N阶矩阵高次幂的求法及应用

N阶矩阵高次幂的求法及应用
N阶矩阵高次幂的求法及应用

幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量

数值计算解矩阵的按模最大最小特征值及对应的特征向量 —一 .幂法 1. 幕法简介: 当矩阵A 满足一定条件时,在工程中可用幕法计算其主特征值 (按模最大) 及其特征向量。矩阵A 需要满足的条件为: ⑴I 1 I I 2|n |- 0, i 为A 的特征值 (2)存在n 个线性无关的特征向量,设为 X i ,X 2,…,X n 1.1计算过程: n 对任意向量x (0),有x (0)八:-M —不全为0,则有 i 4 X (k 岀)=Ax (k)= = A k 岀乂。) n n A k 1 aq a 扌1 5 i =1 i =1 ■k 1 2 可见,当 1 — 1 越小时,收敛越快;且当k 充分大时,有 ? "1 2算法实现 ⑶.计算x Ay,… max(x); ⑷若| ?一十:;,输出-,y,否则,转(5) (5)若N ,置k 「k 1^ -,转3,否则输出失败信息,停机. 3 matlab 程序代码 (冲1 %叫 x (k 1) [x (k) k 二 u x (k) > (k+1) 1,对应的特征向量即是 x (1).输入矩阵A ,初始向量X ,误差限 最大迭代次数N (k) 0; y (k) max(abs(x (k ))

k=1; z=0; y=x0./max(abs(x0)); x=A*y; % z相当于■ %规范化初始向量%迭代格式 b=max(x); % b相当于: if abs(z-b)eps && k> y]=lpower (A, xO, eps, X)

n阶幂零矩阵的判别及构建_吴险峰

第23卷第4期 齐 齐 哈 尔 大 学 学 报 Vol.23,No.4 2007年7月 Journal of Qiqihar University July,2007 n 阶幂零矩阵的判别及构建 吴险峰 (齐齐哈尔大学理学院,黑龙江 齐齐哈尔 161006) 摘要:利用幂零矩阵的特征值、特征多项式、相似性等性质,给出构建幂零矩阵的几种方法。 关键词:幂零矩阵;严格三角形矩阵;主子式 中图分类号:O151.21 文献标识码:A 文章编号:1007-984X(2007)04-0072-04 对于有限维的线性空间,在给定基下线性变换与矩阵有着一一对应关系, 而线性变换是比较抽象的,不如矩阵容易理解,因此总是借助于矩阵来研究有限维线性空间的线性变换。幂零变换是一种特殊的线性变换,有许多特殊的性质可以利用,但除了用定义外,怎样判定所给的线性变换是否为幂零变换,又如何构建幂零变换。因为在有限维的线性空间中,幂零变换对应着幂零矩阵,由此幂零矩阵的判定和构建是解决这一问题的关键。因此本文给出了n 阶幂零矩阵的判定方法和构建方法。文中所指的矩阵均为数域F 上的矩阵,数均为数域F 上的数。 1 幂零矩阵的判别 引理1 n 阶矩阵A 是幂零矩阵,当且仅当A 的所有特征根都是零。 引理2 设n 阶矩阵)(ij a A =的特征多项式为 n n n n A b x b x b x A xI x f ++++=?=??111)(" 则k b 为A 的一切k 阶主子式的和乘以k )1(?,n k ,,2,1"=,即 ∑ ≤<<≤?=n i i i i i i i i i i i i i i i i i i i i k k k k k k k k k a a a a a a a a a b ""# ###""12 122 21 212 11 11) 1( 定理1 数域F 上n 阶矩阵A 为幂零矩阵,当且仅当A 的一切k (n k ,,2,1"=)阶主子式之和为零。 证 必要性:设)(ij a A =,则由引理2有 n n n n A b x b x b x A xI x f ++++=?=??111)(" 其中系数k b 为A 的一切k 阶主子式的和乘以k )1(?,n k ,,2,1"=,即 ∑ ≤<<≤?=n i i i i i i i i i i i i i i i i i i i i k k k k k k k k k a a a a a a a a a b ""# ###""12 122 21 212 11 11) 1( 收稿日期:2006-11-23 基金项目:黑龙江省教育厅科研项目(11521313) 作者简介:吴险峰(1970-),女,黑龙江省拜泉县人,副教授,大学本科,现主要从事李代数及李超代数,E-mail:wuxianfenglaoshi@https://www.360docs.net/doc/1b10487872.html,。

