Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings

Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings
Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings

四种再生纤维的概述

四种再生纤维的概述及鉴定方式 再生纤维具有优良的吸湿性、穿着舒适性,是纺织服装业最理想、最有开 发潜力的纺织原料。 再生纤维概述: 1.Tencel纤维 Tencel纤维是以针叶树为主的木浆、水和溶剂氧化胺混合,加热至完全溶解,在溶解过程中不会产生任何衍生物和化学作用,经除杂而直接纺丝,其分子结构是简单的碳水化合物。Tencel纤维在泥土中能完全分解,对环境无污染;另外,生产中所使用的氧化胺溶剂对人体完全无害,几乎完全能回收,可反复使用,生产中原料浆粕所含的纤维素分子不起化学变化,无副产物,无废弃物排出厂外,是环保或绿色纤维。该纤维织物具有良好的吸湿性、舒适性、悬垂性和硬挺度且染色性好,加之又能与棉、毛、麻、腈、涤等混纺,可以环锭纺、气流纺、包芯纺,纺成各种棉型和毛型纱、包芯纱等。 2.Modal纤维 Modal纤维是一种全新的纤维素纤维,Modal纤维的原料来自于大自然的木材,使用后可以自然降解。由于这类纤维是采用天然纤维素为原料,具有生物将解性,并且在纤维生产过程中不产生类似粘胶县委的严重污染环境问题,是21世纪的新型环保纤维。Modal纤维价格是Tencel纤维的一半,系第二代再生纤维素纤维。Modal纤维可与多种纤维混纺、交织,发挥各自纤维的特点,达 到更佳的服用效果。Modal纤维面料吸湿性能、透气性能优于纯棉织物,其手 感柔软,悬垂性好,穿着舒适,色泽光亮,是一种天然的丝光面料。 3.大豆蛋白纤维 大豆蛋白纤维是以出油后的大豆废粕为原料,运用生物工程技术,将豆粕中的球蛋白提纯,并通过助剂、生物酶的作用,使提纯的球蛋白改变空间结构,再添加羟基和氨基等高聚物,配制成一定浓度的蛋白纺丝液,用湿法纺丝工艺纺成。豆粕是油脂车间的副产品,在我国资源十分吩咐,属废物综合利用,资源取之不尽,用之不竭。大豆蛋白纤维可称为新世纪的“绿色纤维”。由于大豆蛋白纤维外层基本上是蛋白质,与人体皮肤亲和性好,且含有多种人体所必须的氨基酸,具有良好的保健作用。在大豆蛋白纤维纺丝工艺中加入定量的有杀菌消炎作用的中草药与蛋白质侧链以化学键相结合,药效显著且持

再生纤维概述

再生纤维具有优良的吸湿性、穿着舒适性,是纺织服装业最理想、最有开发潜力的纺织原料。 再生纤维概述: 1.Tencel纤维 Tencel纤维是以针叶树为主的木浆、水和溶剂氧化胺混合,加热至完全溶解,在溶解过程中不会产生任何衍生物和化学作用,经除杂而直接纺丝,其分子结构是简单的碳水化合物。Tencel纤维在泥土中能完全分解,对环境无污染;另外,生产中所使用的氧化胺溶剂对人体完全无害,几乎完全能回收,可反复使用,生产中原料浆粕所含的纤维素分子不起化学变化,无副产物,无废弃物排出厂外,是环保或绿色纤维。该纤维织物具有良好的吸湿性、舒适性、悬垂性和硬挺度且染色性好,加之又能与棉、毛、麻、腈、涤等混纺,可以环锭纺、气流纺、包芯纺,纺成各种棉型和毛型纱、包芯纱等。 2.Modal纤维 Modal纤维是一种全新的纤维素纤维,Modal纤维的原料来自于大自然的木材,使用后可以自然降解。由于这类纤维是采用天然纤维素为原料,具有生物将解性,并且在纤维生产过程中不产生类似粘胶县委的严重污染环境问题,是21世纪的新型环保纤维。Modal纤维价格是Tencel纤维的一半,系第二代再生纤维素纤维。Modal纤维可与多种纤维混纺、交织,发挥各自纤维的特点,达到更佳的服用效果。Modal纤维面料吸湿性能、透气性能优于纯棉织物,其手感柔软,悬垂性好,穿着舒适,色泽光亮,是一种天然的丝光面料。 3.大豆蛋白纤维 大豆蛋白纤维是以出油后的大豆废粕为原料,运用生物工程技术,将豆粕中的球蛋白提纯,并通过助剂、生物酶的作用,使提纯的球蛋白改变空间结构,再添加羟基和氨基等高聚物,配制成一定浓度的蛋白纺丝液,用湿法纺丝工艺纺成。豆粕是油脂车间的副产品,在我国资源十分吩咐,属废物综合利用,资源取之不尽,用之不竭。大豆蛋白纤维可称为新世纪的“绿色纤维”。由于大豆蛋白纤维外层基本上是蛋白质,与人体皮肤亲和性好,且含有多种人体所必须的氨基酸,具有良好的保健作用。在大豆蛋白纤维纺丝工艺中加入定量的有杀菌消炎作用的中草药与蛋白质侧链以化学键相结合,药效显著且持久,避免了棉制品用后整理方法开发的功能性产品,其药效难以持续的缺点。大豆蛋白纤维织物手感柔软、光滑,具有良好的吸湿透气性,有真丝般的光泽,抗皱性优于真丝,尺寸稳定性好。 4.竹纤维 竹纤维是继大豆蛋白纤维之后我国自行开发研制并产业化的新型再生纤维素纤维,竹纤维分竹素纤维和竹原纤维。竹素纤维是以毛竹为原料,在竹浆中加入功能性助剂,经湿法纺丝加工而成。竹原纤维是将毛竹经天然生物制剂处理后所制取的纤维。作为纺丝原料的竹浆粕,来源于速成的鲜竹,资源十分丰富。其废弃物土埋、焚烧不会造成环境污染,属于环保型纤维,满足绿色消费的需求。竹纤维是性能与粘胶纤维相类似,竹纤维织物具有良好的吸湿、透气性,其悬垂性和染色性能也比较好,有蚕丝般的光泽和手感,且具有抗菌、防臭、防紫外线功能

