微分算子概念

微分算子概念
微分算子概念

微分算子法典型例题讲解

高阶常微分方程的微分算子法 高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。但是有一个例外:常系数线性微分方程。我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐 次方程的特解。本节主要讨论微分算子法。 1.求方程230y y y ''''''--=的通解. 解 记()n n y D y =,将方程写成 32230D y D y Dy --= 或32(23)0D D D y --= 我们熟知,其实首先要解特征方程 32230D D D --= 得0,1,3D =-故知方程有三特解31,,x x e e -,由于此三特解为线性无关,故立得通解 3123x x y C C e C e -=++ 注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是 1111()()()()() n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++= 其中系数1(),,()n a x a x 是某区间(,)a b 上的连续函数,上述方程又可写成 1 1()(()())n n n L y D a x D a x y -≡+++ ()f x = 可以把上面括号整体看作一种运算,常称为线性微分算子。本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。 2.求解 61160y y y y ''''''-+-= 解 写成 32(6116)0D D D y -+-= 从特征方程 3 2 06116D D D =-+- (1)(2)(3)D D D =--- 解得 1,2,3D =共三实根,故可立即写成特解 23123x x x y C e C e C e =++ 3.求解 39130y y y y ''''''-++= 解 写成 32(3913)0D D D y -++= 或 2(1)(413)0D D D y +-+= 特征方程 2(1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin3x e x 从而通解是 22123cos3sin3x x x y C e C e x C e x -=++ 4.求(4)45440y y y y y ''''''-+-+=之通解. 解 写成 432(4544)0D D D D y -+-+= 或 22(2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1(cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2(1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0 ()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1(cos )x -),解得 1s i n ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+ 12cos sin cos ln cos sin C x C x x x x x =+++

微分方程的基础知识及解析解

微分方程的基础知识及解析解

微分方程的基础知识与练习 (一)微分方程基本概念: 首先通过一个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在水平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运动规律的函数)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得

2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020s t ==。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5),(6)都含有未知函数的导数,它们都是微分方程。 1.微分方程的概念 一般地,凡含有未知函数、未知函数的导数及自变量的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。我们只研究常微分方程。微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。 例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+-是四阶微分方程。 一般地,n 阶微分方程的形式是 ()(,,',...,)0,n F x y y y = (11) 其中F 是个2+n 变量的函数。这里必须指出,在方程(11)中,)(n y 是必须出现的,而 )1(,...,',,-n y y y x 等变量则可以不出现。例如n 阶微分方程

姚老师最爱的两招:表格法与微分算子法

姚老师最爱的两招:表格法与微分算子法,因为效率高,所以喜欢,仅此而已!录入可是字字辛苦,希望大家珍惜哦! 一、 分部积分的表格法 分部积分主要针对被积函数为两类函数乘积的类型,主要可以归纳为反幂、对幂、幂三、幂指和三指五种,幂可以扩展为多项式函数,三主要指正弦和余弦两类三角函数,基本原则是把其中一类函数拿去凑微分,遵循“反对幂三指”、越往后越先凑微分的原则,前四种称为“终止模式”,最后一种称为“循环模式”。当涉及到幂函数(多项式函数)次数较高时,需多次用到分部积分,计算较繁且易出错,因此介绍一个推广公式: 定理:设(),()u u x v v x ==有1n +阶连续导数,则 (1)()(1)(2)(3)1(1)''''''(1)n n n n n n n uv dx uv u v u v u v u vdx +---++=-+-++-? ?。(此定理及证 明可略,仅告诉大家,我不是瞎编乱造,而是有理论依据的!) 【证:用数学归纳法。 当0n =时,''uv dx uv u vdx =-??。 设1n k =≥时,(1)()(1)(2)(3)1(1)''''''(1)k k k k k k k uv dx uv u v u v u v u vdx +---++=-+-+ +-?? (*) 则当1n k =+时,(2)(1)(1)(1)'k k k k uv dx udv uv u v dx ++++==-???, 将上式的'u (*)式中的u ,则有 (1)()(1)(2)1(2)'''''''(1)k k k k k k u v dx u v u v u v u vdx +--++=-+++-? ?, 从而(2)(1)()(1)(2)2(2)''''''(1)k k k k k k k uv dx uv u v u v u v u vdx ++--++=-+-+ +-??,得证。】 上述式子并不好记,它的一个直观表达就是表格法,如下表。 1))1)2) v v +-- 下面通过例子给予演示: (1)“幂三”型 例1.1 52(325)cos x x x xdx +-+? 解:

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1. 导数定义 00000)()(lim lim )()(lim 0x x x f x f x y x x f x x f x x x x --=??=?-?+→→?→? 0|)()(00x x dx dy x y x f =='='= 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?左右极限都存在且相等,左极限为左导,右极限为右导, )(lim 00x f x y x --→?'=??, )(lim 00x f x y x ++→?'=?? 导数定义是非常重要的概念,一定要灵活掌握。 2. 导函数)(x f ',dx dy . f (x )在(a , b )可导, f (x )在[a , b ]可导 3. 可导与连续的关系 可导一定连续,但连续不一定可导(如函数||x y =在x =0点处连续,但是不可导) 4. 导数的几何意义 切线方程:))((000x x x f y y -'=-; 法线方程:)() (1000x x x f y y -'- =- 0)(0≠'x f , 5. 微分的定义