幂零矩阵性质及应用

幂零矩阵性质及应用 性质1:A 为幂零矩阵的充要条件是A 的特征值全为0。 证明:? A Q 为幂零矩阵 k Z +∴?∈ .0k s t A = 令0λ为A 任意一个特征值,则00,.s t A ααλα?≠= 由引理7知,0k λ为k A 的特征值 00 .k k s t A ββλβ∴?≠= 从而有0k λ=0即有00λ= 又有0k A =,知00k k A A A ==?= 0*(1)(1)00k k E A A A ∴-=-=-=-?= 00λ∴=为A 的特征值。 由0λ的任意性知,A 的特征值为0。 ?A Q 的特征值全为0 A ∴的特征多项式为()n f E A λλλ=-= 由引理2知,()0n f A A == 所以A 为幂零矩阵。 得证 性质2:A 为幂零矩阵的充要条件为0k k Z trA +?∈=。 证明:?A Q 为幂零矩阵,由性质1,知: A 的特征值全为0 即120n λλλ====L 由引理7,知 k A 的特征值为120k k k n λλλ====L 从而有 120k k k k n trA λλλ=+++=L ?由已知,120 k k k k n k Z trA λλλ+ ?∈=+++=L (1.1) 令12,,,t λλλL L 为A 的不为0的特征值 且i λ互不相同重数为(1,2,,)i n i t =L L 由(1.1)式及引理7,得方程组

1122222 1122333 112211220000t t t t t t t t t t t n n n n n n n n n n n n λλλλλλλλλλλλ+++=??+++=??+++=??? ?+++=? L L L L L L (1.2) 由于方程组(1.2)的系数行列式为 12222 121 2 1212121211 11 () t t t t t t t t t t t t t i j j i t B λλλλλλλλλλλλλλλλλλλλλλλ≤<≤= ==∏-L L L L L M M L M M M L M L L L 又(1,2,)i i t λ=L L 互不相同且不为0,0B ∴≠ 从而知,方程(1.2)只有0解,即0 (1,2,,)i n i t ==L L 即A 没有非零的特征值 A ∴的特征值全为0, 由性质1,得 A 为幂零矩阵 得证 性质3:若A 为幂零矩阵 则A 的若当标准形J 的若当块为幂零若当块,且J 和主对角线上的元素为0 证明:A 为幂零矩阵, 由性质1,知 A 的特征值全为0 由引理3,知 在复数域上,存在可逆矩阵T ,使得 12 1 s J J T AT J -?? ? ?= ? ?? ? O 其中11 i i i J λλ?? ? ?= ? ?? ? O O O 阶数为(1,2,,)i n i s =L 由引理4,知(1,2,,)i i s λ=L 为J 和特征值 又A 与J 相似,由引理6,知A 与J 有相同的特征值 所以0(1,2,,)i i s λ==L 即J 的主对角线上的元素全为0 由引理8,知 (0)()0(1,2,,)i i n n i i J E J i s -===g L 12,,,s J J J L L 为幂零矩阵 得证

幂法求矩阵主特征值

!程序说明:幂法求矩阵主特征值 !日期:2010年11月30日 PROGRAM Matrix_EigenValue PARAMETER(N=3) REAL ARR(N,N) CALL INPUT(ARR,N) CALL MATEV(ARR,N) END PROGRAM SUBROUTINE INPUT(ARR,N) REAL ARR(N,N) OPEN(1,FILE='MAT.TXT') READ(1,*)((ARR(I,J),J=1,N),I=1,N) END SUBROUTINE SUBROUTINE MATEV(ARR,N) PARAMETER(EPS=1E-7) REAL :: ARR(N,N),X(N),X1(N),MAX=0 INTEGER :: K=0,P=0 X=RESHAPE((/1,1,1/),(/3/)) WRITE(1,*) ' 迭代次数 U(规范化向量) & & MAX(V)(主特征值)' DO WHILE(P/=N) WRITE(1,'(I6,A,F12.6,A,F12.6)') K,' (',X,' )',MAX P=0 MAX=0 DO I=1,N X1(I)=0 DO J=1,N X1(I)=X1(I)+ARR(I,J)*X(J) !迭代过程 ENDDO ENDDO DO I=1,N IF(ABS(X1(I))>ABS(MAX)) MAX=X1(I) !选取主特征值 ENDDO DO I=1,N IF(ABS(X(I)-X1(I)/MAX)

