Antimicrobial and antioxidant activities of Flammulina velutipes polysaccharides and polysacchride

Antimicrobial and antioxidant activities of Flammulina velutipes polysaccharides and polysacchride
Antimicrobial and antioxidant activities of Flammulina velutipes polysaccharides and polysacchride

Carbohydrate Polymers 161(2017)26–32

Contents lists available at ScienceDirect

Carbohydrate

Polymers

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c a r b p o

l

Antimicrobial and antioxidant activities of Flammulina velutipes polysacchrides and polysacchride-iron(III)complex

Ya-ru Dong,Shu-jie Cheng,Guo-hong Qi,Zhi-ping Yang,Shi-yu Yin,Gui-tang Chen ?

Department of Food Quality and Safety,China Pharmaceutical University,639Longmian Avenue,Nanjing 210009,China

a r t i c l e

i n f o

Article history:

Received 23November 2016Received in revised form 21December 2016

Accepted 28December 2016

Available online 29December 2016

Chemical compounds studied in this article:Hydroxyl (PubChem CID:961)DPPH,Free radical (PubChem CID:2735032)

Superoxide anion (PubChem CID:5359597)Malondialdehyde (PubChem CID:10964)2,2 -Azobis(3-ethylbenzothiazoline-6-sulfonic acid)(PubChem CID:73857778

Iron chloride (FeCl 3)(PubChem CID:24380)

Keywords:

Flammulina velutipes polysaccharides Polysacchride-iron (III)complex Antimicrobial activity Antioxidant activity

a b s t r a c t

FVP is polysacchrides obtained from Flammulina velutipes .A polysacchride named FVP2was isolated from FVP by DEAE cellulose-52chromatography and Sephadex G-100size-exclusion chromatography.FVP-Fe and FVP2-Fe were synthesized by neutralization of FeCl 3carbohydrate solution.The antibacterial and antifungal activities of FVP,FVP2,FVP-Fe,FVP2-Fe were investigated and their antioxidant effects on hydroxyl,2,2-diphenyl-1-picrylhydrazyl (DPPH),superoxide anion,2,2 -azobis-(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS)radicals,reducing power,inhibition of malondialdehyde (MDA)were assessed in vitro.The results suggested that FVP-Fe and FVP2-Fe signi?cantly suppressed the growth of bacteria Staphylococcus aureus ,Escherichia coli ,and Bacillus subtilis ,and have relatively strong antioxidant activity to scavenge superoxide anion radical.In addition,FVP exhibited strong antioxidant activity to eliminate hydroxyl,DPPH,ABTS radicals,had high reducing power and inhibited the MDA production of health mice liver homogenate induced by auto-oxidation and Fe 2+-H 2O 2system.

?2016Elsevier Ltd.All rights reserved.

1.Introduction

Flammulina velutipes as one of the most popular mushrooms,with high nutrition levels of vitamins,amino acids,polysacchrides and ?ber,has been widely cultivated and consumed all over the world,especially in China and Japan (Jing et al.,2014;Yang et al.,2012;Zhang,Xiao,Deng,He,&Sun,2012).The polysaccharides of F.velutipes (FVP)are the major active component in F.velutipes that have a lot of biological activities such as enhance immunity,improving memory,antioxidant activity,resisting decrepitude and suppressing tumor (Pang et al.,2007;Sheng et al.,2007;Shi et al.,2012;Wu,Duan,Liu,&Cen,2010;Zhang et al.,2013).Iron de?-ciency anemia (IDA)is one of the highest incidences of nutrient de?ciency diseases,and the basic method to prevent IDA is to take enough iron (Fretham,Carlson,&Georgieff,2011;Szeto,Harrison

?Corresponding author.

E-mail address:cpucgt@https://www.360docs.net/doc/1015134586.html, (G.-t.Chen).

&Innis,2012).At present,the popular iron supplements include two types,namely inorganic iron and organic iron.Ferrous sulfate is the representative of inorganic iron (Liu,Lin,Chang,Yang,&Chen,2004).Although it is an effective iron supplement,it has a lot of side effects,such as gastrointestinal irritation,oral odor and iron poi-soning,https://www.360docs.net/doc/1015134586.html,anic compounds represented by polysacchride-iron complex,with high bioavailability and little gastrointestinal irrita-tion,is a kind of effective iron supplement to prevent IDA (Wang,Chen,Wang,&Xing,2015;Shi et al.,2013;Zhang,Wang et al.,2012).The polysacchride-iron (III)complex of F.velutipes (FVP-Fe)was synthesized by neutralization of an FeCl3carbohydrate solution in order to achieve a new effective and bioactive iron supplement.Microorganisms such as bacteria and fungi usually cause food spoilage and poisoning,which decrease the shelf life of food and endanger the health of consumers (Sokmen et al.,2004).Some polysacchrides extracted from plants have strong antibacterial effect (Zhu,Sheng,Yan,Qiao,&Lv,2012),but to the best of our knowledge,there were no report available in the literature regard-ing the antibacterial and antifungal activities of FVP and FVP-Fe.

https://www.360docs.net/doc/1015134586.html,/10.1016/j.carbpol.2016.12.0690144-8617/?2016Elsevier Ltd.All rights reserved.

Y.-r.Dong et al./Carbohydrate Polymers161(2017)26–3227

The most of radicals in human body are oxygen radicals with spe-ci?c biological functions,and the right amount of free radicals is necessary to the organisms.However,when excessive free radi-cals produced in human body,they attack normal cells,protein, nucleic acid,lipid,sugar and other biological macromoleculars in human body resulting in diseases,aging and death(Ami′c et al., 2017,2014).Nowadays,the development of novel antioxidants to eliminate free radicals effectively is the hot topic of research. More and more polysaccharides from plant and their correspond-ing synthetic products were researched,not only because of their good immunoregulatory activities but also the effective antioxi-dant activities(Gao,Wang,Wang,&Wang,2013;Liu,Sun,Rao,Su, &Yang,2013;Wang,Li,&Chen,2009;Zhang et al.,2013).How-ever,few investigations focused on the comparison between FVP and FVP-Fe on their antioxidant activity.

The objective of this study was to evaluate the antibacterial activity of the FVP,FVP2,FVP-Fe and FVP2-Fe against Staphylococcus aureus,Escherichia coli,Bacillus subtilis and their antifungal activity against yeast,Rhizopus,Aspergillus.The study also determined their antioxidant activity,including hydroxyl,2,2-Diphenyl-1-picryl-hydrazy(DPPH),2,2 -azobis-(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS),superoxide anion radicals scavenging activity,reduc-ing power,inhibiting MDA production of health mice liver homogenate induced by auto-oxidation and Fe2+-H2O2system. 2.Materials and methods

2.1.Materials and chemicals

Fresh F.velutipes mushrooms were purchased from a local supermarket(Nanjing,China).The DPPH and ABTS were purchased from Sigma Chemical Co.(St.Louis,MO,USA).All other reagents were purchased from Nanjing Chemical Reagent Co.(Nanjing, China).

2.2.Preparation,puri?cation of FVP

In the previous study,polysacchrides of F.velutipes were obtained after hot water extraction,deproteinization,and alcohol precipitation.The extraction yeild was6.25%and the content of polysacchrides of sample was70.58%.Two main fractions named FVP1,FVP2were isolated from the sample by DEAE cellulose-52 chromatography and Sephadex G-100size-exclusion chromatog-raphy.The yeilds of FVP1and FVP2were22.86%,17.45%and the content of polysacchrides of them were98.80%,96.35%,respec-tively.

2.3.Synthesis of FVP-iron(III)complex

F.velutipes polysacchride iron(III)complex(FVP-Fe)was synthe-sized by neutralization of an FeCl3carbohydrate solution.Brie?y, 0.3mL of2M FeCl3was added drop wise under continuous stirring to the aqueous solution containing100mg of FVP and75mg of sodium citrate.The pH values were adjusted to7.0by the addition of2M of HCl or2M of NaOH solution.The temperature(50?C)was controlled by the constant temperature oscillation incubator(HZC-F250,Taicang Experimental Equipment Factory,Taicang,China). After1.0h,the reaction mixture was then centrifuged at4000g for10min.The supernatant was concentrated and then dialyzed in distilled water to remove unbound ions.Finally,the dialyzate was concentrated,precipitated by anhydrous ethanol,and then was freeze-dried.2.4.Antimicrobial activity

2.4.1.Bacteria,fungi and activation culture

The antibacterial and antifungal activities of FVP,FVP2,FVP-Fe, FVP2-Fe were determined against the pathogenic microorgan-isms,which were three bacteria including Staphylococcus aureus, Escherichia coli,Bacillus subtilis and three fungi including yeast,Rhi-zopus,Aspergillus supplied by School of Life and Science,China Pharmaceutical University,China.Beef extract peptone medium stable for bacteria,was composed of3.0g of beef extract,10g of petone,5.0g of sodium chloride,15–20g of agar(the liquid medium without agar),which were dissolved in1.0L of distilled water,adjusted to pH7.2–7.4,and autoclaved at121?C for20min. Potato dextrose agar medium(PDA)was made up of300g of potato, 20g of dextrose,15–20g of agar(the liquid medium without agar), which were dissolved in distilled water and autoclaved at121?C for20min.Sterile loop was used to inoculate the strains stored in EP tubes at?80?C and melted in37?C water bath onto the speci?c medium of agar slant in tubes.Agar slant of bacteria was incubated at37?C in digital biochemical incubator(SPX-100B-Z,Shanghai Boxun Medical Biological Instrument Corp.,Shanghai,China)for 24h and the agar slant of fungi was incubated at28?C in digital bio-chemical incubator for48h.Then complete strains of bacteria were inoculated on the beef extract peptone liquid medium in tubes, which were in the constant temperature incubator shaker(37?C, 150rpm,4h).And the complete strains of fungi were inoculated on potato dextrose liquid medium in tubes,which were in the constant temperature incubator shaker(28?C,150rpm,12h).The bacteria and fungi solution was used for expanding culture to produce the suspension of bacteria and fungi.

2.4.2.Antibacterial and antifungal activity assay

Antibacterial and antifungal activities were evaluated by Oxford cup method(Pei et al.,2014;Su et al.,2014).Two milliliter of bacte-ria suspension’s diluted inoculum(106CFU/mL)added into100mL of sterile beef extract peptone liquid medium,and2.0mL of fungi suspension’s diluted inoculum(106CFU/mL)added into100mL of potato dextrose liquid medium,were shaken well in the constant temperature incubator shaker at150rpm for5min,then mixed with100mL of the appropriate agar medium with3.0g of agar. The mixture was poured into the petri dishes(90×15mm)quickly, and cooled in the super clean bench.Sterile oxford cups(6mm inside diameter,8mm outside diameter)?lled with10mg/mL of FVP,FVP2,FVP-Fe,FVP2-Fe were placed on the agar medium,four cups on an agar medium and one of them?lled with sterilized water as blank control.In addition,every microorganism had two parallel experiments,the bacterial agar mediums were incubated at37?C for24h and the fungal agar mediums were cultured at28?C for48h. The bacterial and fungal inhibitory activities were determined by measuring the diameter of inhibition zone after taking down oxford cups,the data was recorded as means±SD.