羟乙基纤维素性质

羟乙基纤维素(HEC) 是一种白色或淡黄色,无味、无毒的纤维状或粉末状固体, 由碱性纤维素和环氧乙烷(或氯乙醇) 经醚化反应制备, 属非离子型可溶纤维素醚类。由于HEC 具有良好的增稠、悬浮、分散、乳化、粘合、成膜、保护水分和提供保护胶体等特性, 已被广泛应用在石油开采、涂料、建筑、医药食品、纺织、造纸以及高分子聚合反应等领域。40目过筛率≥99%;软化温度:135-140℃ ;表现密度:0.35-0.61g/ml;分解温度:205-210℃ ;燃烧速度较慢;平衡含温 量:23℃ ;50%rh时6%,84%rh时29%。 化学名称 一、羟乙基纤维素(HEC) 结构式: 二、技术要求 质量标准项目指标 摩尔取代度(M.S) 1.8-2.0 水份(%) ≤10 水不溶物(%)≤0.5 PH值 6.0-8.5 重金属(ug/g)≤20 灰分(%)≤5 粘度(mpa.s)2%20℃水溶液 5-60000 铅(%)≤0.001 编辑本段性状 既溶于凉水溶于热水,一般情况下在大多数有机溶媒中不溶。PH值在2-12范围内粘度变化较小,但超过此范围粘度下降。 编辑本段重要性质 羟乙基纤维素作为一种非离子型的表面活性剂,除具有增稠、悬浮、粘合、浮化、成膜、分散、保水及提供保护胶体作用外,还具有下列性质: 1、 HEC可溶于热水或冷水,高温或煮沸不沉淀,使它具有大范围的溶解性和粘度特性,及非热凝胶性; 2、本身非离子型可与大范围内的其他水溶性聚合物,表面活性剂、盐共存,是含高浓度电解质溶液的一种优良的胶体增稠剂; 3、保水能力比甲基纤维素高出一倍,具有较好的流动调节性,

4、 HEC的分散能力与公认的甲基纤维素和羟丙基甲基纤维素相比分散能力最差,但保护胶体能力最强。 编辑本段羟乙基纤维素使用方法 一.直接在生产时加入 1.于备有高应切搅拌器的大桶中加入净水。 2.开始低速不停地搅拌亦慢慢把羟乙基纤维素均匀筛入溶液中。 3.继续搅拌至所有颗粒物湿透。 4.然后加入防雷剂,碱性添加剂等如颜料、分散助剂、氨水。 5.搅拌至所有羟乙基纤维素完全溶解(溶液粘度明显增加)才加入配方中其他组份,研磨至成 品为止。 二、配备母液候用 此法是先配备浓度较高之母液,然后再加入乳胶漆中。此法优点是有较大的灵活性,可以直接加入漆成品中,但应适当贮存。步骤与方法1中1-4部相似,不同之处是无须高拌至完全溶解成粘稠溶液。 三、配成粥状物候用 由于有机溶剂对羟乙基纤维素来说是不良溶剂,因此可用这些有机溶剂来配备粥状物。最常用之有机溶剂是漆配方中的有机液体如乙二醇、丙二醇和成膜剂(如乙二醇或二乙二醇丁基醋酸脂)。冰水亦是不良溶剂,故冰水亦常与有机液体一起,用于配备粥状物。粥状物之羟乙基纤维素可直接加入漆中,在粥状时羟乙基纤维素已被兖分泡涨。当加入漆中后,便马上溶解,并起增稠作用。加入后仍须不断搅拌直至羟乙基纤维素完全溶解,均匀为止。一般粥状物是用六份有机溶剂或冰水与一份羟乙基纤维素混合成,约6-30分钟后,羟乙基纤维素便水解并明显地发涨。夏季时一般水温度太高,不宜用配备粥状物。 编辑本段注意事项 由于经表面处理的羟乙基纤维素是粉状或纤维素固体,只要注意下列事项,则很容易操作并使之溶于溶水中。 1.在加入羟乙基纤维素前和后,均必须不停地搅拌,直至溶液完全透明澄清为止。

新型再生纤维素纤维

新型再生纤维素纤维 小组成员:翁密侬 41006010214 刘肖肖 41006010219 冯莹莹 41006010215 张玲玲 41006010217 张亚婷 41006010209 顾恬静 41006010206

新型再生纤维素纤维的发展前景 (一)资源前景 从长远看,合成纤维的原料石油是一次性资源,终会枯竭,因此,在这一背景下,发展纤维素纤维是解决纺织品原料的长远之计。自然界纤维年产量约1000亿吨,大约只有2.5%是通过再生途径制成纤维加以利用的。可见,纤维素资源十分丰富,而且加上纤维素是可再生的自然资源,具有可持续性、可循环性。因此,作为纺织品的原料,从资源供应量这一方面来说,再生纤维素纤维有着相当大的竞争力,发展前景十分可观。 (二)市场前景 自1960年以来,世界纤维消耗量的增长与人口增长呈并行发展趋势及对2020年世界人口和纤维消耗量增长的预测,2020年世界纤维的总消耗量为7000万吨,人均9.2kg。若再生纤维素纤维仍保持在目前的水平上,则棉纤维须从目前的1800万吨增加到3200万吨,而生产这些棉纤维所需资源(土地和水)几乎是无法到达的,而作为棉纤维代用品的再生纤维素的原料木材等将大幅增加。因此,大力发展再生纤维素纤维既是市场的需求,从资源方面来说又是可能的。另外,随着人们对舒适健康生活重视的提高,保健纺织品引起了消费者的极大关注。而后面介绍的四种新型再生纤维素纤维中,竹纤维和甲壳素纤维都有保健功能,竹纤维在生产过程中无虫蛀、无腐烂、无需使用任何农药,且因为竹子的天然抗菌性,使纤维在服用中不会对皮肤造成任何过敏性反应。甲壳素纤维具有抑菌、防臭、止痒等功能。可见,新型再生纤维素纤维有着相当大的市场潜力。 (三)绿色前景 当今,由于全球生态环境受到严重的破坏,环境污染日趋严重,环保议题已成为全人类共同关心的焦点,因此,在“我们只有一个地球”的口号下,消费者越来越多地考虑到产品对生态的影响,生产过程对环境的影响,天然资源的消耗及产品的可处理性等问题,从而,在人们思想意识中逐渐形成“绿色产品”、“绿色消费”、“绿色营销”等观念,且已形成一股国际潮流。据经济协作与开发组织(OECD)在OECD国家中作过的调查表明,大部分消费者愿意选购较高的环保产品。加拿大一项全国性民意调查中,有80%接受调查者表示,如果环保产品价格比一般产品价格高出10%左右,还是愿意购买环保产品。前面介绍的四种新型再生纤维素纤维都属于绿色纤维,在生产过程中不会对生态环境造成危害;纤维制