ENDDO K=K+1 ENDDO END SUBROUTINE 输出结果: 1 1 0.5 1 1 0.25 0.5 0.25 2 迭代次数 U(规范化向量) MAX(V)(主特征值) 0 ( 1.000000 1.000000 1.000000 ) 0.000000 1 ( 0.909091 0.81818 2 1.000000 ) 2.750000 2 ( 0.837607 0.743590 1.000000 ) 2.659091 3 ( 0.799016 0.703035 1.000000 ) 2.604701 4 ( 0.77741 5 0.680338 1.000000 ) 2.575267 5 ( 0.765108 0.66740 6 1.000000 ) 2.558792 6 ( 0.758025 0.659963 1.000000 ) 2.549406 7 ( 0.753925 0.655655 1.000000 ) 2.544003 8 ( 0.751544 0.653153 1.000000 ) 2.540876 9 ( 0.750158 0.651697 1.000000 ) 2.539060 10 ( 0.749351 0.650848 1.000000 ) 2.538003 11 ( 0.748880 0.650354 1.000000 ) 2.537387 12 ( 0.748606 0.650065 1.000000 ) 2.537028 13 ( 0.748445 0.649897 1.000000 ) 2.536819 14 ( 0.748352 0.649799 1.000000 ) 2.536697 15 ( 0.748298 0.649741 1.000000 ) 2.536626 16 ( 0.748266 0.649708 1.000000 ) 2.536584 17 ( 0.748247 0.649688 1.000000 ) 2.536560 18 ( 0.748236 0.649677 1.000000 ) 2.536546 19 ( 0.748230 0.649670 1.000000 ) 2.536537 20 ( 0.748226 0.649667 1.000000 ) 2.536533 21 ( 0.748224 0.649664 1.000000 ) 2.536530 22 ( 0.748223 0.649663 1.000000 ) 2.536528 23 ( 0.748222 0.649662 1.000000 ) 2.536527 24 ( 0.748222 0.649662 1.000000 ) 2.536527 25 ( 0.748222 0.649662 1.000000 ) 2.536526 26 ( 0.748221 0.649661 1.000000 ) 2.536526

幂法求矩阵A按模最大的特征值及其特征向量

数值分析 幂法求矩阵A按模最大的特征值及其 特征向量

幂法的主要思想 设 n n ij R a A ?∈=)( ,其特征值为i λ ,对应特征向量为),,,1(n i x i =即 i i i x Ax λ= ),,1(n i =,且 x 1,······,x n 线性无关。求矩阵A 的主特征值及对应的特征向量。 幂法的基本思想: 任取一个非零初始向量 v 0 ∈R n 且v 0≠0, 由矩阵A 的乘幂构造一向量序列: 称{ v k }为迭代向量, A 特征值中 λ1为强占优,即▕ λ1▕>▏λ2 ▏>······>▏λn ▏, {x 1,x 2,······,x n }线性无关,即{x 1,x 2,······,x n }为R n 中的一 个基,于是对任意的初始向量v 0 ∈R n 且 v 0≠0有展开式。 (v 0 用{x i } 的线性组合表示) (且设01≠α) 则 当k =2,3,… 时,v k = A v k-1 = A k v ? ?? 1Av v =0 212v A Av v ==01 1 v A Av v k k k ++==) ,,1,0(n k =∑==n i i i x v 1 α)(221101n n x x x A v A v ααα+++==n n x A x A x A ααα+++=2211n n n x x x λαλαλα+++=222111) (111 +≡x k αλk ε