2.5.Antioxidant activity assay

The antioxidant activity was assessed by seven different tests, including hydroxyl radical,DPPH radical,ABTS radical and superox-ide anion radical scavenging activities,reducing power,inhibiting the MDA production of liver homogenate induced by auto-oxidation and Fe2+-H2O2system respectively.In addition,ascorbic acid was used as a positive control.

2.5.1.Hydroxyl radical scavenging activity

Spectrophotometric method was used to determine the hydroxyl radical scavenging activity,which was investigated according the methods of Xu et al.(2012)and Wang,He,and Liu (2008).In the reaction system,1.0mL of sample solution including

28Y.-r.Dong et al./Carbohydrate Polymers161(2017)26–32

FVP,FVP2,FVP-Fe,FVP2-Fe and ascorbic acid(0,0.1,0.2,0.3,0.4, 0.5,0.6,0.7,0.8,0.9,1.0mg/mL)was mixed with1.0mL of FeSO4 (6mM),1.0mL of H2O2(6mM),then incubated at37?C for10min. One milliliter of salicylic acid–ethanol(6mM)was added into the mixture,shook well and incubated at37?C for30min before the absorbance of the mixture was recorded at510nm by ultraviolet and visible spectrophotometer(TU-1901UV/VIS spectrophotome-ter,Beijing Purkinje General Instrument Co.,Ltd.,Beijing,China). Deionised water displaced sample was as blank and ascorbic acid as a positive control.The hydroxyl radical scavenging activity was calculated as follows:

Hydroxyl radical scavenging activity(%)=[1?(A1?A2)/A0]×100 Where A1was the absorbance of sample solution or ascorbic acid, A2was the absorbance of mixture,but the deionised water instead of H2O2,and A0was the absorbance of the blank,sample replaced by deionised water.

2.5.2.DPPH radical scavenging activity

The DPPH radical scavenging activity was determined by the method previously described by Chen,Ma,Liu,Liao,and Zhao (2012),with a minor modi?cation.Two mmol/L DPPH solution was prepared in anhydrous ethanol in advance.Sample of1.0mL(at the concentration of0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0mg/mL respectively)was added to1.6mL of distilled water and0.4mL of DPPH solution(2mM).The mixture was shaken and incubated at30?C for10min away from the light in the water bath.Then deionised water was used as blank,the absorbance of the reaction system was determined at517nm,and the ascorbic acid was the positive control.The DPPH radical scavenging activity was assessed by the following equation:

DPPH radical scavenging activity(%)=[1?(A1?A2)/A0]×100 Where A1was the absorbance of sample or ascorbic acid with DPPH solution,A2was the absorbance of mixture,but the deionised water instead of DPPH solution,and A0was the absorbance of the blank, sample replaced by deionised water.

2.5.

3.Superoxide anion radical scavenging activity

Superoxide anion radical scavenging activity was assessed by the method of Qiao et al.(2009)with little modi?cation.Before the determination,8mmol/L pyrogallic acid was prepared with 10mmol/L hydrochloric acid.Three milliliter of pH8.2Tris-HCl buffer solution(0.05M)and50?L of pyrogallic acid(8mM)were mixed with1.0mL of sample solution including FVP,FVP2,FVP-Fe,FVP2-Fe and ascorbic acid(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9,1.0mg/mL).Shake the mixture and determine its absorbance at325nm immediately,using deionised water as blank.The absorbance of?rst minute and sixth minute were recorded.The formula of superoxide anion radical scavenging activity was as fol-lows:

Superoxide anion radical scavenging activity(%)=[1?(A1?A2)/A0]×100 Where A1was the oxidation rate of mixture with sample solu-tion and ascorbic acid,A0was the autoxidation rate of the pyrogallic acid.

2.5.4.ABTS radical scavenging activity

ABTS radical scavenging activity was evaluated according to method of Liang et al.(2012)with some modi?cation.ABTS could be oxidized by K2(SO4)2to generate glaucous cationic ABTS radicals. If the reaction system existed electron-antioxidant,it could react with ABTS and fade the glaucous ABTS,resulting in the decrease of the absorbance at734nm.0.3841g of ABTS and0.0662g of K2(SO4)2were dissolved in deionised water.Then the solution was transferred to100mL volumetric?ask,diluted with deionised water and mixed,which was incubated at room temperature for 12–16h in dark place away from light.The stock solution includ-ing7.0mmol/L ABTS and2.45mmol/L K2(SO4)2was diluted with 0.01mol/L pH7.4PBS to the right concentration(0.7absorbance at 734nm).In the reaction system,1.0mL of H2O and2.0mL of the ABTS solution were added into1.0mL of sample solution includ-ing FVP,FVP2,FVP-Fe,FVP2-Fe and ascorbic acid(0,0.1,0.2,0.3, 0.4,0.5,0.6,0.7,0.8,0.9,1.0mg/mL).Shaking well and place the solution at the room temperature away from light for6min,then determine the absorbance of the mixture at734nm.In addition, the deionised water was used as blank and ascorbic acid as positive control.The ABTS radical scavenging activity was calculated as the following equation:

ABTS radical scavenging activity(%)=[1?(A1?A2)/A0]×100 Where A1was the absorbance of sample solution or ascorbic acid with ABTS solution,A2was the absorbance of mixture,but the deionised water instead of ABTS solution,and A0was the absorbance of the blank,sample replaced by deionised water.

2.5.5.Determination of the reducing power

The determination of reducing power referenced the method of Wu et al.(2015)with some modi?cation.One milliliter of sam-ple solution including FVP,FVP2,FVP-Fe,FVP2-Fe(0,0.1,0.2,0.3, 0.4,0.5,0.6,0.7,0.8,0.9,1.0mg/mL)was mixed with2.0mL of PBS(0.2M,pH6.6)and2.0mL of potassium ferricyanide(1%,W/V), which was incubated at50?C in water bath for20min.Adding 2.0mL of trichloroacetic acid(TCA)into the solution to stop the reaction.After centrifugation(4000rpm,10min),3.0mL of super-natant was reacted with0.5mL of FeCl3(0.1%,W/V)for10min, then measured at700nm by ultraviolet spectrophotometer.50?L different concentration of ascorbic acid was used as positive con-trol and deionised water as blank.The reducing power could be assessed as follows:

Reducingpower=A1?A0

Where A1was the absorbance of sample solution or ascorbic acid, and A0was the absorbance of the blank.

2.5.6.Inhibiting the MDA production of health mice liver homogenate induced by auto-oxidation

One milliliter of mice liver homogenate(4%,W/V)was mixed with1.0mL of sample solution including FVP,FVP2,FVP-Fe,FVP2-Fe(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0mg/mL),which was incubated at37?C in water bath for1.5h.The mixture was added 1.0mL of TCA(10%,W/V)and1.0mL of thiobarbituric acid(TBA, 0.67%,W/V),mixed,boiled for15min then cooled with water.After centrifugation(4000rpm,5min),the supernantant was measured at532nm,deionised water as the blank.The inhibition ratio of MDA was valuated as follows:

T he inhibition ratio of MDA(%)=[1?(A1?A2)/A0]×100

The inhibition ratio of MDA(%)=[1?(A1?A2)/A0]×100

Where A1was the absorbance of the mixture with sample solution or ascorbic acid,A2was the absorbance of sample solution with deionised water,and A0was the absorbance of the blank,sample replaced by deionised water.

2.5.7.MDA production of health mice liver homogenate induced

by Fe2+-H2O2system

One milliliter of sample solution including FVP,FVP2,FVP-Fe, FVP2-Fe(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0mg/mL)was mixed with1.0mL of mice liver homogenate(4%,W/V),0.1mL of

Y.-r.Dong et al./Carbohydrate Polymers161(2017)26–3229 Table1

Antimicrobial activity of FVP,FVP2,FVP-Fe and FVP2-Fe.

Group Staphylococcus aureus Escherichia coli Bacillus subtilis Yeast Rhizopus Aspergillus

FVP7.99±0.01c8.00±0.01c7.99±0.01b8.00±0.017.98±0.028.00±0.01 FVP27.98±0.04c8.00±0.01c8.00±0.01b7.98±0.007.99±0.018.00±0.00 FVP-Fe15.45±0.22a11.87±0.26b13.91±1.13a8.00±0.017.94±0.107.98±0.04 FVP2-Fe13.07±0.45b12.29±0.04a12.45±0.99a8.00±0.047.99±0.018.00±0.01

Note:Data are the diameter of inhibition zone(mm)shown as means±SD(n=6).Values in the same row not sharing a common superscript letter are signi?cantly different at P<0.05.

FeSO4(6mM)and50?L of H2O2(60mM),which was incubated at

37?C for1.5h.The mixture was added1.0mL of TCA(10%,W/V)and

1.0mL of TBA(0.67%,W/V),mixed,boiled for15min then cooled

with water.After centrifugation(4000rpm,5min),the supernan-

tant was measured at532nm,deionised water as the blank.The

inhibition ratio of MDA was valuated as follows:

TheinhibitionratioofMDA(%)=[1?(A1?A2)/A0]×100

Where A1was the absorbance of the mixture with sample solution

or ascorbic acid,A2was the absorbance of sample solution with

deionised water,and A0was the absorbance of the blank,sample

replaced by deionised water.

3.Results and discussion

3.1.Effect on the antibacterial and antifungal activity

The rule about d,the diameter of inhibition zone was made to analyze the inhibitory activities of samples.When 6.5≤d<8mm,it indicated the sample had no inhibitory activ-ity,when8.0≤d<10.0mm,it indicated the sample had relatively strong inhibitory activity and when d≥10.0mm,meaning the sam-ple with high inhibitory effect.The antibacterial activity against Staphylococcus aureus,Escherichia coli,Bacillus subtilis was showed in Table1.The inhibition zones of FVP and FVP2against three bacteria were in the range of7.98±0.02to8.00±0.01,indicating that the two samples had no inhibitory effect on Staphylococcus aureus,Escherichia coli.While FVP-Fe exhibited high antibacterial effect on Staphylococcus aureus,Escherichia coli,and Bacillus subtilis (15.45±0.22,11.87±0.26,13.91±1.13,respectively).And FVP2-Fe was also effective against the three bacteria at the inhibition zones of13.07±0.45,12.29±0.04and12.45±0.99,respectively. In addition,Staphylococcus aureus was most susceptible to FVP-Fe with the biggest inhibition zone.