纤维素醚的概述要点

纤维素醚的概述: 纤维素醚是一种非离子型半合成的高分子聚合物,具有水溶性和溶剂性两种,在不同行业中所引起的作用是不同的,比如在化学建材中,它具有一下复合作用:①保水剂②增稠剂③流平性④成膜性⑤粘结剂;而在聚氯乙烯行业,它就是一种乳化剂、分散剂;在医药行业,它就是一种粘结剂和缓控释骨架材料等,正因为纤维素具有多种的复合作用,所以它的应用领域也最为广泛。下面我重点介绍一下纤维素醚在各种建材中的使用方法和作用。 1、乳胶漆中: 在乳胶漆行中,要选择羟乙基纤维素中,等粘度的一般规格为30000-50000cps,它与HBR250规格相对应,参考用量一般是1.5‰-2‰左右。羟乙基在乳胶漆中的主要作用,就是增稠,防止颜料凝胶化,有助于颜料的分散,胶乳,的稳定,并可以提高组份的粘度,有助于施工的流平性能:羟乙基纤维素使用比较方便,冷水、热水都可以溶解,并且不受PH值的影响,在PI值2一12之间都可以安心使用,使用的方法是由以下三种: I、直接在生产中加入: 此方法应该选择羟乙基纤维素延迟型的,溶解时间在30分钟以上的羟乙基纤维素,其使用步骤如下:①于备有高应切搅拌器的容器内力口人定量的纯净水②开始低速不停的搅拌,同时慢慢地把羟乙基均匀的加入溶液中③继续搅拌至所有颗粒物料湿透④加入其它助剂和碱性添加剂等⑤搅拌至所有羟乙基完全溶解,再加入配方中的其它组份,研磨到成品为止。 Ⅱ、配备母液侯用: 此方法可选择速溶型,并且具有防霉效果纤维素。此方法的优点是有较大的灵活性,可以直接加 入乳胶漆中,配制方法同①--④步骤相同。 Ⅲ、配成粥状物侯用: 由于有机溶剂对羟乙基来说是不良溶剂(不溶)因此可用这些溶剂配制粥状物。最常用有机溶剂是乳胶漆配方中的有机液体,如乙二醇、丙二醇和成膜剂(如二乙二醇丁基醋酸脂),粥状物羟乙基纤维素可以直接加入漆中,加入后仍继续搅拌至完全溶解为止。 2、刮墙腻子中: 目前,我国在大部分城市耐水、耐擦洗的环保型腻子已基本被人们所重视,在前几年间,由于用建筑胶水做成的腻子放射出甲醛气体损害人们的身体健康,建筑胶水是用聚乙烯醇和甲醛进行缩醛反应制的。所以这种材料逐渐被人们淘汰,而替代此材料的就是纤维素醚系列产品,也就是说发展环保建材,纤维素是目前唯一的一种材料。 在耐水腻子中又分为干粉腻子和腻子膏两种,这两种腻子中一般要选择甲基纤维素和羟丙基甲基两种,粘度规格一般在40000-75000cps之间最宜,在腻子中纤维素的主要作用就是保水、粘结、润滑等作用。 由于各个厂家的腻子配方不一样,有的是灰钙、轻钙、白水泥等,有的是石膏粉、灰钙、轻钙等,所以两种配方选择纤维素的规格粘度及其渗入量也不一样,一般的加入量为2‰-3‰左右。

编织管增强型醋酸纤维素中空纤维膜研究

编织管增强型醋酸纤维素中空纤维膜研究 醋酸纤维素(CA)是重要的天然纤维素衍生物,因其成膜性好、价格低廉,在分离膜领域占有重要地位。为提高CA中空纤维膜的力学强度,扩展CA中空纤维膜的应用范围,本文基于非溶剂致相分离(NIPS)成膜原理,采用同心圆复合纺丝技术,制备了编织管增强型(BR)CA中空纤维膜,对其结构与性能进行了研究。以CA 纤维编织管为增强体,以CA的N,N-二甲基乙酰胺(DMAc)溶液为铸膜液构筑表面 分离层,制得同质增强型(HR)CA中空纤维膜。研究表明,随铸膜液中CA浓度增加,膜的表面分离层更为致密,其外表面更为平滑,膜的平均孔径减小,牛血清蛋白(BSA)截留率增高,且膜的拉伸断裂强度(>11MPa)和爆破强度有所增大;当铸膜液中CA浓度高于10%时,所得膜的表面分离层与增强体之间界面结合状态较好。 活性污泥悬浮液对比过滤试验发现,HR CA膜较增强型聚偏氟乙烯(PVDF)中 空纤维膜具有更小的通量衰减率,且简单物理清洗后的通量回复率更高,表明CA 膜耐污染性能优于PVDF膜;膜的出水总有机碳(TOC)浓度低于20mmg·L-1,去除率接近90%。以CA和聚丙烯腈(PAN)混合纤维编织管为增强体,制得编织管增强 型CA中空纤维膜。混合纤维编织管的使用实现了同质纤维增强与异质纤维增强的结合,膜中同时存在同质增强界面和异质增强界面,不但可有效调控膜的界面 结合状态,而且可抑制CA纤维过度溶胀对膜通透性的不利影响。兼顾界面结合状态和通透性能,增强体中最佳CA/PAN纤维比为2/1。 膜的拉伸断裂强度主要取决于增强体,随编织管中PAN纤维比例增加,膜的 拉伸断裂强度由16.0MPa增大到62.9MPa。改变铸膜液所用溶剂种类研究发现, 以N,N-二甲基甲酰胺(DMF)为溶剂所得膜的纯水通量较大,而以二甲基亚砜(DMSO)为溶剂所得膜的纯水通量较小;以DMAc、DMF、N-甲基吡咯烷酮(NMP)为 溶剂,膜的蛋白质溶液通量较大且接近;所得膜的纯水通量回复率较高,均达90%左右,表现出较好的耐污染性能。根据拔出强度测试结果,以DMAc、DMF、DMSO 和NMP为溶剂铸膜液所得膜的界面结合强度依次降低。随铸膜液中CA浓度增加,膜的纯水通量减小,蛋白质溶液通量衰减率降低,同时表面分离层与增强体之间 界面结合强度增大。 随凝固浴温度增加,膜的纯水通量增大,而蛋白质溶液通量衰减增大,表面分离层与增强体之间界面结合状态变差。通过在表面分离层中混杂纳米材料,制得