其中 由假设▕ λ1▕>▏λ2 ▏>······>▏λn ▏,得 ,从而 即,0lim =∞→k k ε且收敛速度由比值||12λλ=r 确定。 所以有 说明,当k 充分大时,有1 11 x v k k αλ≈,或 k k v 1λ 越来越接近特征 向量 规范化幂法的算法 ①输入矩阵 A 、初始向量v (0),误差 eps ,实用中一般取 v (0)=(1,1,···,1)T ; ②k ←1; ③计算 v (k) ←Au (k-1); ④m k ←max{ v (k) },m k-1 ←{ v (k-1) }; ⑤u (k) ←v (k)/ m k ; ⑥如果▕ m k - m k-1▕<eps ,则显示特征值λ1←和对应的特征 向量x (1),终止; ⑦k=k+1,转③。 n k n n k k x x )()(1 2122λλαλλαε++=),,2(1||1 n i i =<λλ ),,,2(0)(lim 1n i k i k ==∞→λλ111 lim x v k k k αλ=∞ →。 11x α

matlab求矩阵特征值特征向量 乘幂法

摘 要 根据现代控制理论课程的特点, 提出并利用MATLAB 设计了现代控制理论课程的实验, 给出了设计的每个实验的主要内容及使用到的MATLAB 函数, 并对其中的一个实验作了详细说明。通过这些实验, 将有助于学生理解理论知识, 学习利用MATLAB 解决现代控制理论问题。 关键词:现代控制理论、MATLAB 、仿真。 1设计目的、内容及要求 1.1设计目的 本课程设计以自动控制理论、现代控制理论、MATLAB 及应用等知识为基础,求连续系统对应的离散化的系统,并用计算系数阵按模最大的特征根法判别离散系统的稳定性,目的是使学生在现有的控制理论的基础上,学会用MATLAB 语言编写控制系统设计与分析的程序,通过上机实习加深对课堂所学知识的理解,掌握一种能方便地对系统进行离散化的实现和分析系统的稳定性的设计的工具。 1.2设计内容及要求 1 在理论上对连续系统离散化推导出算法和计算公式 2 画出计算机实现算法的框图 3 编写程序并调试和运行 4 以下面的系统为例,进行计算 ??????????----=041020122A ,?? ?? ? ?????=100B ,[]111-=c 5 分析运算结果

6 幂法迭代精度为ep=0.001,离散系统展开项数为20 7 程序应具有一定的通用性,对不同参数能有兼容性。 2算法选择及推导 2.1连续系统离散化算法 书P67离散化意义 已知被控对象的状态方程为: ()()()()()()t t u t y t t u t =+=+ x Ax B Cx D 对方程求解,得: 0()()0()()()o t t t t t t e t e u d τττ --=+?A A x x B 设0t kT =,(1)t k T =+,代入上式,得: H 公式 若省略T 则为{ ? +-++Φ=+T k kT d kT Bu T k kt x T T k x )1()(])1[()()(])1([(τ τφ不改变与离散后时刻,即得连续离散化方程则:相当于)+=(上限相当于下限设令D C kT Du kT Cx kT y kT t kT u T H kT x T G T k x Bdt t Bdt e T H t T k T t kT d dt T k t Bd e T H e T T G T T AT T k kT T k A AT )()()()()()()(])1([(: )()(0 ,1,,)1()()()(0 )1(])1[(+==+=+Φ=====-=-+=?==Φ=???+-+τττττ τ

复矩阵的Jordan标准形的性质及应用

复矩阵的Jordan 标准形的性质及应用 学生姓名:李英红 指导教师:周芳 (太原师范学院 数学系0802班 2008101217) 摘要:任意一个矩阵并非都与对角矩阵相似,当一个矩阵不能与对角矩阵相似时,可以找 到一个比较简单的类似于对角矩阵的矩阵与它相似。本文主要介绍相似于一个简单的类似对角矩阵的性质和应用,对于今后的学习有很大的帮助。 关键词:对角矩阵 若当标准形 幂零矩阵 相似 正文 1、 定义 形如1 1i i i i i i m m J λλλ??? ? ?= ? ?? ? 的方阵称为i m 阶的Jordan 块,i c λ∈,通常记为()i n i J λ. 2、 定义若当形 由若干个Jordan 块组成的准对角阵1 2 s J J J J ?? ? ?= ? ? ?? ? 称为Jordan 标准形。 定理1 复数域c 上两个n 阶矩阵A 和B 相似E A E B λλ?--与等价 证明 ""?若A 和B 相似,存在可逆矩阵T ,使得1B T AT -=,所以1 ()E B T E A T λλ--=-, 因而E A E B λλ--与等价. ""?E A E B λλ--与等价,则有相同的不变因子,相同的初等因子,则可推得A 和B 相似. 定理2 (Jordan 标准形定理) 每个n 阶的复矩阵A 都与一个Jordan 标准形相似,这个Jordan 标准形除了其中Jordan 块的排列次序外被A 唯一决定,记为A J . 证明 设n 阶的矩阵A 的特征矩阵E A λ-的 初等因子为1212(),(),,() s k k k s λλλλλλ--- (2.1) 令1 1i i i i i i m m J λλλ??? ? ?= ? ?? ? 并令12s J J J J ?? ? ?= ? ? ??? ,则E J λ-的全部初等因子也为(2.1)式 则A 和J 相似 推论1 复矩阵A 与对角矩阵相似?E A λ-的初等因子都是一次的。