The results of antifungal activity against yeast,Rhizopus and Aspergillus were also described in Table1.It could be observed that FVP,FVP2,FVP-Fe and FVP2-Fe did not show inhibitory activ-ity against the three fungi,the inhibition zones in the range of 7.94±0.10to8.00±0.04.

In general,FVP and FVP2exhibited low inhibitory effect on bac-teria and fungi,while FVP-Fe and FVP2-Fe also had no antifungal activity against yeast,Rhizopus and Aspergillus.However,FVP-Fe and FVP2-Fe showed strong antibacterial activity against Staphylo-coccus aureus,Escherichia coli and Bacillus subtilis.

3.2.Effect on the hydroxyl radical scavenging activity

Hydroxyl radical as the active substance of reactive oxygen,has strong oxidizing ability and can damage various macromolecules, such as lipid,carbohydrates,amino acid and nucleic acid,causing disorganization and apoptosis,which is the most harmful to human health.Therefore,scavenging hydroxyl radical is one of the posi-tive measures to prevent diseases.The experiment adopted Fenton method to establish the reaction model,where Fe2+can react with H2O2to produce much short-lived but high activity of hydroxyl rad-

10

20

30

40

50

60

70

80

90

100

0.00.20.40.60.8 1.0

S

c

a

v

e

n

g

i

n

g

a

c

t

i

v

i

t

y

(

%

)

Conce ntration(mg/mL)

FVP

FVP-Fe

FVP2

FVP2-Fe

Vc

Fig.1.Hydroxyl radical scavenging activity of FVP,FVP2,FVP-Fe,FVP2-Fe and Vc. Data are shown with means with standard deviation.

icals.At this point,if excess salicylic acid joined the reaction system, hydroxyl radical attacked the benzene ring of salicylic acid to pro-duce colored2,3-dihydroxybenzoic acid,which displayed a strong absorbance peak at510nm.When the sample had the capability to eliminate the hydroxyl radicals,it could compete with salicylic acid to react with hydroxyl radicals,resulting in the decrease of the2,3-dihydroxybenzoic acid and the absorbance at510nm.The hydroxyl radical scavenging activities of FVP,FVP2,FVP-Fe,and FVP2-Fe were shown in Fig.1.In the test,the concentration of sample ranged from0.1mg/mL to1.0mg/mL,the scavenging activity of sample on hydroxyl radicals increased with the increasing concentration. In general,FVP’s capability of inactivating the hydroxyl radical was higher than the FVP-Fe’s.In addition,compared with other samples, the FVP had the strongest to scavenge hydroxyl radicals and FVP2 was close to the FVP.The hydroxyl radical scavenging activities of FVP-Fe and FVP2-Fe were relatively weak.When the concentra-tion was1.0mg/mL,the scavenging activities of FVP,FVP2,FVP-Fe, and FVP2-Fe were41.54%,40.65%,19.79%,21.32%respectively,and the scavenging activity of ascorbic acid as positive control was 99.68%.The capability of eliminating hydroxyl radical in the sam-ple was found in order FVP>FVP2>FVP2-Fe>FVP-Fe.The protein in polysacchrride could chelate Fe2+to reduce the generation of hydroxyl radicals,and the FVP had more protein than the other samples.In addition,the sample could provide protons to hydroxyl radicals and achieved the scavenging radical result.So the FVP and FVP2had the certain ability to inactivated hydroxyl radicals at the high concentration.

3.3.Effect on the DPPH radical scavenging activity

DPPH could produce more stable nitrogen-centered radicals in organic solvent,which were purple and had a strong absorbance peak at517nm.The content of DPPH radicals and the absorbance value had a linear relationship within a certain concentration range. In the reaction system,the hygrogen donating ability was thought to do with the capability of scavenging DPPH activity.If the sample had strong antioxidant ability,the absorbance decreased at517nm, the DPPH radicals scavenging activity was higher.The scaveng-

30Y.-r.Dong et al./Carbohydrate Polymers161(2017)

26–32

10

20

30

40

50

60

70

0.20.40.60.81

S

c

a

v

e

n

g

i

n

g

a

c

t

i

v

i

t

y

(

%

)

Conce ntration(mg/mL)

FVP

FVP-Fe

FVP2

FVP2-Fe

Vc

Fig.2.DPPH radical scavenging activity of FVP,FVP2,FVP-Fe,FVP2-Fe and Vc.Data

are shown with means with standard deviation.

ing activities of FVP,FVP2,FVP-Fe,FVP2-Fe and ascorbic acid were

determined at various concentrations on the above principle and

the results were shown in Fig.2.Results showed that the scaveng-

ing effect of FVP and FVP2increased quickly with increasing the

concentration,FVP-Fe,FVP2-Fe were in a relatively slow rate,and

the positive control of ascorbic acid always had a high scaveng-

ing activity.The scavenging activity of FVP2was higher than that

of FVP in the concentration ranged from0.1mg/mL to0.9mg/mL.

However,the scavenging effect of FVP was slightly above FVP2 s

at1.0mg/mL,while DPPH radical scavenging activities of FVP,

FVP2,FVP-Fe,FVP2-Fe were44.32%,43.78%,20.00%,25.14%,respec-

tively.At the high concentration,the capability of eliminating DPPH

radicals descending order was FVP>FVP2>FVP2-Fe>FVP-Fe.The

results indicated DPPH radical scavenging activity of FVP was supe-

rior to that of FVP-Fe and FVP possibly contained some substances

reacting with DPPH radicals by donating hydrogens.

3.4.Effect on the superoxide anion radical(O2?)scavenging

activity

Oxygen molecules could get an electron to become superoxide

anion radical because of electron transfer on the nuclear mem-

brane,cytokines P450of endoplasmic reticulum,cytokines,which

could generate H2O2by disproportionated reaction with super-

oxide dismutase(SOD).The superoxide anion radical triggered

liposome oxidation by generating more active hydroxyl ions or

singlet oxygen.The superoxide anion radical damaged DNA and

inactivated creatine kinase,glutathione peroxidase,catalase,caus-

ing diseases and accelerating aging.It was necessary for human

body to eliminate the excess superoxide anion radicals.The exper-

iment adopted pyrogallol autoxidation method,where pyrogallic

acid could produce superoxide anion radicals in weak base solu-

tion and generated colored intermediates with a strong absorbance

peak at325nm in a speci?c oxidation rate.The antioxidant can

inactivate superoxide anion radicals,decrease the rate of pyrogallol

autoxidation,and reduce the production of colored intermediates,

so it can decrease the reaction mixture’s absorbance at325nm.The

scavenging effect of superoxide anion radicals of FVP,FVP2,FVP-Fe,

FVP2-Fe was presented in Fig.3.From the graph it was evident that

FVP-Fe had stronger capability to eliminate superoxide anion rad-

icals than FVP,and the FVP-Fe had the highest scavenging activity.

The scavenging activity of the four samples on superoxide anion

followed the order:FVP-Fe,FVP2-Fe,FVP,FVP2and were55.26%,

47.57%,15.04%and8.27%at the concentration of1.0mg/mL,respec-

tively.FVP-Fe might react with pyrogallol or donate hydrogen to

superoxide anion radicals to scavenge the radicals.The result

indi-

20

40

60

80

100

0.20.4

S

c

a

v

e

n

g

i

n

g

a

c

t

i

v

i

t

y

(

%

)

Conce ntration(mg/mL)

Fig.3.Superoxide anion radical scavenging activity of FVP,FVP2,FVP-Fe,FVP2-Fe

and Vc.Data are shown with means with standard deviation.

20

40

60

80

100

00.20.40.60.81

S

c

a

v

e

n

g

i

n

g

a

c

t

i

v

i

t

y

(

%

)

Conce ntration(mg/mL)

FVP

FVP-Fe

FVP2

FVP2-Fe

Vc

Fig.4.ABTS radical scavenging activity of FVP,FVP2,FVP-Fe,FVP2-Fe and Vc.Data

are shown with means with standard deviation.

cated the FVP-Fe and FVP2-Fe relatively strong ability to inactivate

superoxide anion radicals.

3.5.Effect on the ABTS radical scavenging activity

ABTS could generate the stable glaucous cation radicals by

reacting with K2(SO4)2,which had a peak absorbance at734nm.

The reaction system shallowed and the absorbance decreased at

734nm when the added antioxidants inactivate ABTS radicals.Fig.4

showed the scavenging activity of FVP,FVP2,FVP-Fe,FVP2-Fe and

the positive control ascorbic acid.As shown in the?gure,ascor-

bic acid always maintained the high scavenging effect,and the

scavenging activities of samples increased with the increasing con-

centration.It was obvious that the FVP had signi?cantly higher

capability to eliminate ABTS radicals than the other three samples.

At the concentration1.0mg/mL,the FVP showed79.37%scaveng-

ing effect close to ascorbic acid,and the scavenging activities of

FVP2,FVP-Fe,FVP2-Fe were44.27%,36.39%,31.32%,respectively.

The results indicated that the FVP had strong capability to inacti-

vate ABTS radicals by providing hydrogens or electrons and FVP2

was second to the FVP.

3.6.Effect on the reducing power

Sample with strong reducing power could provide electrons to

achieve the effect of scavenging radicals,generating more stable

production.So the reducing power is connected with the antioxida-

tion,and the determination of reducing power was usually used to

evaluate the antioxidant ability.In the experiment,the antioxidants

donated electrons,resulting in the reduction of the potassium fer-

ricyanide to potassium ferrocyanide,which could react with ferric

Y.-r.Dong et al./Carbohydrate Polymers 161(2017)26–32

31

0.0

0.10.20.30.40.50.60.70.80.90 0.2

0.4 0.6 0.8

1

R e d u c i n g p o w e r (A )

Conce ntration(mg/mL)

FVP FVP-Fe FVP2FVP2- Fe Vc

Fig.5.Reducing power of FVP,FVP2,FVP-Fe,FVP2-Fe and Vc.Data are shown with

means with standard deviation.

ion to produce prussian blue,having a peak absorbance at 700nm.If the sample had stronger reducing power,more prussian blue was generated,higher absorbance was evaluated at 700nm and the rad-ical scavenging activity was higher.Fig.5depicted the reductive capability of FVP,FVP2,FVP-Fe,FVP2-Fe compared with ascorbic acid as positive control.As Fig.5showed,the reducing power of four samples and ascorbic acid increased gradually with increasing concentration,and ascorbic acid maintained a high growth rate.In addition,the reducing power of FVP was much higher than the other three samples.At 1.0mg/mL,the reducing power of FVP,FVP2,FVP-Fe,FVP2-Fe were 0.319,0.134,0.136,0.084,which were in the order:FVP >FVP2and FVP-Fe >FVP2-Fe.