醋酸纤维薄膜的应用-CLARIFOIL

醋酸纤维薄膜的应用--Clarifoil Clarifoil概述 Clarifoil既是产品醋酸纤维薄膜的商品名称,也是公司名 称,它具有很强的品牌识别度和悠久的历史。 Clarifoil公司一直致力于二醋酸纤维素薄膜复合印刷,丙酸,复 合膜, PVC膜,隔热膜,玻璃纸,以及其他包装薄膜的生产。 其使用的材料可回收再利用,生物降解,焚烧后对大气无污染。而且Clarifoil耐磨薄膜能大幅度降低包装磨擦带来的损耗。 醋酸纤维薄膜的应用--Clarifoil 复合膜,珠光膜--清晰度极高覆膜印刷,哑光膜以及半哑光膜 Satiné 和Semitone Clarifoil公司的产品品质是很多企业难以 项望其背的。清晰度极高的亮膜使得覆膜后的产品更熠熠升辉, 而哑光膜则赋予了包装沉稳高雅的效果。如果要想覆膜后有丝质 的效果,那么可以选择其他两种半哑光膜,一种是缎面,可用作 设计香水盒子,另一种是Semitone,它结合了精致的外表和高级 触感的特性,可用于化妆品盒子,公司介绍,饭店菜单,CD封面 和销售宣传单的覆膜。 所有Clarifoil出品的复合膜都显示了其先进的防划痕防标记性 能。而且,semitone独一无二的表面处理使其甚至可以防指纹印迹。所有用于印刷覆膜的复合膜都可以烫金,上胶和直接印刷,而且不需要做任何的预涂。 事实上,独立调查显示Clarifoil加强了复合膜的可循环利用的能力。Clarifoil 的灵活的生产方式促使其可以制造更多独特的特性,例如珠光膜(珠光薄膜是一种混合了不同颜色的透明复合膜,覆膜后仍可以看到原来底纸的颜色但是复合膜为整体添加了绝佳的光泽和颜色效果)和颜色膜。 带透明薄膜的硬纸盒--特别应用于食物包装 装在Clarifoil所生产的有透明薄膜的包装盒中售卖的商品的范围十分广泛:从意大利面条到香水,从衬衫到巧克力。 在货架上,奢侈品包装材料可以展示其产品最好的一面用以提高销售量。因此,透明薄膜的品质对此起到十分关键的作用。为加强消费者的兴趣,Clarifoil具备完全的透明度,表面光滑,并有良好的防痕

十三五规划(纤维素纤维)

再生纤维素纤维行业“十三五”发展规划 ——中国化学纤维工业协会纤维素纤维分会 前言 再生纤维素纤维是采用富含纤维素的植物原料,经一系列的化学处理和机械加工而制的的纤维,主要品种包括粘胶纤维、醋酸纤维和铜氨纤维等传统再生纤维素纤维,以及以天丝为代表的新型溶剂法纤维素纤维等。 再生纤维素纤维是重要的纺织材料之一,具有很好的吸湿性、染色性和舒适性。在人们对产品可回收、可降解、对织物舒适性要求越来越高的条件下,其在纺织原料中凸现出越来越重要的作用,另外,其原料为可再生资源,是循环经济可持续发展的重要化学纤维产品。因此,再生纤维素纤维有着更为重要的意义和广泛的发展空间。 我国再生纤维素纤维工业的整体水平和竞争能力的发展将对世界再生纤维素纤维工业 产生重要影响。“当前纺织行业发展的新常态特征日益凸显,对于企业提出更高的调整转型的要求,企业发展压力和挑战将持续增加,但同时也隐含着外部发展的机遇和行业自身提升的动力”。在当前新常态下如何生存与发展是再生纤维素纤维行业“十三五”面临的迫切任务。 《再生纤维素纤维行业“十三五”发展规划》总结分析了我国再生纤维素纤维制造行业的发展现状及特点,存在主要问题和产业发展趋势,明确了“十三五”期间行业发展由“数量型”向“技术效益型”战略转变的指导思想,明确了发展目标和发展重点,提出了发展高新技术、功能性、差别化纤维的技术方向和主要任务。对贯彻落实《国民经济和社会发展第十三个五年规划纲要》精神和《纺织工业“十三五”发展纲要》的具体要求,推动再生纤维素纤维行业的科技进步和自主创新,实现全面、协调和可持续发展,具有重要的指导作用。 一、“十二五”发展规划完成情况及特点 我国是世界最大的再生纤维素纤维生产国,主要生产粘胶纤维、醋酸纤维(用于烟草行业)、NMMO溶剂法纤维素纤维、低温尿素溶解纤维素纤维等。其主要产品是粘胶纤维,约占世界粘胶纤维总量近三分之二。原料采用进口木浆,进口棉短绒生产棉浆,国产木浆、棉浆、竹浆、纸改浆等品种,原料进口依存度约在60%左右。 “十二五”期间,纤维素纤维行业在大宗原料、纤维生产方面基本完成规划目标。在原料利用上发展较慢,木浆发展较快,许多大型纸浆生产企业都在转产溶解浆,溶解木浆产能已达150余万吨。棉浆生产由于资源受限,总量萎缩。竹、麻浆产量较低,秸秆利用进展缓慢。粘胶纤维工业在生产设备、工艺技术、产品质量、节能减排等方面都有了大幅度提高。高湿模量纤维、NMMO溶剂法纤维素纤维、低温尿素溶解纤维素纤维等也有了可喜的进步。 其特点是:企业规模不断增强、产量持续增长,产业集中度进一步加大、产业链配套有