数学建模 用幂法 和法 根法求特征值特征向量

数学建模作业 计算机学院信计1102班姜圣涛 (1)幂法求矩阵最大特征值及特征向量: 程序为: #include #include using namespace std; #define n 3 //三阶矩阵 #define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){ cout<<"**********幂法求矩阵最大特征值及特征向量***********"<>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i>X[i]; //输入初始向量 k=1; u=0;

while(1){ max=X[0]; for(i=0;i

幂法反幂法求解矩阵大小特征值及其对应的特征向量

幂法反幂法求解矩阵大小特征值及其对应的特征向量

————————————————————————————————作者:————————————————————————————————日期:

数值计算解矩阵的按模最大最小特征值及对应的特征向量 一.幂法 1. 幂法简介: 当矩阵A 满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。矩阵A 需要满足的条件为: (1) 的特征值为A i n λλλλ,0||...||||21 ≥≥≥> (2) 存在n 个线性无关的特征向量,设为n x x x ,...,,21 1.1计算过程: i n i i i u x x αα,1 ) 0()0(∑==,有对任意向量不全为0,则有 1 11111221 12111 1 1 11 1 011)()(...u u a u a u λu λαu αA x A Ax x k n n k n k k n i i k i i n i i i k )(k (k))(k αλλλλλα++++=+=+++≈? ? ????+++======∑∑ 可见,当||1 2 λλ越小时,收敛越快;且当k 充分大时,有1)11 11)11111λαλαλ=??????==+++(k )(k k (k k )(k x x u x u x ,对应的特征向量即是)(k x 1+。 2 算法实现 . ,, 3,,1 , ).5() 5(,,,,||).4();max(,).3() (max(;0,1).2(,).1()() () (停机否则输出失败信息转置若转否则输出若计算最大迭代次数,误差限,初始向量输入矩阵βλβεβλβλε←+←<<-←←= ←←k k N k y x Ay x x abs x y k N x A k k k 3 matlab 程序代码

幂零矩阵性质及应用

幂零矩阵性质及应用 数本041 严益水 学号:410401109 摘要: 幂零矩阵是一类特殊的矩阵,在矩阵理论中有重要的作用。它具有一些很好的性质。本文从矩阵的不同角度讨论了幂零矩阵的相关性质。幂零矩阵与若当形矩阵结合可得一个很好性质,在解相关矩阵问题有很好作用,由此我们举例说明,从例子中发现了问题并对此问题进行思考得出了一些结论,对幂零矩阵的研究很有意义。在一般矩阵中,求矩阵的逆比较麻烦,本文最后利用幂零矩阵特殊性讨论了三类特殊矩阵逆的求法。 关键词:幂零矩阵 若当块 特征值 幂零指数 一、 预备知识 (下面的引理和概念来自《高等代数解题方法与技巧》 李师正 高等教育出版社、《高等代数》(第二版) 北京大学数学系几何与代数教研室代数小组 高等教育出版社、 《高等代数选讲》 陈国利 中国矿业大学出版社及《高等代数习题集》(上册) 杨子胥 山东科学技术出版社) (一) 一些概念 1、令A 为n 阶方阵,若存在正整数k ,使0k A =,A 称为幂零矩阵。 2、若A 为幂零矩阵,满足0k A =的最小正整数称为A 的幂零指数。 3、设1111n n nn a a A a a ?? ? = ? ? ?? ,称1111n n nn a a A a a ?? ?'= ? ??? 为A 的转置, 称111*1n n nn A A A A A ?? ? = ? ? ?? 为A 的伴随矩阵。 其中(,1,2,,)ij A i j n = 为A 中元素ij a 的代数余子式 4、设A 为一个n 阶方阵,A 的主对角线上所有元素的和称为A 的迹,记为trA 。 5、主对角线上元素为0的上三角称为严格的上三角。 6、形为