3.7.Effect on the malondialdehyde (MDA)production of health

mice liver homogenate induced by auto-oxidation

Liver homogenate could generate free radicals by auto-oxidation under suitable condition,which attacked polyunsatu-rated fatty acids on the bio?lm and caused lipid peroxidation.MDA as the end product of lipid peroxidation,enhance the penetrabil-ity of cell membrane,changed the structure and function of cell membrane and caused damage to human body through the cross-linking reaction with protein or nuclear acid.The contents of MDA in organic body could not only evaluate the extent of lipid per-oxidation and the oxidation ability,but also re?ect the extent of cells damage.The mice liver homogenate would produce MDA at the temperature 37?C by auto-oxidation,existing in the form of enol,reaction with barbituric acid to generate the red adducts by the action of heat,which had a peak absorbance at 535nm.When the antioxidant was added into the reaction system,it inhibited free radicals and MDA,resulting in the decrease of red adducts and the lower absorbance at 535nm.The abilities of four samples and ascorbic acid to inhibit the MDA production of healthy mice live homogenate induced by auto-oxidation were expressed in Fig.6.The FVP and ascorbic acid showed obvious growth rate of inhibit-ing MDA with increasing tested concentration,while the other three samples’inhibition ratio increased slowly.At 1.0mg/mL,the inhibition ratios of FVP,FVP2,FVP-Fe and FVP2-Fe were 45.23%,10.42%,11.64%,7.03%,respectively.Above all,FVP had relatively strong capability to inhibit MDA in health mice liver homogenate by auto-oxidation.

3.8.Effect on the MDA production of health mice liver homogenate induced by Fe 2+-H 2O 2system

The homogenate of mice liver with Fe 2+

and H 2O 2could effec-tively induce the increase expression of free radicals,causing the increase of end products,such as MDA.The abilities of four sam-ples and ascorbic acid to inhibit the MDA production of healthy

-100

1020304050607080900.0

0.2

0.4

0.6

0.8

1.0

I n h i b i t i o n r a t i o (%)

Conce ntration(mg/mL)

FVP FVP-Fe F2F2- Fe Vc

Fig.6.Inhibition ratio of FVP,FVP2,FVP-Fe,FVP2-Fe and Vc to eliminate the MDA production of health mice liver homogenate induced by auto-oxidation.Data are shown with means with standard deviation.

01020304050607080901000.0

0.2

0.4 0.6 0.8 1.0

I n h i b i t i o n r a t i o (%)

Conce ntration(mg/mL)

FVP FVP-Fe FVP2FVP2- Fe Vc

Fig.7.Inhibition ratio of FVP,FVP2,FVP-Fe,FVP2-Fe and Vc to eliminate the MDA production of health mice liver homogenate induced by Fe 2+-H 2O 2system.Data are shown with means with standard deviation.

mice live homogenate induced by Fe 2+and H 2O 2system were expressed in Fig.7.The inhibition ratios of four samples and ascorbic acid increased gradually with increasing tested concen-tration,which were all higher than the MDA inhibition ratios of samples induced by auto-oxidation except for FVP2-Fe.At the con-centration of 1.0mg/mL,the inhibition ratio of FVP was 84.16%,close to the inhibition ratio of ascorbic acid (87.75%).In addition,the inhibition ratios of FVP2,FVP-Fe and FVP2-Fe were 25.20%,42.04%,3.73%,respectively.The inhibition ratios of samples were found in the descending order at he high tested concentration:FVP >FVP-Fe >FVP2>FVP2-Fe.In the experiments,FVP showed the high inhibition ratio of MDA and indicated that it could scavenge free radicals effectively.Moreover,the FVP-Fe had fairly strong ability to inhibite the MDA and also could eliminate free radicals ef?ciently.

4.Conclusion

In this study,FVP and FVP2exhibited low inhibitory effect on bacteria and fungi,while FVP-Fe and FVP2-Fe had no anti-fungal activity against yeast ,Rhizopus and Aspergillus .However,FVP-Fe and FVP2-Fe signi?cantly suppressed the growth of bac-teria Staphylococcus aureus ,Escherichia coli ,Bacillus subtilis and had relatively strong antioxidant activity to scavenge superoxide anion radical.FVP exhibited strong antioxidant activity to eliminate hydroxyl,DPPH,ABTS radicals,had high reducing power and inhib-ited the MDA production of health mice liver homogenate induced by auto-oxidation and Fe 2+-H 2O 2system.The results suggested that FVP was a signi?cantly strong and natural antioxidant.In addi-

32Y.-r.Dong et al./Carbohydrate Polymers161(2017)26–32

tion,FVP-Fe and FVP2-Fe might be used as effective antibacterial agents.

Acknowledgements

This work was supported by the National Found for Fostering Talents of Basic Science(No.J1310032)and National Natural Science Foundation of China(No.31101255).

References

Ami′c,A.,Markovi′c,Z.,Dimitri′c Markovi′c,J.M.,Stepani′c,V.,Luˇc i′c,B.,&Ami′c,D.

(2014).Towards an improved prediction of the free radical scavenging potency of?avonoids:The signi?cance of double PCET mechanisms.Food Chemistry, 152,578–585.

Ami′c,A.,Luˇc i′c,B.,Stepani′c,V.,Markovi′c,Z.,Markovi′c,S.,Dimitri′c Markovi′c,J.M., et al.(2017).Free radical scavenging potency of quercetin catecholic colonic metabolites:Thermodynamics of2H+/2e-processes.Food Chemistry,218,

144–151.

Chen,G.T.,Ma,X.M.,Liu,S.T.,Liao,Y.L.,&Zhao,G.Q.(2012).Isolation, puri?cation and antioxidant activities of polysaccharides from Grifola frondosa.

Carbohydrate Polymers,89,61–66.

Fretham,S.J.,Carlson,E.S.,&Georgieff,M.K.(2011).The role of iron in learning and memory.Advances in Nutrition,2(2),112–121.

Gao,C.J.,Wang,Y.H.,Wang,C.Y.,&Wang,Z.Y.(2013).Antioxidant and immunological activity in vitro of polysaccharides from Gomphidius rutilus mycelium.Carbohydrate Polymers,92(2),2187–2192.

Jing,P.,Zhao,S.J.,Lu,M.M.,Cai,Z.,Pang,J.,&Song,L.H.(2014).

Multiple-?ngerprint analysis for investigating quality control of Flammulina velutipes fruiting body polysaccharides.Journal of Agricultural and Food

Chemistry,62,12128–12133.

Liang,L.H.,Wu,X.Y.,Zhao,T.,Zhao,J.L.,Li,F.,Zou,Y.,et al.(2012).In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry

(Morus atropurpurea Roxb.)following simulated gastro-intestinal digestion.

Food Research International,46(1),76–82.

Liu,T.C.,Lin,S.F.,Chang,C.S.,Yang,W.C.,&Chen,T.P.(2004).Comparison of a combination ferrous fumarate product and a polysaccharide iron complex as oral treatments of iron de?ciency anemia:A Taiwanese study.International Journal of Hematology,80,416–420.

Liu,Y.T.,Sun,J.,Rao,S.Q.,Su,Y.J.,&Yang,Y.J.(2013).Antihyperglycemic, antihyperlipidemic and antioxidant activities of polysaccharides from

Catathelasma ventricosum in streptozotocin-induced diabetic mice.Food and Chemical Toxicology,57(12),39–45.

Pang,X.B.,Yao,W.B.,Yang,X.B.,Xie,C.,Liu,D.,Zhang,J.,et al.(2007).Puri?cation, characterization and biological activity on hepatocytes of a polysaccharide

from Flammulina velutipes mycelium.Carbohydrate Polymers,70,291–297. Pei,Z.,Sun,X.,Tang,Y.,Wang,K.,Gao,Y.,&Ma,H.(2014).Cloning,expression,and puri?cation of a new antimicrobial peptide gene from Musca domestica larva.

Gene,549,41–45.

Qiao,D.L.,Ke,C.L.,Hu,B.,Luo,J.G.,Ye,H.,Sun,Y.,et al.(2009).Antioxidant activities of polysaccharides from Hyriopsis cumingii.Carbohydrate Polymers, 78,199–204.Sheng,J.,Yu,F.,Xin,Z.,Zhao,L.,Zhu,X.,&Hu,Q.(2007).Preparation,identi?cation and their antitumor activities in vitro of polysaccharides from Chlorella

pyrenoidosa.Food Chemistry,105,533–539.

Shi,M.,Yang,Y.,Guan,D.,Zhang,Y.,&Zhang,Z.(2012).Bioactivity of the crude polysaccharides from fermented soybean curd residue by Flammulina velutipes.

Carbohydrate Polymers,89,1268–1276.

Shi,J.M.,Cheng,C.L.,Zhao,H.T.,Jing,J.,Gong,N.,&Lu,W.H.(2013).In vivo anti-radiation activities of the Ulva pertusa polysaccharides and

polysaccharide–iron(III)complex.International Journal of Biological

Macromolecules,60,341–346.

Sokmen,A.,Gulluce,M.,Akpulat,H.A.,Daferera,D.,Tepe,B.,Polissiou,M.,et al.

(2004).The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius.Food Control,15,

627–634.

Su,H.,Chen,W.,Fu,S.,Wu,C.,Li,K.,Huang,Z.,et al.(2014).Antimicrobial effect of bayberry leaf extract for the preservation of large yellow croaker

(Pseudosciaena crocea).Journal of Science of Food and Agriculture,94,935–942. Szeto,A.C.,Harrison,R.L.,&Innis,S.M.(2012).Caries,iron de?ciency and food security in low income,minority children.Canadian Journal of Dental Hygiene, 46,215–220.

Wang,X.,He,L.,&Liu,B.(2008).Study on extraction,puri?cation and scavenging activity to hydroxyl radicals of polysaccharides from leaves of ilex kudincha

C.J.Tseng.Food Science,29,37–40.

Wang,L.,Li,X.,&Chen,Z.(2009).Sulfated modi?cation of the polysaccharides obtained from defatted rice bran and their antitumor activities.International Journal of Biological Macromolecules,44,211–214.

Wang,J.,Chen,H.X.,Wang,Y.W.,&Xing,L.S.(2015).Synthesis and characterization of a new Inonotus obliquus polysaccharide-iron(III)complex.

International Journal of Biological Macromolecules,75,210–217.