纤维素醚的种类详细介绍

纤维素醚的种类及作用机理 保水剂是改善干混砂浆保水性能的关键外加剂,也是决定干混砂浆材料成本的关键外加剂 之一,其主要来源是纤维素醚。 1.1羟丙基甲基纤维素醚 羟丙基甲基纤维素是碱纤维素与醚化剂在一定条件下反应生成一系列产物的总称。碱纤维 素被不同的醚化剂取代而得到不同的纤维素醚。按取代基的电离性能,纤维素醚可分为离 子型(如羧甲基纤维素)和非离子型(如甲基纤维素)两大类。按取代基的种类,纤维素 醚可分为单醚(如甲基纤维素)和混合醚(如羟丙基甲基纤维素)。按可溶解性不同,可 分为水溶性(如羟乙基纤维素)和有机溶剂溶解性(如乙基纤维素)等,干混砂浆主要用 水溶性纤维素,水溶性纤维素又分为速溶型和经过表面处理的延迟溶解型。 纤维素醚在砂浆中的作用机理如下: (1)砂浆内的纤维素醚在水中溶解后,由于表面活性作用保证了胶凝材料在体系中有效 地均匀分布,而纤维素醚作为一种保护胶体,“包裹”住固体颗粒,并在其外表面形成一 层 润滑膜,使砂浆体系更稳定,也提高了砂浆在搅拌过程的流动性和施工的滑爽性。 (2)纤维素醚溶液由于自身分子结构特点,使砂浆中的水份不易失去,并在较长的一段 时间内逐步释放,赋予砂浆良好的保水性和工作性。 1.1.1甲基纤维素(MC)分子式\[C6H7O2(OH)3-h(OCH3)n\]x 将精制棉经碱处理后,以氯化甲烷作为醚化剂,经过一系列反应而制成纤维素醚。一般取 代度为1.6~2.0,取代度不同溶解性也有不同。属于非离子型纤维素醚。 (1)甲基纤维素可溶于冷水,热水溶解会遇到困难,其水溶液在pH=3~12范围内非常 稳定。与淀粉、胍尔胶等以及许多表面活性剂相容性较好。当温度达到凝胶化温度时,会 出 现凝胶现象。 (2)甲基纤维素的保水性取决于其添加量、粘度、颗粒细度及溶解速度。一般添加量大,细度小,粘度大,则保水率高。其中添加量对保水率影响最大,粘度的高低与保水率的 高低不成正比关系。溶解速度主要取决于纤维素颗粒表面改性程度和颗粒细度。在以上几 种纤维素醚中,甲基纤维素和羟丙基甲基纤维素保水率较高。 (3)温度的变化会严重影响甲基纤维素的保水率。一般温度越高,保水性越差。如果砂 浆温度超过40℃,甲基纤维素的保水性会明显变差,严重影响砂浆的施工性。 (4)甲基纤维素对砂浆的施工性和粘着性有明显影响。这里的“粘着性”是指工人涂抹 工具与墙体基材之间感到的粘着力,即砂浆的剪切阻力。粘着性大,砂浆的剪切阻力大, 工 人在使用过程中所需要的力量也大,砂浆的施工性就差。在纤维素醚产品中甲基纤维素粘 着力处于中等水平。 1.1.2羟丙基甲基纤维素(HPMC)分子式为\[C6H7O2(OH)3-m-

过滤用纳米纤维膜的研究进展

过滤用纳米纤维膜的研究进展 郑伟剑(11材料科学与工程1,2011327120123) 摘要:近年来聚合物纳米纤维膜因具有比表面积大、密度低、孔隙率高、孔间结合性良好、易与纳米尺寸的活性物质结合等系列优异性能而受到越来越多的关注。本文回顾了纤维过滤材料的发展历史,介绍静电纺纳米纤维过滤材料的研究发展,分别简述静电纺纳米纤维过滤膜在气体和液体过滤方面的应用。 关键词:纳米纤维膜,静电纺丝,过滤材料 1 前言 在人类生活生产过程中,如制造,生物,医药,电子等行业,必定产生气载污染物、有害生物制剂、过敏原、气溶胶颗粒等。环境保护一直是现代人的热门议题,近年来,由于纳米科学技术的巨大进展,特别是纳米技术与环境保护、环境治理的进一步有机结合,使得作为其基础和先导的纳米材料极大的提升了人类保护环境的能力,为解决环保领域的难题如有害物质监控、污水处理、水体浮油处理等提供了可能。其中静电纺纳米纤维材料不仅具有可控的多级粗糙结构、堆积密度、纤维直径、比表面积、连通性等结构特性,还具有独特的表/界面效应和介质输运性质,在超精细过滤、有害物质检测、污染物吸附等环境领域有着广阔的应用前景。 2 纤维过滤材料的发展历史 早在第一次世界大战期间,就出现了以石棉纤维为滤料的防毒气面具。1940年,美国制备出玻璃纤维过滤材料,并发明了专利。20世纪50~70年代,纤维过滤材料得到了飞速发展,出现了以玻璃纤维为滤材的高效空气过滤器(HEPA),并应用于房间的空气净化。为了进一步提高过滤性能,又采用超细玻璃纤维制备出的高效过滤器,对大于等于0.3μm的微粒的过滤效率达到99.9998%。随后日本又开发出一种超高效过滤器(ULPA),对0.1μm的微粒,其过滤效率可以高达99.9995%以上。随着电子、航天、精密仪器等对室内空气洁净度要求极高的新型行业的出现和发展,微米级纤维过滤材料已经达不到过滤精度的要求,在过滤材

醋酸企业现状调查:怎一个急字了得

醋酸企业现状调查:怎一个急字了得 [2010-08-19] 来源于:中国化工信息网日前,本报记者针对醋酸下游产品的开发及下游产业链的延伸,在醋酸行业进行了一次醋酸及下游产品市场调查。参加调查的企业都是国内醋酸行业的龙头企业。调查结果显示,面对已处于产能严重过剩、市场持续低迷的困境,醋酸行业最大的希望是能够找到一条开发下游产品、延伸产业链的顺畅大道。但方方面面的困难使醋酸企业向下游迈进的脚步格外沉重。 急产能还在增加 调查的一项重要内容就是询问企业面临的困难是什么?接受调查的企业普遍回答,严重的产能过剩导致价格持续处于低位。 兖矿国泰化工有限公司董事长刘新在调查中反映:“近段时间最困扰我的一件事,就是如何为我们生产的醋酸找个有发展前途的出路。我们公司60万吨的醋酸目前自用不到15%,外卖占到85%。但截至目前,市场价格一直在成本线徘徊,产品外卖要亏本,不卖又库存积压,我们是骑虎难下啊!” 刘新告诉记者,2008年国内醋酸产量约为260.39万吨,2009年激增至312.2万吨,而国内消费量仍维持在300万吨/年左右。2008年中国醋酸产能已占全球近30%,占亚洲产能的60%。2009年中国已成为醋酸净出口国,当年中国醋酸出口约6.5万吨,比2008年增加2.8倍,出口增长趋势还将持续增强。2010年1月份中国醋酸出口达到1.15万吨,随着中国市场竞争进一步加剧,预计未来中国醋酸及其衍生物出口量还将不断增长。问题是,国外市场能否无限制地容纳中国的醋酸产品? 山东华鲁恒升化工股份有限公司、江苏索普(集团)有限公司、河南省煤气(集团)有限责任公司等企业也反映,产能过剩、价格太低是目前醋酸行业面临的最大问题。 记者拿到了一份预计今年年底新建产能的清单。其中,英国BP与中国石化在南京合资的50万吨/年醋酸装置近期建成;天津碱厂20万吨醋酸项目和陕西延长石油集团20万吨醋酸项目将在第三季度投产;重庆扬子江乙酰基公司65万吨/年醋酸扩能项目计划明年投产。另外,塞拉尼斯公司在南京的60万吨/年醋酸扩建项目产量也接近目标值;江苏索普公司将使其醋酸产能扩至120万吨/年;上海华谊集团投资的年产50万吨醋酸项目在安徽无为县即将建成投产;华鲁恒升醋酸扩建工程正在等待批复,准备由目前的20万吨扩建到80万吨;兖矿国泰化工有限公司的醋酸扩建工程已经启动,扩产后醋酸总产能达100万吨/年。此外,河南煤化工集团、宁夏宁东等也在建设产能20万~30万吨/年的醋酸项目…… 从企业的调查反馈中记者了解到,规模越大,醋酸的成本才能越低。在产能过剩的情况下,