北航数值分析1-Jacobi法计算矩阵特征值

准备工作 ?算法设计 矩阵特征值的求法有幂法、Jacobi法、QR法等,其中幂法可求得矩阵按模最大的特征值(反幂法可求得按模最小特征值),Jacobi法则可以求得对称阵的所有特征值。 分析一:由题目中所给条件λ1≤λ2≤…≤λn,可得出λ1、λn按模并不一定严格小于或大于其他特征值,且即使按模严格小于或大于其他特征值,也极有可能出现|λs|<λ1|<|λn |或|λs|<λn|<|λ1 |的情况,导致按幂法和反幂法无法求解λ1或λn二者中的一者; 分析二:题目要求求解与数μk =λ1+k(λn-λ1)/40最接近的特征值λik(k=1,2,3…39),这个问题其实可以转换为求A-μk 按模最小的特征值的问题,但因为在第一个问题中无法确定能肯定的求得λ1和λn,所以第二个问题暂先搁浅; 分析三:cond(A) 2 = ||A|| * ||A-1|| =|λ|max * |λ|min,这可以用幂法和反幂法求得,det(A) =λ1 *λ2 * … *λn,这需要求得矩阵A的所有特征值。 由以上分析可知,用幂法和反幂法无法完成所有问题的求解,而用Jacobi法求得矩阵所有特征值后可以求解题目中所给的各个问题。所以该题可以用Jacobi法求解。 ?模块设计 由 ?数据结构设计 由于矩阵是对称阵,上下带宽均为2,所以可以考虑用二维数组压缩存储矩阵上半带或下半带。但由于Jacobi法在迭代过程中会破坏矩阵的形态,所以原来为零的元素可能会变为非零,这就导致原来的二维数组无法存储迭代后的矩阵。基于此的考虑,决定采用一维数组存储整个下三角阵,以此保证迭代的正确进行。 完整代码如下(编译环境windows10 + visual studio2010):

幂法和反幂法的matlab实现

幂法和反幂法的matlab实现

幂法求矩阵主特征值及对应特征向量 摘要 矩阵特征值的数值算法,在科学和工程技术中很多问题在数学上都归结为矩阵的特征值问题,所以说研究利用数学软件解决求特征值的问题是非常必要的。实际问题中,有时需要的并不是所有的特征根,而是最大最小的实特征根。称模最大的特征根为主特征值。 幂法是一种计算矩阵主特征值(矩阵按模最大的特征值)及对应特征向量的迭代方法,它最大的优点是方法简单,特别适用于大型稀疏矩阵,但有时收敛速度很慢。 用java来编写算法。这个程序主要分成了四个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块;第四部分为页面设计及事件处理。其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。

关键字:主特征值;特征向量;线性方程组;幂法函数块 POWER METHOD FOR FINDING THE EIGENVALUES AND CORRESPONDING EIGENVECTORS OF THE MATRIX ABSTRACT Numerical algorithm for the eigenvalue of matrix, in science and engineering technology, a

lot of problems in mathematics are attributed matrix characteristic value problem, so that studies using mathematical software to solve the eigenvalue problem is very necessary. In practical problems, sometimes need not all eigenvalues, but the maximum and minimum eigenvalue of real. The characteristic value of the largest eigenvalue of the modulus maximum. Power method is a calculation of main features of the matrix values (matrix according to the characteristics of the largest value) and the corresponding eigenvector of iterative method. It is the biggest advantage is simple method, especially for large sparse matrix, but sometimes the convergence speed is very slow. Using java to write algorithms. This program is divided into three parts: the first part is the matrix is transformed into linear equations; the second part for the sake of feature vector of the maximum; the third part is

最新幂零矩阵的质及应用

幂零矩阵的质及应用

嘉应学院 本科毕业论文(设计) (2015届) 题目:幂零矩阵的性质及应用姓名:李丹 学号:113010022 学院:数学学院 专业:数学与应用数学 指导老师:刘光明老师 申请学位:学士学位 嘉应学院教务处制