Wu,D.M.,Duan,W.Q.,Liu,Y.,&Cen,Y.(2010).Anti-in?ammatory effect of the polysaccharides of golden needle mushroom in burned rats.International

Journal of Biological Macromolecules,46,100–103.

Wu,Q.Y.,Qu,H.S.,Jia,J.Q.,Kuang,C.,Wen,Y.,Yan,H.,et al.(2015).

Characterization,antioxidant and antitumor activities of polysaccharides from purple sweet potato.Carbohydrate Polymers,132,31–40.

Xu,R.B.,Yang,X.,Wang,J.,Zhao,H.T.,Lu,W.H.,Cui,J.,et al.(2012).Chemical composition and antioxidant activities of three polysaccharide fractions from pine cones.International Journal of Molecular Sciences,13,14262–14277. Yang,W.,Pei,F.,Shi,Y.,Zhao,L.,Fang,Y.,&Hu,Q.(2012).Puri?cation: characterization and anti-proliferation activity of polysaccharides from

Flammulina velutipes.Carbohydrate Polymers,88,474–480.

Zhang,A.Q.,Xiao,N.N.,Deng,Y.L.,He,P.F.,&Sun,P.L.(2012).Puri?cation and structural investigation of a water-soluble polysaccharide from Flammulina velutipes.Carbohydrate Polymers,87,2279–2283.

Zhang,Z.S.,Wang,X.W.,Han,Z.P.,Yin,L.,Zhao,M.X.,&Yu,S.C.(2012).

Physicochemical properties and inhibition effect on iron de?ciency anemia of a novel polysaccharide-iron complex(LPPC).Bioorganic and Medicinal Chemistry Letters,22,489–492.

Zhang,Z.F.,Lv,G.Y.,He,W.Q.,Shi,L.G.,Pan,H.J.,&Fan,L.F.(2013).Effects of extraction methods on the antioxidant activities of polysaccharides obtained from Flammulina velutipes.Carbohydrate Polymers,98,1524–1531.

Zhu,H.J.,Sheng,K.,Yan,E.F.,Qiao,J.J.,&Lv,F.(2012).Extraction,puri?cation and antibacterial activities of a polysaccharide from spent mushroom substrate.

International Journal of Biological Macromolecules,50(3),840–843.

聚氨酯新材料项目职业病危害检测评价分析

聚氨酯新材料项目职业病危害检测评价分析 根据5中华人民共和国职业病防治法6和5建设项目职业病危害评价规范6等法律法规、卫生标准要求, 我们对某聚氨酯( PU )新材料工程项目职业病危害控制效果进行评价。现将评价结果报告如下。 1 评价内容、方法 1. 1 评价内容1 分析评价该项目生产或操作过程中产生的有毒有害物质、生产性噪声等职业病危害因素的种类、分布、浓度或强度及其对工人健康的影响。o 分析评价职业病防护措施实施情况, 包括总平面布置、生产工艺及设备布局、车间建筑设计卫生要求、卫生工程防护设施的控制效果、应急救援措施、个人防护设施, 辅助卫生用室设置、职业卫生管理措施等。 1. 2 评价方法按5建设项目职业病危害评价规范6 [ 1] 要求,用检查表和定量分级法评价该扩建项目中职业病危害因素对健康的影响、职业病防护措施实施情况[2] 。 1. 2. 1 职业卫生检测方法按5全国疾病预防控制机构工作规范6 [ 3] ( 2001年版)选择采样点。粉尘浓度检测用称重法( DS-21B 粉尘采样器), 噪声强度检测用直读方法( AWA6218B 噪声统计分析仪), TDI和二氯甲烷的检测用色谱分析法; CO2 用直读式仪器法。 1. 3 控制效果评价主要依据1 5中华人民共和国职业病防治法6 ( 2002- 05- 01); o 5建设项目职业病危害评价规范6 [ 1] ;. 5工业企业设计卫生标准6 [4] GBZ 1- 2002; . 5工作场所有害因素职业接触限值6 [ 5] GBZ 2- 2002; . 委托方提供的有关技术文件和资料。 2 结果分析 2. 1 项目工程分析及主要职业病危害因素 2. 1. 1 项目工程分析该新建项目主要产品为聚氨酯软泡塑料,生产工艺流程如下: 将原料罐的物料聚醚( PPG)、甲苯-2, 4二异氰酸酯(TDI)、三乙烯二胺、硅油、辛酸亚锡、水、色料、填料、阻燃剂、抗氧化剂、CO2 按一定量的配比经计量泵送入混合头。通过自控仪表装置将混合头的物料送入发泡头, 发泡头的压力为2. 5MPa, 通过发泡段输送带经走纸装置、红外线加热装置和真空抽气装置, 成形后由输送带送入切割输送带, 得成品, 发泡温度控制在20~ 24 c,再将成品经平切机分别切出所需成品。 2. 1. 2 主要职业病危害因素根据现场职业卫生调查, 该新建工程项目主要职业病危害因素有粉尘、TDI、二氯甲烷、CO2 及噪声等等。 2. 2 现场检测结果分析 2. 2. 1 作业场所粉尘对生产车间颜料粉碎机、混配槽等作业岗位粉尘浓度进行检测, 并按5生产性粉尘作业危害程度分级6 [ 6] ( GB 5817- 86)对粉尘危害程度进行分级, 结果见表1。

天然抗氧化剂的研究

天然抗氧化剂的研究现状 小组成员:莫娟兰,程小运,韦玲玲,李志宁,梁天贤,谢宏波,覃治达。 目录 中文文摘 [1].Liposomes和micelles结构对天然抗氧化剂稳定性的影响. [2].天然抗氧化剂对抗晶状体氧化损伤作用的实验研究 [3].大豆异黄酮的UV/vis的抗氧化作用 [4].天然抗氧化剂防止精炼油酸败的研究 英文文摘 [a].Antioxidant Activity of Wheat Germ Extracts [1] Liposomes和micelles结构对天然抗氧化剂稳定性的影响 儿茶素等类黄酮类物质广泛存在于茶叶、葡萄、柑橘、柿等多种天然植物中,它具有抗氧化、降血脂、消炎抗癌等多种功效,其保健功能已得到全世界医学界和食品营养界的公认,国内外很多学者对儿茶素等类黄酮类物质的自动氧化及抗氧化机理进行了详细而深入的研究。儿茶素类天然抗氧化剂在发挥其天然抗氧化保健作用的同时,其自身往往氧化成低活性甚至没有活性的氧化产物,特别是在天然植物原料加工过程中,这些天然抗氧化剂发生的自动氧化对其活性损失很大,因此,了解影响儿茶素自动氧化的因素,并寻找避免儿茶素自动氧化的方法以期提高其活性是医学界和食品营养界一直关注的课题。脂质体(Liposomes)和胶束体(micelles)类双亲和结构自发现以来,引起了科技界的高度重视,特别是脂质体结构的缓释性和靶向性在医药上的用途更为广泛,国外八十年代开始投入大量人力和财力进行研究,于九十年代开发出了脂质体靶向抗癌药物面市;我国九十年代引起重视并投入一定的经费开始研究,但到目前国内尚无一例成功开发上市的脂质体靶向药物。本试验试图将脂质体(Liposomes)和胶束体(micelles)类双亲和结构技术在儿茶素等类黄酮类物质。 [2] 天然抗氧化剂对抗晶状体氧化损伤作用的实验研究 目的:探讨五味子乙素(SchB)、水飞蓟宾(SIB)、没食子酸丙酯(PG)、阿魏酸钠(SF)和沙棘总黄酮(TFH)5种天然抗氧化剂对抗实验性晶状体氧化损伤的作用。 方法:将40只健康新西兰白兔麻醉后,无菌操作摘出80只眼球,游离出透明晶状体。将实验分成8组:(1)对照组,(2)Fenton组,(3)白内停组(PS),(4)五味子乙素组(SchB),(5)水飞蓟宾组(SIB),(6)没食子酸丙酯组(PG),(7)阿魏酸钠组(SF),(8)沙棘总黄酮组(TFH)。所配制的各组培养液,除对照组外,均含有Fenton反应液,并分别含有白内停或上述5种天然抗氧化剂。将晶状体随机分为8组分别放入培养液中,在37℃、5% cO2、95%空气的二氧化碳培养箱中温育。24 h后取出晶状体并在冰浴中做匀浆,测定晶状体总蛋白和可溶性蛋白、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、谷胱甘肽(SGH)、总抗氧化能力(TAO)、维生素(Vit c)和丙二醛(MDA)。结果以x±s表示,用SPSS统计软件包行t检验。探讨Fenton氧化损伤和5种抗氧化剂作用下对晶状体上述指标的影响。 结果:(1)各组总蛋白无差异。Fenton可溶性蛋白显著性低于其他组。对照组可溶性蛋白占总蛋白的90.74%,Fenton组仅占26.71%(丢失了71%),阿魏酸钠组可溶性蛋白占49.85%,是Fenton组的1.91倍,且高于白内停组(P<0.01)。(2)Fenton组SOD和GSH-Px活性分别丧失43.92%和49.22%。对照组、五味子乙素组、水飞蓟宾组、没食子酸丙酯组和阿魏酸钠组的SOD和GSH-Px活性均高于Fenton组,其中阿魏酸钠作用最强(P<0.01)。白内停没有提高SOD活性的作用仅有轻微增强GSH-Px活性的作用;(3)Fenton反应使晶状体中GSH和Vit c 分别丢失77.88%和80.95%,各种单体均显示较强的保护作用,且明显优于白内停滴眼液(P