浅谈新型再生纤维素纤维的发展前景

浅谈新型再生纤维素纤维的发展前景 刘长河 胡正春 王建坤 (天津工业大学纺织与服装学院,天津 300160) [摘 要] 本文介绍了新型再生纤维素纤维的性能和特点,从资源、市场、环保三方面分析了新型再生纤维素纤维的发展前景。 [关键词] 新型;再生纤维素纤维;前景 1 前 言 在20世纪70年代以前,作为再生纤维素纤维之一的粘胶纤维,曾是化学纤维生产的第一大品种。然而,随着合成纤维新品种的出现和发展,加上粘胶纤维的生产工艺流程长而复杂,能耗大,耗水量大,特别是严重污染环境,废气和污水的治理难度高、费用大,一些发达国家相继关闭了部分生产粘胶纤维的工厂。致使其世界产量在20年间下降约41%。 在这一背景下,天然纤维素纤维再次得到重视。自然界纤维素年产量1000亿吨,大约只有2.5%是通过再生途径制作成纤维等加以利用的。纤维素资源十分丰富,纤维素是可再生的自然资源,具有可持续性;纤维素具有环保性,可参与自然界的生态循环。作为纺织纤维,纤维素纤维具有优良的吸湿性、穿着舒适性,一直是纺织品和卫生用品的重要原料。所以,纤维素纤维是新世纪最理想,最有前途的纺织原料之一。近年来,出现M odal、Tencel等新一代再生纤维素纤维。随着新型再生纤维素纤维在生产中的大量应用,前景将非常看好。2 各种新型再生纤维素纤维 2.1 T encel纤维 天丝是我国的通俗称呼,它的学名叫Lyocell,商品名叫Tencel。它与粘胶纤维同属再生纤维素纤维,虽然粘胶纤维在19世纪90年代已经问世,并在化学纤维中占据着重要地位,但由于粘胶纤维的制造工艺严重污染环境,在人们强烈呼吁清洁生产、保护地球生态环境、减少污染的今天,如何克服污染环境的缺点呢?荷兰阿克苏?诺贝尔(Akzo Nobel)公司属于美国恩卡公司和德国的恩卡研究所与1980年研究成功用有机溶剂直接溶解纤维浆粕生产纤维素纤维的工艺方法,并取得了专利。1989年,布鲁塞尔国际人造及合成纤维标准局(BISFA)把由这类方法制造的纤维素纤维正式命名为“Ly ocell”。与此同时,英国考陶尔兹公司于20世纪80年代初开始研制T encel短纤维,在得到荷兰阿克苏?诺贝尔公司Ly ocell的许可证后,马上开始试生产,在实验工厂经过反复试验,成功地开发出一种对人体无害的氧化胺溶剂,其后又解决了生产中的一系列问题,最后成功地生产了T encel短纤。 天丝纤维的化学结构,基本与棉纤维,粘 2

水溶性纤维素醚

赫达纤维素醚介绍 低取代羟丙基纤维素(L-HPC) 一.名称: 1.化学名称:低取代2-羟丙基醚纤维素 2.英文全称:Low-Substituted Hydroxyproxyl Cellulose 3.英文简称:L-HPC 二.分子组成与结构式: 三.技术要求: 四.理化性质: 1.外观:白色或类白色粉末,无臭,无味。 2.性状:L-HPC在水中溶胀成澄清或微浑浊的胶体溶液;在乙醇、丙酮或乙醚中不溶。高取代羟丙基纤维素(H-HPC) 一.名称: 1.化学名称:高取代2-羟丙基醚纤维素 2.英文全称:High-Substituted Hydroxyproxyl Cellulose 3.英文简称:H-HPC 二.分子组成与结构式:

三.技术要求: 四.理化性质: 1.外观:白色或类白色粉末,无臭无味. 2.颗粒度:20目过筛率不小于99%;30目过筛率不小于95%。 3.假比重:0.5~0.6克/立方厘米,比重1.2224。 4.热稳定性: 变色温度:195~210℃ 碳化温度:260~275℃ 软化温度:130℃ 38℃以下在水中呈清晰透明的溶液。 凝胶温度:40℃以上。 五.特性: 1.常温下溶于水和多种有机溶剂。如:无水甲醇、乙醇、异丙醇、丙二醇、二氯甲烷、也可

溶于丙酮、氯仿、和溶碱剂,溶液均透明。 2.H—HPC是良好的热塑性物质,具有优良的成膜性,所成膜非常坚韧,光泽性良好弹性充分。 3.灰份极低,使本产品具有优良的粘结性,作为乳液增粘用,十分稳定,而且分散性好。 4.H—HPC本身无药理作用,无毒,对生理无害。 5.H—HPC呈化学惰性,难与其它物质发生化学反应。 6.取代基分布比较均匀,充分,H—HPC抗菌强。 7.平衡湿含量较低。 8.由于本身是非离子性质本品在酸性溶液中不会凝胶.在广泛PH值中显示优良稳定性。 9.H—HPC的浓溶液可形成正规取向的液晶。 10.H—HPC水溶液具有表面活性作用。 11.其水溶液随温度的升高和降低,能历次经过凝胶和溶解的可逆过程。 六.溶解方法: 1.溶解于水: 1).将H-HPC慢慢加入到剧烈搅拌的水中,直到完全溶解为止.如果将全部物料加入将难于溶解; 2).取预定水量的20~30%加热到60℃以上,在充分搅拌的条件下将H-HPC慢慢加入,待所有H-HPC入后,再将剩余的80—70%的水加入,可完全溶解。 2.溶解于有机溶剂: 在充分搅拌下将H—HPC慢慢加入到有机溶剂中,若一次性加入溶解很困难。 羟丙基甲基纤维素(HPMC) 一.名称: 1.化学名称:2-羟丙基醚甲基纤维素 2.英文全称:Hydroxypropyl Methyl Cellulose 3.英文简称:HPMC 二.分子组成与结构式: 三.技术要求:

静电纺纳米纤维膜用于重金属离子吸附的研究进展

静电纺纳米纤维膜用于重金属离子吸附的研究进展 摘要静电纺丝制备的纳米纤维膜具有较高的比表面积和孔隙率,在重金属离子吸附领域有着广泛的应用前景。 本文在简要阐述纳米纤维膜吸附重金属离子机理的基础上,主要从有机纳米纤维膜、有机-无机复合纳米纤维膜、及无机纳米纤维膜等3个方面,介绍了近年来静电纺纳米纤维膜对重金属离子的吸附性能及其相关的研究进展,并针对目前纳米纤维膜吸附重金属离子应用研究中存在的一些问题给出了建议,为纳米纤维膜吸附重金属离子的后续研究提供参考。 关键词静电纺;纳米纤维;吸附;重金属离子 0 引言 随着工业化进程的不断加快,由金属冶炼及化工生产废水排放等人为因素造成的重金属离子污染水源问题日益严峻,严重威胁到人类的健康[1,2]。为此,相关科研人员对重金属离子的污染问题进行了深入的研究,采取了多种措施对受污染的水体进行处理和修复。目前,已报道的去除水体中重金属离子的方法有:反渗透[3]、离子交换[4]、电化学沉降[5]、氧化还原[6]、生物处理及吸附技术[7]。其中,吸附技术因易操作、高效、可重复利用、成本低而备受关注[8,9]。而比表面积大的多孔材料对重金属离子具有良好的吸附效果[2],通过静电纺丝制备的纳米纤维膜恰好具有高比表面积、高孔隙率以及内部连通的开孔结构等突出优势,从而使其在重金属离子的吸附分离方面表现出较好的吸附性能和循环利用性。 1纳米纤维膜吸附重金属离子机理 同大多数吸附材料的原理相同,纳米纤维膜对重金属离子的吸附也是一种传质过程,重金属离子通过物理作用或化学反应从液相转移到纤维膜上[10]。如图1所示[11],纳米纤维膜对水溶液中重金属离子的吸附主要为物理吸附和化学吸附:其中物理吸附主要是通过静电相互作用(带正电荷的重金属离子与带负电基团之间的静电相互作用,约2~4个负性基团结合一个重金属离子),将重金属离子吸附到纤维表面。而化学吸附则是纤维表面的功能基团对重金属离子的螯合吸附作用(由纤维膜上的功能基团提供孤对电子与重金属离子形成配位共价键)。由于纳米纤维膜具有较高的比表面积,从而使纤维表面暴露出更多的功能基团,明显增加了纤维表面对重金属离子的吸附位数量,显著提高了纤维材料对重金属离子的吸附分离性能。 图 1 纳米纤维吸附重金属离子原理示意图 Fig.1 The mechanism of nanofiber mats for heavy metal ion adsorption 2纳米纤维膜吸附重金属研究进展 由于静电纺纳米纤维膜在重金属离子吸附方面展现出的优异性能,近年来,相关的科研人员进行了大量制备和改性的研究工作,本文分别从有机纳米纤维、有机-无机复合纳米纤维、无机纳米纤维等方面进行简要阐述。 2.1 有机纳米纤维 2.1.1 天然高分子纳米纤维

乙基纤维素标准《中国药典》2010

乙基纤维素 Yiji Xianweisu Ethylcellulose [9004-57-3] 本品为乙基醚纤维素。按干燥品计算,含乙氧基(-OC 2H 5 )应为44.0%~ 51.0%。 【性状】本品为白色颗粒或粉末;无臭,无味。本品5%悬浮液对石蕊试纸呈中性。 本品在甲苯或乙醚中易溶,在水中不溶。 【鉴别】取本品5g,加乙醇-甲苯(1:4)溶液100ml,振摇,溶液为透明的微黄色溶液,取上述溶液适量,倾注在玻璃板上,俟溶液蒸发后,形成一层有韧性的膜,该膜可以燃烧。 【检查】黏度精密称取本品2.5g(按干燥品计),置具塞锥形瓶中,精密加乙醇-甲苯(1:4)溶液50ml,振摇至完全溶解,静置8~10小时,调节温度至20℃±0.1℃,测定动力黏度(附录Ⅵ G 第一法),标示黏度大于或等于10mPa·s者,黏度应为标示黏度的90.0%~110.0%,标示黏度在6~10mPa·s 之间者,黏度应标示黏度的80.0%~120.0%,标示黏度小于或等于6mPa·s者,黏度应标示黏度的75.0%~140.0%. 干燥失重取本品,在105℃干燥2小时,减失重量不得过3%(附 录Ⅷ L)。炽灼残渣取本品1.0g,依法检查(附录Ⅷ N),遗留残 渣不得过0.4%。 重金属取炽灼残渣项下遗留的残渣,依法检查(附录Ⅷ H 第二法),含重金属不得过百万分之二十。 砷盐取本品0.67g,加氢氧化钙1.0g,混合,加水搅拌均匀,干燥后,先用小火灼烧使炭化,再在500~600℃炽灼使完全灰化,放冷,加盐酸8ml于水23ml,依法检查(附录Ⅷ J 第一法),应符合规定(0.0003%)。 【含量测定】乙氧基照甲氧基、乙氧基于羟丙氧基测定法(附录Ⅶ F)测定。如采用第二法(容量法),取本品适量(相当于乙氧基10mg),精密称定,将油液温度控制在150~160℃,加热时间延长到1~2小时,其余同操作法。每1ml硫代硫酸钠滴定液(0.1mol/L)相当于0.7510mg的乙氧基。 【类别】药用辅料,包衣材料和释放阻滞剂等。 【贮藏】密闭,在干燥处保存。 《中国药典》2010版第二部 1177页

药剂学常用物质英文缩写

药剂学常用物质英文缩写 1-NEP N-乙基吡咯酮 1-NMP N-甲基吡咯酮 2G-β-CYD 二葡糖基-β-环糊精 2-HP-β-CYD 2-羟丙基-β-环糊精 5-NCP 5-羧基吡咯酮 5-NMP 5-甲基吡咯酮 Accelerated testing 加速试验 Acrylic acid resin 丙烯酸树酯 Active targeting preparation 主动靶向制剂Adersive dispersion-type TTS 粘胶分散型TTS Adhersive strength 粘附力 Adhesion 粘附性 Adhesives 粘合剂 Aerosil 微粉硅胶 Aerosol 气雾剂 Aerosol of micropowders for inspiration 吸入粉雾剂Aethylis oleas 油酸乙酯 Agglomerate 聚结物 Aggregation 聚集 Air suspension 空气悬浮法 Alarm clock 闹钟 Alcohol 乙醇 All-trans 全反式 Alterntae addition method 两相交替加入法Amebocyte lysate 变形细胞溶解物 Amorphous forms 无定型 Angle of repose 休止角 Antiadherent 抗粘剂 Antioxidants 抗氧剂 Antisepesis 防腐 Apparent solubility 表现溶解度 Aprotinin 抑酞酶 Aquacoat 乙基纤维素水分散体 Aromatic waters 芳香水剂 Arrhenius 方程阿仑尼乌斯方程 Ascabin 苯甲酸酯 Aseptic technique 无菌操作法 Azone 氮酮 Ball mill 球磨机 Base adsorption 基质吸附率 Bases 基质