摘要 在高等代数中矩阵是研究问题的重要工具,在讨论矩阵的乘法运算时给出了幂零矩阵的定义。我们在研究矩阵及学习有关数学知识时,经常要讨论其性质。幂零矩阵作为特殊的矩阵,无论在矩阵理论方面,还是在实际应用方面都有着很重要的意义。幂零矩阵具有很多良好的性质,文章从矩阵的定义出发得到其一些简单的性质,然后从各个角度更深入挖掘其性质。由给出的论点进行论证,讨论了幂零矩阵的若干性质,还通过例子说明其应用性,这对于解决若干矩阵问题大有益处。 关键词:幂零矩阵;特征值;若尔当形

Abstract Matrix in higher algebra is an important tool to research problem, When discussing matrix multiplication of the definition of nilpotent matrix is given. In the study of matrix and learning about mathematics knowledge, often to discuss its properties. As a special matrix, nilpotent matrix in terms of matrix theory, or in the actual application has very important significance. The properties of nilpotent matrix has a lot of good, The article starting from the definition of matrix to get some simple properties, And then from different angles to dig deeper into its nature more. By the given arguments, Discussed some properties of nilpotent matrix, but also through the example is given to show its application, this is a great benefit to solve the problem of several matrix. Key words:Nilpotent matrix;eigenvalue;Jordan form

幂法求矩阵最大特征值

幂法求矩阵最大特征值 摘要 在物理、力学和工程技术中的很多问题在数学上都归结为求矩阵特征值的问题,而在某些工程、物理问题中,通常只需要求出矩阵的最大的特征值(即主特征值)和相应的特征向量,对于解这种特征值问题,运用幂法则可以有效的解决这个问题。 幂法是一种计算实矩阵A的最大特征值的一种迭代法,它最大的优点是方法简单。对于稀疏矩阵较合适,但有时收敛速度很慢。 用java来编写算法。这个程序主要分成了三个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块。其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。 关键词:幂法;矩阵最大特征值;j ava;迭代

POWER METHOD TO CALCULATE THE MAXIMUM EIGENV ALUE MATRIX ABSTRACT In physics, mechanics and engineering technology of a lot of problems in math boil down to matrix eigenvalue problem, and in some engineering, physical problems, usually only the largest eigenvalue of the matrix (i.e., the main characteristics of the value) and the corresponding eigenvectors, the eigenvalue problem for solution, using the power law can effectively solve the problem. Power method is A kind of computing the largest eigenvalue of real matrix A of an iterative method, its biggest advantage is simple.For sparse matrix is right, but sometimes very slow convergence speed. Using Java to write algorithms.This program is mainly divided into three most: the first part for matrix can be converted to linear equations;The second part is the eigenvector of the maximum;The third part is the exponentiation method of function block.Its basic process as a power law function block by calling the method of matrix can be converted to linear equations, then after a series of validation and iteration to get the results. Key words: Power method; Matrix eigenvalue; Java; The iteration

数值方法课程设计幂法反幂法计算矩阵特征值和特征向量附Matlab程序

数值方法课程设计幂法反幂法计算矩阵特征值和特征向量附Matlab程序

矩阵的特征值与特征向量的计算 摘要 物理,力学,工程技术中的很多问题在数学上都归结于求矩阵特征值的问题,例如振动问题(桥梁的振动,机械的振动,电磁振动等)、物理学中某些临界值的确定问题以及理论物理中的一些问题。矩阵特征值的计算在矩阵计算中是一个很重要的部分,本文使用幂法和反幂法分别求矩阵的按模最大,按模最小特征向量及对应的特征值。 幂法是一种计算矩阵主特征值的一种迭代法,它最大的优点是方法简单,对于稀疏矩阵比较合适,但有时收敛速度很慢。其基本思想是任取一个非零的初始向量。由所求矩阵构造一向量序列。再经过所构造的向量序列求出特征值和特征向量。 反幂法用来计算矩阵按模最小特征向量及其特征值,及计算对应于一个给定近似特征值的特征向量。本文中主要使用反幂法计算一个矩阵的按模最小特征向量及其对应的特征值。计算矩阵按模最小特征向量的基本思想是将其转化为求逆矩阵的按模最大特征向量。然后经过这个按模最大的特征向量反推出原矩阵的按模最小特征向量。