茶叶中天然抗氧化剂茶多酚的提取方法及应用研究进展

茶叶中天然抗氧化剂茶多酚的提取方法与应用研究进展 1引言 1.1研究目的和意义 由于人们生产、生活需求的不断扩大,天然产物有效成分的提取分离与应用研究获得了前所未有的发展。绿色天然提取物茶多酚,在绿色的二十一世纪极具发展潜力。据有关专业人士介绍,目前,茶多酚在全球年消耗量约1800吨,其中,美国约700吨,西欧500吨,日本500吨,其他国家和地区约400吨。近年来除欧美国家需求逐年增加外,东南亚、南亚等消费量也有较快增长。因此,当前茶多酚的市场前景广阔,有关专家预计,未来几年,国内外茶多酚需求量将迅速从目前的1800吨攀升至2100吨以上,其市场规模可达十几亿元。我国是世界茶叶生产大国之一,每年约有70万吨茶叶,其中有约15万吨茶片、茶末,可供提取2.3吨食品级茶多酚。因此开发天然抗氧化剂茶多酚将有充足的资源保证。自从新世纪对茶多酚类开展系统研究以来,茶多酚的许多功能被陆续发现。大量的研究表明,茶多酚不仅是一种天然的无毒的抗氧化剂,而且也是一种理想的天然药物,具有清除自由基和抗氧化等生物活性。 1.2国内外研究现状 我国对茶多酚的研究开始于五六十年代,而专业研究开始于七十年代,目前我国对茶多酚的研究在国际上处与领先水平。国内生产的茶多酚含量大于89%,咖啡碱小于2%。当前茶多酚已被广泛应用于食品工业与医药行业。由于茶多酚具有生物活性的特性,不断地对茶多酚进行研究,不断地出现新的研究成果。王玉春在茶多酚的提取方法及应用研究进展一文中就茶多酚提取的各种方法的基本流程及各自得优缺点和茶多酚的用途做一综述。曹群在茶多酚的提取方法研究中对现如今对茶多酚的提取方法进行简单的归纳,并比较各种提取工艺的优缺点。李俊华在茶多酚的提取工艺研究中经过对茶多酚的性质及现有提取方法利弊的分析,确定采用超临界二氧化碳萃取技术对茶叶中的茶多酚进行了萃取研究,结果表明超临界二氧化碳萃取技术是可行的,并探讨了其较佳的提取工艺参数。王艳在天然抗氧化剂—茶多酚提取、分离和纯化方法一文对其性质、结构和组成做了简单的介绍,重点介绍了茶多酚的主要提取、分离和纯化方法。王学松在茶叶中茶多酚的提取方法研究一文中综述了从茶叶中提取茶多酚的方法、特点以及改

茶多酚性质功效及应用

茶多酚性质、功效及应用是中多酚类物质的总称,包括黄烷醇类、花色苷类、、黄酮醇类和类等。主要为(儿茶素)类,儿茶素占60~80%。类物质又称茶鞣或茶,是形成茶叶色香味的主要成份之一,也是茶叶中有保健功能的主要成份之一。研究表明,茶多酚等活性物质具解毒和作用,能有 茶多酚,又名抗氧灵、维多酚、防哈灵,是茶叶中所含的一类多羟基类化合物,简称TP,主要化学成分为儿茶素类(黄烷醇类)、黄酮及黄酮醇类、花青素类、酚酸及缩酚酸类、聚合酚类等化合物的复合体。其中儿茶素类化合物为茶多酚的主体成分,占茶多酚总量的65%~80%。儿茶素类化合物主要包括儿茶素(EC)、没食子儿茶素(EGC)、儿茶素没食子酸酯(ECG)和没食子儿茶素没食子酸酯(EGCG)4种物质[1]?。 3成分 是一种稠环,可分为类、-[4]-黄烷醇类、类、黄酮类、黄酮醇类和酚酸类等。其中以儿茶素最为重要,约占总量的60%-80%;类主要由EGC、DLC、EC、EGCG、GCG、ECG等几种单体组成。茶多酚在茶叶中的含量一般在20—35%。在茶多酚中各组成份中以黄烷醇类为主,黄烷醇类又以儿茶素类为主。儿茶素类物质的含量约占茶多酚总量的70%左右。 4性状

茶多酚为淡黄至茶褐色略带茶香的水溶液、粉状固体或结晶,具涩味,易溶于水、乙醇、乙酸乙酯,微溶于油脂。耐热性及耐酸性好,在pH2~7范围内均十分稳定。略有吸潮性,水溶液pH3~4。在碱性条件下易氧化褐变。遇铁离子生成绿黑色化合物[1]?。 5性能 茶多酚具有较强的抗氧化作用,尤其酯型儿茶素EGCG,其还原性甚至可达L-异坏血酸的100倍。4种主要儿茶素化合物当中,抗氧化能力为EGCG>EGC>ECG>EC>BHA,且抗氧化性能随温度的升高而增强。茶多酚除具有抗氧化作用外,还具有抑菌作用,如对葡萄球菌、大肠杆菌、枯草杆菌等有抑制作用。茶多酚可吸附食品中的异味,因此具有一定的除臭作用。对食品中的色素具有保护作用,它既可起到天然色素的作用,又可防止食品退色,茶多酚还具有抑制亚硝酸盐的形成和积累作用。 6理化性质 物理性质 茶多酚在常温下呈浅黄或浅绿色粉末,易溶于温水(40℃一80℃)和含水中;稳定性极强,在4—8、250℃左右的中,1.5个小时内均能保持,在三价铁离子下易分解。1989年被中国协会列入GB2760-89使用标准,1997年列为中成药原料。 化学性质 茶多酚是从茶叶中提取的全天然食品,具有抗氧化能力强,无毒副作用,无异味等特点。 茶多酚是指茶叶中一大类组成复杂、量及其结构差异很大的多酚类及其衍生物,主要由、黄酮醇、花色素、酚酸及其缩酚酸等组成的,以为主的黄烷醇类化合物占茶多酚总量的60%一80%,其中含量最高的几种组分为L—EGCG(50%-60%)、L—EGC(15%-20%)、L—ECG(10%-15%)和L—EC(5%-10%)。 7药理作用 抗癌: 茶多酚能极强的清除有害,阻断脂质过氧化过程,提高人体内的活性,从而起到抗突变、抗的绿茶。功效据相关资料显示,茶叶中的茶多酚(主要是儿茶素类化合物),对胃癌、肠癌等多种癌症的预防和辅助治疗均有益处。 防治降、预防及茶多酚对人体有着重要作用。人体的、甘油三酯等含量高,内壁脂肪沉积,血管平滑肌细胞增生后形成动脉粥样化斑块等心血管疾病。茶多酚,尤其是茶多酚中的儿茶素ECG和EGC及其氧化产物茶黄素等,有助于抑制这种斑状增生,使形成血凝黏度增强的纤维蛋白原降低,凝血变清,从而抑制动脉粥样硬化。降血压茶多酚具有较强的抑制转换活性的作用,因而可以起到降低或保持血压稳定的作用。降血糖茶多酚对人体的糖代谢障碍具有调节作用,能降低血糖水平,从而有效的预防和治疗糖尿病。 防治脑中风: 茶多酚有遏制过氧化脂质产生的作用,能消除血管痉挛,保持血管壁的弹性,增加血管的有效直径,通过血管舒张使血压下降,从而有效地防止脑中风。 抗血栓: 血浆的增高可引起红细胞的聚集,血液粘稠度增高,从而促进血栓的形成。另外,细胞膜脂质中磷脂与胆固醇的增多会降低红细胞的变形能力,严重影响微循环的灌注,增加血液粘度,使毛细血管内血流淤滞,加剧红细胞聚集及。 茶多酚对红细胞变形能力具有保护和修复作用,且易与凝血酶形成复合物,阻止纤维蛋白原变成纤维蛋白。另外,茶多酚能有效的抑制血浆及肝脏中胆固醇含量的上升,促进脂类及胆汁酸排出体外,从而有效的防止血栓的形成。现有的降脂抗栓药物多有一定的毒副作用而不易长期服用。茶多酚是茶叶中具有降脂抗栓作用的天然成分,加上其自身所具有的抗氧化特性,使其成为一种新型的功能性保健品。 ①提高免疫能力 通过调节免疫球蛋白的活性,间接实现提高人体综合免疫能力、抗风湿因子、抗菌抗病毒的功效,茶多酚通过提高人体免疫球蛋白总量并使其维持在高水平,刺激抗体活性的变化,从而提高人的总体免疫能力。间接实现抑制或杀灭各种病原体、病菌和病毒的功效。 ②抗变态反应和皮肤过敏反应 茶多酚能强烈的抑制组胺的释放作用,实验证明茶多酚抗变态反应和抗皮肤过敏反应比当前常用的抗过敏药的抑制效果强2~10倍。茶多酚能抑制活性因子如抗体、肾上腺素、酶等引起的过敏反映,对哮喘等过敏性病症有显着疗效。

石墨电极的原料及制造工艺

石墨电极的原料及制造工艺 一、石墨电极的原料 1、石墨电极 是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。2、石墨电极的原料 生产石墨电极的原料有石油焦、针状焦和煤沥青 (1)石油焦 石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑多孔,主要元素为碳,灰分含量很低,一般在%以下。石油焦属于易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 石油焦按硫分的高低区分,可分为高硫焦(含硫%以上)、中硫焦(含硫%%)、和低硫焦(含硫%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 (2)针状焦 针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在以上),在偏光显微镜下可观察到各向异性的纤维状结构,因而称之为针状焦。 针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青原料生产的煤系针状焦。 (3)煤沥青 煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为-cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。 煤沥青在炭素工业中作为粘结剂和浸渍剂使用,其性能对炭素制品生产工艺和产品质量影响极大。粘结剂沥青一般使用软化点适中、结焦值高、β树脂高的中温或中温改质沥青,浸渍剂要使用软化点较低、 QI低、流变性能好的中温沥青。 二、石墨电极的制造工艺

浇注型聚氨酯..

浇注型聚氨酯 1概述 聚氨酯弹性体(PUE,PolyurethaneElastomer)是一类综合性能优良的高分子合成材料,包含有浇注型聚氨酯弹性体(CPU)、热塑型聚氨酯弹性体(TPU)和混炼型聚氨酯弹性体(MPU),微孔聚氨酯弹性体、聚氨酯防水材料、鞋底材料、铺装材料等。 CPU 在加工前成型前为粘性液体,故有“液体橡胶”之称,它是以液态低聚物多元醇、异氰酸酯和小分子扩链剂为原料,使用液体混合浇注的加工成型方法,经扩链交联反应得到固化交联的高弹性产物。CPU 成型工艺简单,形成的弹性体分子完整程度高,最大限度发挥了聚氨酯弹性体的特点,综合性能也优于 MPU 和 TPU,因而成为聚氨酯弹性体中产量最大、应用范围最广的品种。在许多工业领域中,CPU 正在逐步地取代传统金属和硫化橡胶,取得越来越广泛的应用。浇注法也是本课题制备聚氨酯弹性体采用的方法。MPU 加工的第一步是合成高粘度、储存稳定、可以混炼加工的聚氨酯生胶(线性分子,分子量为 20 000~30 000),然后在开炼机或密炼机中将其与硫化剂、促进剂、补强性填料等相混合,经成型最后硫化成具有弹性体物理化学性能的聚氨酯弹性体,可以看到,MPU 的加工方法和传统橡胶相似,因而是最早获得工业生产和应用的一种聚氨酯弹性体,但 MPU 的性能比 CPU 和 TPU 差,硬度一般在 ShoreA55~A80,工艺复杂,产量较小。TPU 常采用一步法生产,即将聚合物多元醇、二异氰酸酯和小分子扩链剂混合,在双螺杆反应器中反应,然后切粒和干燥,使用塑料挤出、注射成型的加工方法进行生产。TPU 的数均分子量较大,硬度较高。 聚氨酯弹性体是由相对分子质量大的聚醇软段和相对分子质量低的二异氰酸酯与二胺或二醇合成的硬段所构成的弹性体。软段提供弹性体的韧性、弹性和低温性能;硬段贡献弹性体的刚性、强度以及耐热性[1]。 聚氨酯弹性体具有优异的综合性能,因而广泛应用于各种领域。聚氨酯胶辊、胶轮、筛板、密封件等仍然是浇注型聚氨酯弹性体的重要产品,质量在提高、品种在增加、应用领域在扩大是其发展趋势。阻燃、耐热、阻尼、低摩擦型等聚氨酯弹性体具有广阔的市场空间和发展前景,已引起业界的高度重视。 聚氨酯弹性体分子中有大量的极性基团,同时氨基甲酸酯键可以使分子链之间形成较强的氢键交联。有效地防止了应力作用下分子链之间的滑移,使其不仅具有较高的力学性能、突出的耐磨性,还具有耐油、耐水、耐臭氧、耐辐射、耐低温、气密性 1