高取代羟乙基纤维素醚生产新工艺讲解

高取代羟乙基纤维素醚生产新工艺一.任务提出的目的和意义 以农产品棉花为主要原料的纤维素醚产业是个蓬勃发展的产业。随着新世纪石油及合成化工原料的紧缺和价格持续上涨,以及全世界对环境污染问题的日趋重视,价廉物丰、可生物降解、无毒、生物相容性好的可再生纤维素资源及其衍生物日益受到世人的青睐,其开发和应用成为一项重要的研究课题。 羟乙基纤维素是纤维素醚中的一个具有较长使用历史的品种,目前在乳胶漆、油田、化妆品等工业生产领域,均有广泛的应用。随着经济发展和社会进步,人们对羟乙基纤维素的需求量逐年增加,对应用性能的要求也越来越高,而且市场上常规的羟乙基纤维素只在一个方面具有理想的性能,比如耐盐、抗温、抗酶、良好的流变性或抗溅性等,而在综合性能上有所欠缺,因此高性能新产品的开发迫在眉睫。 羟乙基纤维素是世界范围内生产的一种水溶性纤维素醚,产量大、发展迅速,是仅次于CMC和HPMC的重要纤维素醚品种,据不完全统计,1978年世界产量18000吨;1983年50000吨,我国1977年才开始生产。羟乙基纤维素可溶解在冷、热水中,使它具有更大范围的溶解性和黏度特性。作为非离子型醚,羟乙基纤维素具有非离子型醚的一切特征,不与带正、负电荷离子作用,活性少,在大范围内的水溶性聚合物、表面活性剂、盐等共

存,使其广泛作为增稠、流动调节剂、保护胶、稳定剂、保水剂、黏结剂等,应用于乳胶漆、医药、石油开采等行业。 本项目开发的新型羟乙基纤维素是在新工艺下,通过产学研结合,自主研发、制备、生产与推广的高取代羟乙基纤维素醚生产新工艺。与传统的羟乙基纤维素相比,该产品具有成本低、综合性能优良、应用广泛、易推广的显著特点。 基于对普通的羟乙基纤维素的工艺改进,该项目一方面提高了产品的取代度,另一方面采取一次碱化多次醚化工艺,反应过程均匀缓和,羟乙氧基在纤维素分子上的分布均匀,所以产品受生物攻击的缺陷得以弥补,使其抗酶性能大大改进。而且,通过此工艺,可以大大降低羟乙基纤维素的成本,其他性能也有相应的提高。例如其在乳胶漆中应用时,其粘稠性、流平性、抗流挂性、喷溅性、颜料性能以及生物稳定性等都能够得到大幅的提升。 二.研制过程 由于反应机理的特殊性,羟乙基纤维素产品醚化的均匀性总不是很理想,导致取代度较低,不稳定。而通过改变生产工艺,除了可以提高羟乙基纤维素的得率,降低羟乙基纤维素的成本,还可以大大提高产品的抗酶性、耐盐性等。

乙酸

乙酸,也叫醋酸、冰醋酸,化学式CH3COOH,是一种有机一元酸,为食醋内酸味及刺激性气味的来源。纯的无水乙酸(冰醋酸)是无色的吸湿性固体,凝固点为16.7℃(62℉),凝固后为无色晶体。尽管根据乙酸在水溶液中的解离能力它是一种弱酸,但是乙酸是具有腐蚀性的,其蒸汽对眼和鼻有刺激性作用。乙酸是一种简单的羧酸,由一个甲基一个羧基组成,是一种重要的化学试剂。在化学工业中,它被用来制造聚对苯二甲酸乙二酯,后者即饮料瓶的主要部分。乙酸也被用来制造电影胶片所需要的醋酸纤维素和木材用胶粘剂中的聚乙酸乙烯酯,以及很多合成纤维和织物。家庭中,乙酸稀溶液常被用作除垢剂。食品工业方面,在食品添加剂列表E260中,乙酸是规定的一种酸度调节剂。每年世界范围内的乙酸需求量在650万吨左右。其中大约150万吨是循环再利用的,剩下的500万吨是通过石化原料直接制取或通过生物发酵制取。物理性质相对密度(水为1):1.050其他名:冰醋酸,醋酸适应症:本品不同浓度用以治疗各种皮肤浅部真菌感染,灌洗创面及鸡眼、疣的治疗。药品分类:消毒防腐剂-冰醋酸分子式:CH3COOH 沸点(℃):118.3凝固点(℃):16.7 粘度(mPa.s):1.22(20℃)外观及气味:无色液体,有刺鼻的醋酸味。溶解性:能溶于水、乙醇、乙醚、四氯化碳及甘油等有机溶剂 乙酸的典型化学反应: 乙酸与碳酸钠:2CH3COOH+Na2CO3==2CH3COONa+CO2↑+H2O 乙酸与碳酸钙:2CH3COOH+CaCO3==(CH3COO)2Ca+CO2↑+H2O 乙酸与碳酸氢钠:NaHCO3+CH3COOH==CH3COONa+H2O+CO2↑ 乙酸与碱反应:CH3COOH+OH-==CH3COO-+H2O 乙酸与弱酸盐反应:2CH3COOH+CO32-==2CH3COO-+H2O+CO2↑ 乙酸与活泼金属单质反应:Fe+2CH3COOH==(CH3COO)2Fe+H2↑ Zn+2CH3COOH==(CH3COO)2Zn +H2↑ 2Na+2CH3COOH==2CH3COONa+H2↑ 乙酸与氧化锌反应:2CH3COOH+ZnO==(CH3COO)2Zn+H2O 乙酸与乙醇反应:CH3COOH+C2H5OH=△=CH3COOC2H5+H2O(注:条件是加热,浓硫酸催化,可逆反应)鉴别:乙酸可以通过其气味进行鉴别。若加入氯化铁(FeCl3),生成产物为深红色并且会在酸化后消失,通过此颜色反应也能鉴别乙酸。乙酸与三氧化砷反应生成氧化二甲砷,通过产物的恶臭可以鉴别乙酸。

相关文档
最新文档