关键词:矩阵;特征值;特征向量;冥法;反冥法 THE CALCULATIONS OF EIGENVALUE AND EIGENVECTOR OF MATRIX ABSTRACT Physics, mechanics, engineering technology in a lot of problems in mathematics are attributed to matrix eigenvalue problem, such as vibration (vibration of the bridge, mechanical vibration, electromagnetic vibration, etc.) in physics, some critical values determine problems and

幂零矩阵迹的特征

幂零矩阵迹的特征 摘要:2009年全国大学生数学竞赛题(第3题):设V是复数域上向量空间, -=,那么f的所有特征值均为0,并且,f g是V上的线性变换,且满足fg gf f g和f之间存在相同的特征向量(对应的特征值不一定相等).我们把它转换为矩阵,在矩阵中讨论特殊情况即AB BA =,求证A和B有公共特征向量,并且求出A和B的公共特征向量. 关键词:幂零矩阵;迹;特征值;特征向量 Features of Nilpotent matrix trace YAN Wen (Department of Mathematics and Statistics,Xiaogan university,Xiaogan,Hubei 432000,China) Abstract:2009 National College Mathematics Competition Problems (3th item):Based vector space V is the complex field,,f g are the linear transformation, and satisfies fg gf f -=, Then all the eigenvalues of f are 0, Between f and g there are the same feature vector (not necessarily equal the corresponding eigenvalue). We convert it to matrix and discussed in the special circumstances that BA AB=, Verify:A and B have public feature vectors, and eigenvectors obtained the public. Key words:Nilpotent matrix; Trace;Eigenvalue;Eigenvector.

数值方法课程设计报告幂法反幂法计算矩阵特征值和特征向量-附Matlab程序

矩阵的特征值与特征向量的计算 摘要 物理,力学,工程技术中的很多问题在数学上都归结于求矩阵特征值的问题,例如振动问题(桥梁的振动,机械的振动,电磁振动等)、物理学中某些临界值的确定问题以及理论物理中的一些问题。矩阵特征值的计算在矩阵计算中是一个很重要的部分,本文使用幂法和反幂法分别求矩阵的按模最大,按模最小特征向量及对应的特征值。 幂法是一种计算矩阵主特征值的一种迭代法,它最大的优点是方法简单,对于稀疏矩阵比较合适,但有时收敛速度很慢。其基本思想是任取一个非零的初始向量。由所求矩阵构造一向量序列。再通过所构造的向量序列求出特征值和特征向量。 反幂法用来计算矩阵按模最小特征向量及其特征值,及计算对应于一个给定近似特征值的特征向量。本文中主要使用反幂法计算一个矩阵的按模最小特征向量及其对应的特征值。计算矩阵按模最小特征向量的基本思想是将其转化为求逆矩阵的按模最大特征向量。然后通过这个按模最大的特征向量反推出原矩阵的按模最小特征向量。 关键词:矩阵;特征值;特征向量;冥法;反冥法

THE CALCULATIONS OF EIGENVALUE AND EIGENVECTOR OF MATRIX ABSTRACT Physics, mechanics, engineering technology in a lot of problems in mathematics are attributed to matrix eigenvalue problem, such as vibration (vibration of the bridge, mechanical vibration, electromagnetic vibration, etc.) in physics, some critical values determine problems and theoretical physics in some of the problems. Matrix eigenvalue calculation is a very important part in matrix putation. In this paper, we use the power method and inverse power method to calculate the maximum of the matrix, according to the minimum characteristic vector and the corresponding characteristic value. Power method is an iterative method to calculate the eigenvalues of a matrix. It has the advantage that the method is simple and suitable for sparse matrices, but sometimes the convergence rate is very slow. The basic idea is to take a non - zero initial vector. Construct a vector sequence from the matrix of the matrix. Then the eigenvalues and eigenvectors are obtained by using the constructed vector sequence. The inverse power method is used to calculate the minimum feature vectors and their eigenvalues of the matrix, and to calculate the eigenvalues of the matrix. In this paper, we use

相关文档
最新文档