迷迭香天然抗氧化剂产业化项目可行性研究报告

迷迭香天然抗氧化剂产业化项目可行性 研究报告 第一章总论 一、项目提出的背景及必要性 1.1.1. 本项目是国家确保食品安全的战略性项目 化学合成抗氧剂作为食品添加剂,是世界在20世纪及之前的普遍选择。由于化学合成抗氧化剂对人体肝、脾、肺等器官均有较大的毒、副作用,在二十世纪中期,曾造成影响较大的中毒事件,世界卫生组织(FAO/WHO)、欧共体儿童保护组织(HACSG)、英国生物工业协会(BIBRA)等一些机构和组织对化学合成抗氧化剂的安全性问题进行了广泛的研究。研究表明,化学合成抗氧化剂对人体肝、脾、肺等器官均有较大的毒、副作用。一直延续到2010年的麦当劳“麦乐鸡事件”就是使用化学合成抗氧化剂导致食品安全问题的延续。但由于世界性市场大流通的需要,人们一时找不到没有毒副作用的抗氧化剂来取代它们,为此,各国相关机构对现行抗氧化剂进行了严格、细致的毒理学研究和评价,制定了详细的使用标准,来减少化学合成抗氧化剂对人的毒副作用。但世界各国及相关机构,出于对人类健康的关注,均希望找到一种对人类没有毒副作用的天然抗氧化剂来确保食品安全。 从植物中提取的天然植物成分,由于其安全、无毒或基本无毒,受到了人们的广泛欢迎,成为研究开发的热点。从20世纪以来,国外相继研究开发了从茶叶、山嵛菜、西红柿、葡萄籽、甘草、烤烟及迷迭香等植物中提取对人体无毒害的天然抗氧化剂。这一发现也导致目前北欧国家禁止使用化学合成抗氧化剂,发达国家--欧盟、美国、日本等严格限制使用对人体有毒、副作用的化学合成抗氧化剂,而寻求并鼓励推广天然抗氧化剂,同时还限制或禁止使用了化学合成抗氧化剂的食品进口。 研究发现,在众多的天然抗氧化剂中,迷迭香天然抗氧化剂,不仅具有很好的抗氧化性,而且对人体还有很好的保健作用,更难得目前只有迷迭香天然抗氧化剂具有高效、稳定、耐高温的特点,这一发现,推动了世界各国对迷迭香天然抗氧化剂的研究开发。迷迭香抗氧化剂成为世界发达国家竞相开发的目标。

茶多酚的抗氧化作用及其在食品中的应用

茶多酚的抗氧化作用及其在食品中的应用 摘要:茶多酚是一种天然的食品添加剂,本文介绍了茶多酚的成分和儿茶素的 结构,全面地综述了茶多酚的抗氧化性能茶多酚在油脂、肉制品加工和果蔬保鲜、糕点和糖果以及饮料生产等方面的发展和应用。 关键词:茶多酚;抗氧化作用;食品 Abstract: Tea polyphenols is a natural food additives, ingredients of tea polyphenols and catechin structure, a comprehensive overview of the antioxidant properties of tea polyphenols in tea polyphenols grease, meat processing, and aquatic preservation,the development and application of pastries and candy and beverage production. Key word: tea polyphenols;antioxidation;food 茶多酚是从茶叶中提取的纯天然多酚类物质,又叫茶单宁,茶鞣质,是茶叶中多酚类物质的总称。茶多酚主体成分是儿茶素,占茶叶干物量的20 %一30 % [1]。茶多酚分子结构中具有活泼的羟基氢能终止自由基的连锁反应,捕获过量的自由基,因此是一类理想的天然抗氧化剂。 1 茶多酚的性质和结构 茶多酚在碱性介质中极不稳定,在酸性中则稳定、耐热、与柠檬酸、苹果酸、酒石酸都有较好的协同作用。在潮湿的空气中能被氧化成棕色物,遇铁变成绿黑色络合物,与重金属盐溶液作用生成灰黄色沉淀,也能被高锰酸钾、硫酸铈等氧化剂氧化,与酒石酸铁生成红紫色络合物[2]。 茶多酚的主要成分按其化学结构可分为: 黄烷酮类、花色素类、黄酮醇类、 花白素类、酚酸及缩酚酸类等6类化合物。其中以黄烷酮类(主要是儿茶素类化合物)最为重要,占茶多酚总量的60% ~80% 。其次是黄酮类,其他酚类物质含量比较

《第三类体外诊断试剂产品技术要求附录编写要求》(征求意见稿)

第三类体外诊断试剂产品技术要求 附录编写要求(征求意见稿) 一、前言: 根据《体外诊断试剂注册管理办法》(国家食品药品监督管理总局令第5号,以下简称《办法》)第四章的规定,第三类体外诊断试剂(IVD)的产品技术要求中应当以附录形式明确主要原材料、生产工艺及半成品要求。《办法》第七章要求,已注册的体外诊断试剂,其注册证及附件载明内容发生变化,注册人应当向原注册部门申请注册变更,产品技术要求(包括附录)属于注册证的附件,申请人应对其中发生变化的内容提出注册变更申请。体外诊断试剂产品种类繁多,预期用途及方法学各异,即使是同类产品,不同的生产企业在原料的选择及制备、生产工艺及半成品检定方面也可能存在较大差异。因此,有必要制定相应的指导性文件,对技术要求附录的内容进行规范。 本文内容旨在指导注册申请人对第三类体外诊断试剂产品技术要求附录的准备及撰写,同时也为技术审评部门对注册申报资料的技术审评提供参考。本文是对第三类体外诊断试剂技术要求附录的一般要求,申请人应依据产品的具体特性确定其中内容是否适用,若不适用,在做出科学合理性解释的前提下,可以依据产品特性对具体内容进行修订。本文内容依据现行法律法规并参考《中国生物制品规程》(2000年版)制定,随着相关法规和标准体系的不断完善,本文内容也将适时进行修订或调整。

二、适用范围 本文针对不同方法学的第三类体外诊断试剂技术要求附录中的主要材料、生产工艺及半成品检定等内容进行规范,明确附录内容编写要求,适用于第三类体外诊断试剂注册、延续注册及注册变更申请。 三、基本要求 (一)主要材料 1.通用要求。 主要原材料来源一般有两种途径,生产企业自行制备或外购于其他供货商。申请人在编写产品技术要求附录时,针对不同来源的原材料须明确的内容也不相同,具体要求如下。 (1)企业外购原材料:生产企业应明确供货商名称,供货商应相对固定,不得随意更换。生产企业还应确定主要原材料的质量控制标准,下面对几种常见的原材料进行描述。 a、抗原:应明确抗原名称、生物学来源、供货商名称等信息,应对抗原技术指标的要求进行详述。 b、抗体:应描述抗体名称、克隆号、生物学来源,供货商名称及刺激免疫原等信息,应对抗体技术指标的要求进行详述。 c、引物、探针:应明确所有引物、探针的供货商、核酸序列及主要技术指标要求。 (2)企业自制原材料:生产企业应明确原材料的制备原理,摘要性描述制备过程,确定主要原材料的质量控制标准。 a、抗原:如为天然抗原,例如病原体检测试剂所用抗原应明确

茶多酚改性及其抗氧化性能研究进展_应乐

茶 叶 科 学 2010,30(增刊1):511~515 Journal of Tea Science 收稿日期:2010-09-20 修订日期:2010-11-20 作者简介:应乐(1987— ),女,浙江慈溪人,在读硕士研究生,主要从事茶叶生物化学与茶终端产品开发方面的研究。*通信作者:zdcy@https://www.360docs.net/doc/1015134586.html, 茶多酚改性及其抗氧化性能研究进展 应乐 1,2 ,张士康2,王岳飞 1* ,朱跃进2,杨贤强1 (1. 浙江大学茶学系,浙江 杭州 310029;2. 中华全国供销合作总社杭州茶叶研究院,浙江 杭州 310016) 摘要:利用溶剂法、乳剂法和分子修饰法等技术对茶多酚进行改性,以制备具有较好脂溶性的改性茶多酚一直是国内外研究的热点之一。本文就目前用于茶多酚改性的三种方法及其优缺点,以及改性后的脂溶性茶多酚的抗氧化性能与机理进行了综述和总结,并对茶多酚改性技术发展与脂溶性茶多酚应用前景进行了展望。 关键词:脂溶性茶多酚;改性;抗氧化 中图分类号:TS272.5+1 文献标识码:A 文章编号:1000-369X (2010)增刊1-511-05 Progress on the Modification of Tea Polyphenols and Antioxidant Properties of Lipid-soluble Tea Polyphenols YING Le 1,2, ZHANG Shi-kang 2, WANG Yue-fei 1*, ZHU Yue-jin 2, YANG Xian-qiang 1 (1. Department of Tea Science, Zhejiang University, Hangzhou 310029, China; 2. Hangzhou Tea Research Institute, China COOP, Hangzhou 310016, China) Abstract: Producing good quality lipid-soluble tea polyphenols (LTP) was the research focus at home and abroad. Tea polyphenols’ modification by solvent, emulsion and molecular modification were reviewed in this paper. The advantages and disadvantages among these three methods were compared. The antioxidant properties of liphophilic tea polyphenols and its mechanism were introduced. Its antioxidant properties in different antioxidant systems were compared. And the application of LTP as antioxidants was forecasted. At the same time, the developing direction of LTP production was proposed. Keywords: lipid-soluble tea polyphenols, modification, antioxidant 茶多酚作为茶叶中重要的活性成分之一,从发现至今一直备受人们的重视。研究表明[1],茶叶中的生理活性物质主要为茶多酚,它具有优异的抗氧化性能和显著清除自由基的能力。在食品领域,茶多酚可以作为食品的抗氧化剂,延长食品的货架保鲜期[2-3];在医药领域,茶多酚作为药品的功效成分,具有抗氧化[4]、延缓衰老、抗菌、抗病毒、降血脂[5]、抗癌[6-11]等功效,已被广泛应用于各类药品中。在化工 领域,茶多酚也可以用于各类化妆品的生产[12]以及作为甲醛的吸收剂[13]。 随着茶多酚各方面研究的深入,其各领域的应用趋于完善。茶多酚结构中的酚羟基使其具有良好的水溶性。但随着应用的进一步推广,茶多酚的水溶性阻碍了其在油脂体系的应用和发展,特别是在食品油脂行业的应用。目前食品业主要使用人工合成的脂溶性抗氧化剂,如BHA 、BHT 、PG 和TBHQ 等[14]。近

