+CH3CHO→CH3COOOCH(OH) CH3(单过氧醋酸酯); CH3COOOCH(OH)CH3→(CH3CO)2O+H2O; CH3COOOCH(OH)CH3→2CH3COOH。 每吨醋酐消耗乙醛1.165 t,标准状态空气2300 m3。乙醛氧化法流程简单,工艺成熟,但腐蚀严重,消耗较高,已逐渐被淘汰。在国外已被醋酸甲酯羰基化和乙烯酮法所替代。我国上海化学试剂总厂这种装置已经处于停产状态。 1.2 乙烯酮法 乙烯酮法按照原料不同又可以分为:醋酸法和丙酮法。 1.2.1 醋酸法 醋酸法技术来源为德国Wacher化学公司。生产工艺如下:第一步,醋酸在700-750℃、10-20kPa的压力及0.2%-0.3%磷酸三乙酯(按醋酸质量计)作催化剂的条件下,裂解脱水制成乙烯酮,醋酸转化率约为85%-90%,对乙烯酮的选择性(物质的量计)约为90%-95%。反应方程式为: CH3COOH→CH2=C=O+H2O+147 kJ/mol。 第二步是液体乙酸吸收乙烯酮生成醋酐,经精馏提纯制得成品醋酐,乙烯酮的转化率约100%。反应方程式为: CH3COOH+CH2=C=O→(CH3CO)2O+62.8kJ/mol。 该生产工艺是德国Wacher化学公司开发成功的,并于1936年实现工业化。现有两种生产流程: 其一,为塔式流程。用4个填料塔进行合成与分离。每吨醋酐的消耗定额为,醋酸1.35t,催化剂1.5-2kg,氨0.7-1.0kg,回收醋酸100-160kg。 其二,为液环泵流程。以液环泵为反应及吸收设备。该流程十分简单,正在取代塔式流程。每吨产品的消耗定额为,醋酸1.22 t,裂解率75%,合成收率96%。 1.2.2 丙酮法

酶的固定化生产果葡糖浆

基本格式: 例如:实验三柠檬酸发酵 1. 实验目的 2. 实验原理 3. 实验装置与流程 4. 实验步骤及方法 5. 实验数据处理 6. 实验报告 7. 结果与讨论 8. 主要符号说明 9. 参考文献 10. 预习与思考 注:以上格式根据不同实验要求,可以删减或增加。 四、几点说明 1参考文献一般不要早于1995年。 2每一个实验的字数原则上控制在1000~3000字范围内。为使本书成为精品,不刻意分配字数,一切从需要出发。 3专业名称和物料名称等专业词汇以手册和国标为准。 4篇末署名例:XXX大学XXX XXXX@XXXXX。 5以提高学生的实践能力,启发创新性思维为目标。本次修订计划在原第一版编者之外,邀请熟悉所列题目,具有科学研究和技术开发经验的教师和企业人员撰稿。本书部分实验方法用于教学实验,部分用于学生的毕业论文的实验和课外科研活动,也作为科学研究和技术开发的参考。本书主要面向生物工程专业本科生,兼顾研究生、技术职业学院学生,教师和企业技术人员。 所有参加人员自然为本教材编委会委员。

实验48 酶连续反应操作技术(酶的固定化生产果葡糖浆) 1、实验目的 掌握包埋法制备固定化酶的技术,学习果糖含量的测定方法,了解填充床固定化酶反应柱连续生产果葡糖浆的工艺。 2、实验原理 蔗糖在生产、生活中有着广泛的应用,为补充蔗糖来源的不足,人们利用微生物酶将淀粉水解获得葡萄糖,但葡萄糖的甜度不及蔗糖,利用葡萄糖异构酶把葡萄糖异构成果糖,则可解决这一问题。葡萄糖异构化反应平衡时,可将40~50%的葡萄糖转化为果糖。人们将这种葡萄糖与果糖混合的糖浆称为果葡糖浆或高果糖浆。 固定化酶,就是把游离的水溶性酶,限制或固定于某一局部的空间或固体载体上,使其保持活性并可反复利用的方法。固定化酶技术解决了游离的溶液酶,在反应过程中会随着产品一起流失,影响产品的质量;反应后分离困难,无法重复使用;对热、强酸、强碱和有机溶剂等均不够稳定等缺点,保持了催化效率高、稳定性强等优点,自20世纪60年代末,日本田边制药公司将固定化氨基酰化酶用于氨基酸生产以来,固定化技术已在生化工程及酶工程领域中成为各国学者的研究热点。常用的固定化酶的方法主要有:载体结合法、交联法和包埋法。 包埋法是将酶(细胞)包在凝胶微小格子内,或是将酶(细胞)包裹在半透性聚合物膜内的固定化方法。包埋法是制备固定化细胞最常用的方法,此法的优点是:酶分子本身不参加格子的形成,大多数酶都可用该法固定化,且方法较为简便;酶分子仅仅是被包埋起来而未受到化学作用,故活力较高。可用于包埋的聚合物有:胶原、卡拉胶、海藻酸钙、聚丙烯酰胺凝胶等,其中海藻酸钙包埋法应用较为广泛。海藻酸钠为天然高分子多糖,具有固化、成形方便、对微生物毒性小等优点。利用海藻酸钠固定化酶操作简便、安全、成本低廉。本实验采用海藻酸钙包埋法,以葡萄糖异构酶为材料连续生产果葡糖浆。 3.实验仪器及材料 (1)实验仪器 10mL注射器、恒流泵、烧杯、烧瓶、玻璃夹套柱、磁力搅拌器、超级恒温水浴、分光光度计。 (2)实验材料 葡萄糖异构酶、40%葡萄糖溶液、4%海藻酸钠溶液、0.05mol/LCaCl2溶液、pH7.8磷酸缓冲液、无菌生理盐水、MgSO4·7H2O、1.5%半胱氨酸盐酸溶液、0.12%咔唑无水乙醇溶液、69%(v/v)硫酸溶液、50μg/mL标准果糖溶液。 4.实验流程 40%葡萄糖溶液固定化酶颗粒4℃过夜 生理盐水清洗装柱60℃收集反应液咔唑比色法 计算果糖含量计算葡萄糖转化率

相关文档
最新文档