新型聚氨酯固化剂的研究与发展

新型聚氨酯固化剂的研究与发展 张修景(菏泽学院化学与化工系,山东菏泽274015) 摘要:阐述了颜色低于铁钴比色计1号,游离TDI含量小于0.5%,贮存稳定性达2年以上的新型聚氨酯固化剂的生产工艺;确定了含羟基丙烯酸树脂与该固化剂的质量比为:m(含羟基丙烯酸树脂)∶m(新型聚氨酯固化剂)=10∶4~6;分析了碱性物质是导致聚氨酯固化剂成胶的原因;提出了保证聚氨酯固化剂低色值、低游离TDI含量和高贮存稳定性的方法。 关键词:新型聚氨酯固化剂;色值;游离TDI含量;稳定性 0.引言 国内科研单位及相关企业、院校对于聚氨酯固化剂的研究做了大量工作,朱吕民[1]介绍了色泽为8号(铁钴比色计)TDI加成物的制法;彭红为,等[2-3]报道的产品的游离TDI含量高达3.0%~5.0%,配制的涂料在施工过程中对人体伤害很大,环境污染严重,不仅远远高出世界卫生组织游离TDI含量≤0.5%的要求,而且很难达到我国《室内装饰装修材料溶剂型木器涂料中有害物质限量》GB18581—2001强制标准中≤0.7%的规定。国外通常采用薄膜蒸发法,如Bayer公司采用该技术产品的游离TDI含量<0.5%。国内相关研究[4-10]对于降低游离TDI做了大量积极工作,并提出了在聚氨酯生产中推行清洁生产的建议和措施,但实现工业化生产的报道很少。赵文斌,等[10]的产品通过热重分析(TG)显示,改性TDI三聚体的热稳定性有一定下降。为此,本文研究了颜色低于铁钴比色计1号,游离TDI<0.5%,贮存稳定性达2年以上的TDI-TMP加成物,找到了该固化剂与含羟基丙烯酸树脂的最佳配比,可赋于漆膜多种优良的性能。 1.实验部分 1.1原料 甲苯二异氰酸酯(TDI):80/20,国产;三羟甲基丙烷(TMP):美国产;乙酸丁酯:工业一级品,无水;二月桂酸二丁基锡、缩二脲:工业一级品;磷酸(85%)、三正丁基膦、对硝基苯甲酰氯:分析纯;氮气(99199%)。 1.2反应原理 TDI-TMP加成物主要是指3分子的甲苯二异氰酸酯(TDI)与1分子的三羟甲基丙烷(TMP)的加成物,反应如式1。 1.3方法 新型聚氨酯固化剂的中试配方见表1。

抗氧化因子与天然抗氧化剂研究综述

万方数据

万方数据

万方数据

万方数据

万方数据

抗氧化因子与天然抗氧化剂研究综述 作者:乔凤云, 陈欣, 余柳青, QIAO Feng-yun, CHEN Xin, YU Liu-qing 作者单位:乔凤云,QIAO Feng-yun(浙江大学,生命科学学院,杭州,310029;中国水稻研究所,杭州 ,310006), 陈欣,CHEN Xin(浙江大学,生命科学学院,杭州,310029), 余柳青,YU Liu- qing(中国水稻研究所,杭州,310006) 刊名: 科技通报 英文刊名:BULLETIN OF SCIENCE AND TECHNOLOGY 年,卷(期):2006,22(3) 被引用次数:9次 参考文献(22条) 1.Hallwell B Free Radical and antioxidation 1990 2.Wu G;Fang Y Z;Yang S Glutathione metabolism in antimals:nutritional regulation and physiologyical signi-ficance 2003 3.Jacob;Robert A The integrated antioxidant system 1995(05) 4.Arora A;Nair M G;Strasburg G M Antioxidant activities of isoflavones and their metabolites in a liposomel system 1998 5.Kameoka S;Leavitt P;Chang C Expression of antioxidant proteins in human intestinal Caco-2 cells treated with dietary flavonoids[外文期刊] 1999 6.句海松抗氧化剂研究进展 1990(12) 7.Ng T B;Liu F;Wang Z T Antioxidative activity of nature products from plants[外文期刊] 2000(08) 8.Morel I;Cillard J;Lescoat G Antioxidant and free radical scavenging activities of the iron chelators pyoverdin and hydroxypyrid-4-ones in iron-loaded hepatocyte cultures:comparison of their mechanism of protection with that of desferrioxamine 1992(05) 9.Ozturk G;Erol D D;Uzbay T Synthesis of 4(1H)-pyridinone derivatives and investi-gation of analgesic and anti-inflammatory activities 2001(04) 10.Huang D R;Proctor G R;Driscoll S D Pyridones as potential antitumor agents Ⅱ:4-pyridones and bioisosteres of 3-acetoxy-2-pyridone 1980(03) 11.Cragg L;Hebbel R P;Miller W The iron chelator L1 potentiates oxidative DNA damage in iron-loaded liver cells 1998(02) 12.Sadrzadeh S M;Nanji A A;Price P L The oral iron chelator,1,2-dimethyl-3-hydroxypyrid -4-one reduces hepatic-free iron,lipid peroxidation and fat accumulation in chronically ethanol-fed rats 1994(02) 13.Helliwell B;Jello M C Gutteridge Free Radicals in Biology and Medicine 1985 14.Wickens;Andrew P Ageing and the free radical theory[外文期刊] 2001(03) 15.Vimala S & Adenan MI Malaysian tropical forest medicinal plants:a source of natural antioxidants 1999 16.Loliger Free Radicals and food additive 1991 17.Hudson B J F Food Antioxidants.Elsevier 1990 18.LOLIGER Free Radicals and Food Additive 1991 19.Arora A;Byrem T M;Nair M G Modulation of liposomeal membrane fluidity by flavonoids and

石墨电极的生产工艺流程和质量指标的及消耗原理知识讲解

石墨电极的生产工艺流程和质量指标的及 消耗原理

目录 一、石墨电极的原料及制造工艺 二、石墨电极的质量指标 三、电炉炼钢简介及石墨电极的消耗机理 石墨电极的原料及制造工艺 ●石墨电极是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混 捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。生产石墨电极的原料有石油焦、针状焦和煤沥青 ●石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑 多孔,主要元素为碳,灰分含量很低,一般在0.5%以下。石油焦属于 易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 ●石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟 焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 ●石油焦按硫分的高低区分,可分为高硫焦(含硫1.5%以上)、中 硫焦(含硫0.5%-1.5%)、和低硫焦(含硫0.5%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 ●针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石 墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在1.75以上),在偏光显微镜下可观察到各向异性的纤维状结 构,因而称之为针状焦。 ●针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具 有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 ●针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青 原料生产的煤系针状焦。 ●煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合 物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为1.25-1.35g/cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。

腰果酚应用研究进展..

12应用化学(职教本科1班彭思20120651 腰果酚应用研究进展 摘要:本文从官能团改性方面,综述了近几年国内外腰果酚衍生物的化学合成及在材料与精细化学品中的潜在应用,其中包括腰果酚酚羟基、腰果酚苯环及腰果酚侧链的改性。 关键词:腰果酚;腰果壳油;衍生物;应用;进展 前言:随着全球化石资源日趋减少,可再生资源的开发利用越来越引起人们的重视[1]。腰果壳液(CNSL)是腰果加工中的一种副产品,其含量约占腰果的25%-30%,世界年产量约50万吨,是一种价廉丰富的可再生资源[2-3]。CNSL 的最主要成分是腰果酚(cardanol)(1),含量可达90%。从结构来看,腰果酚属于苯酚的衍生物,在苯酚的间位被15个碳的直链(含0-3个碳碳双键)所取代(图1)(如无特殊说明,本文其它图中的R基团都代表腰果酚的侧链)。腰果酚可改性合成很多衍生物,包括功能小分子与聚合物,它们在涂料、摩擦材料、抗氧化剂、杀虫杀菌剂等方面都极具应用价值[4]。本文主要从腰果酚所含的三种官能团出发,总结通过酚羟基、苯环、不饱和侧链上的反应来制备各种有价值的腰果酚衍生物。 1利用腰果酚的羟基制备腰果酚衍生物 1.1腰果酚的酯类衍生物 腰果酚分子中含有活泼的酚羟基,可通过酯化、醚化反应制备相应的衍生物。例如张中云等[5]在-15℃左右使腰果酚与ClCN反应,生成腰果酚氰酸酯(2),2再与双酚A型氰酸酯(NCO-BPA-OCN)反应,制得了新型热固性树脂(图2)。由于树脂中引进了腰果酚所含的15个碳的柔性链,有效地提高了氰酸酯树脂的柔韧性,同时提高了其介电性能和耐吸水性能。

林金火课题组[6]用马来酸酐和腰果酚反应得到马来酸腰果酚单酯,然后与乙二醇进一步发生酯化反应 (图3),最后将酯化产物进行缩甲醛化反应,合成了同时具有软段结构(顺丁烯二酸乙二醇酯结构单元)和硬段结构(酚醛结构单元)的多羟基腰果酚醛树脂,该树脂具有优良的涂膜性能;所得的多羟基腰果酚醛树脂 也可与聚氨酯预聚体组成性能优良的双组分聚氨酯漆,可改善普通腰果漆的柔韧性和附着力。 为了制备新型抗氧化剂,Lomonaco等[7]用腰果酚和强心酚(cardol,腰果壳油的另一种成分)与二乙氧基硫代磷酰氯反应,制备了相应的硫代磷酸酯化合物(3)和(4)(图4)。将所制硫代磷酸酯在聚甲基丙烯酸甲酯中掺入1%的量,结果聚合物的热稳定性提高了很多。特别是化合物4中既含有硫代磷酸酯结构,又含有酚羟基结构,同时具有一类和二类抗氧化剂的功能,因此对材料的热稳定性提高最明显。

相关文档
最新文档