微分的几何意义 6. 微分与导数的关系 )(x f 在x 处可微?)(x f 在x 处可导,且dx x f dy )('= 同时 dx x f dy x x )(|00'==。 §2 导数与微分的计算 基本概念 1. 基本初等函数的导数、微分公式(书159页,166页) 2. 导数(微分)四则运算公式 )()())()((x g x f x g x f '±'='±, )()()()())()((x g x f x g x f x g x f '+'=', 特别地 )())((x f k x kf '=', ) ()()()()())()((2x g x g x f x g x f x g x f '-'=' 特别地 ) ()())(1(2x f x f x f '-='。 后面两个公式不要记错。 3. 复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

最新导数和微分的概念

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1.导数定义 ?Skip Record If...? ?Skip Record If...? 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?Skip Record If...?左右极限都存在且相等,左极限为左导,右极限为右导, ?Skip Record If...?, ?Skip Record If...? 导数定义是非常重要的概念,一定要灵活掌握。 2.导函数?Skip Record If...?,?Skip Record If...?. f(x)在(a, b)可导, f(x)在[a, b]可导 3.可导与连续的关系 可导一定连续,但连续不一定可导(如函数?Skip Record If...?在x=0点处连续,但是不可导) 4.导数的几何意义 切线方程:?Skip Record If...?; 法线方程:?Skip Record If...? ?Skip Record If...?, 5.微分的定义 微分的几何意义 6.微分与导数的关系

?Skip Record If...?在x处可微?Skip Record If...??Skip Record If...?在x处可导,且?Skip Record If...? 同时 ?Skip Record If...?。 §2 导数与微分的计算 基本概念 1.基本初等函数的导数、微分公式(书159页,166页) 2.导数(微分)四则运算公式 ?Skip Record If...?, ?Skip Record If...?, 特别地 ?Skip Record If...?, ?Skip Record If...? 特别地 ?Skip Record If...?。 后面两个公式不要记错。 3.复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。 §3 中值定理 基本概念

微分算子法典型例题讲解

高阶常微分方程的微分算子法 3.求解 39130y y y y ''''''-++= 解 写成 32 (3913)0D D D y -++= 或 2 (1)(413)0D D D y +-+= 特征方程 2 (1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin 3x e x 从而通解是 22123cos3sin 3x x x y C e C e x C e x -=++ 4.求(4) 45440y y y y y ''''''-+-+=之通解. 解 写成 432 (4544)0D D D D y -+-+= 或 22 (2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1 (cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2 (1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1 (cos )x -),解得 1sin ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+ 12cos sin cos ln cos sin C x C x x x x x =+++

微分方程的基本概念

求函数关系是数学中的重要问题。然而,在实际中有时很难直接找出函数关系,我们所得到的仅是含有未知函数及其导数的关系式,称之为微分方程.我们的任务就是求解微分方程,找出未知函数。本章将介绍一些微分方程的基本概念和几种常用的微分方程的解法. 微分方程的基本概念 下面通过几个例题来说明微分方程的基本概念. 例1 一曲线通过)2,1(点,且在该曲线上任一点),(y x 处 的切线的斜率为x 2,求曲线的方程. 解 由导数的几何意义可得 x dx dy 2= ① 此外,未知函数)(x y y =还应满足条件 1=x 时,2=y (或写成21==x y ) ② 在式①两端积分,得 C x y +=2 , ③ 其中C 为任意常数.将条件②代入式③中,得1=C , 于是得所求曲线的方程为 ④ 12+=x y

我们知道式③表示一族曲线, 曲线族中的每一条曲线的函数 代入式①中都成为恒等式, 而式④仅表示是其中的一条,它是通过点()2,1的. 从以上例子中,可归纳出如下一些基本概念. (一)微分方程:含有自变量、未知函数以及未知函数导数或微分的方程叫微分方程(以下简称方程)。在方程中出现的未知函数导数的最高阶数成为微分方程的阶,n 阶微分方程的一般形式为 ()(,,,,,)0n F x y y y y '''=L ⑤ 如式①为一阶微分方程.

(二)解:一个函数代入微分方程后,使其成为恒等式,则该函数称为微分方程的解. 含有任意常数,且独立的任意常数的个数和微分方程的阶数相等的解,称为微分方程的通解或一般解.不含任意常数的解叫特解. 若I x x y ∈=),(?为方程⑤的解,则有 ()[,(),(),,()]0n F x x x x φφφ'≡L , I x ∈. 方程⑤的通解应含有n 个独立的任意常数, 其通解有时用隐函数表达式 12(,,,,,)0n x y C C C Φ=L 表示. ⑥ 例如:式③为方程①的通解.

微分算子法中D的运算

微分算子法中D 的运算 D:微分的意思,如Dx 2=2x , D 3x 2=0 D 1:积分的意思,如D 1x=2x 2 ******************************************************************************* 定理1:)()(F k F e e D kx kx = 注意使用公式时的前后顺序 例: x x x x e e k e e D 22222225)12()1()1(=+=+=+ 推论:) (1)(F 1k F e e D kx kx = (F(k)≠0) 例:x e y y 2=+'' x e y D 22)1(=+ x x x e e e D y 22222*5 1121)1(1=+=+= ****************************************************************************** 定理2:)(sin sin )(F 22a F ax ax D -?= )(cos cos )(F 22a F ax ax D -?= 注意使用公式时的前后顺序 推论:) (1sin sin )(F 122a F ax ax D -?= (F(-a 2) ≠0) 例:x y y 3cos 24=+)( x y D 3cos 2)1(4=+ x x x x D x D y 3cos 4113cos 82121)3(13cos 23cos 1)(123cos )1(1222224*=??=+-??=?+?=?+?=遇到sinax,cosax 时,要凑出D 2来。F(D)里有D 2,即可代换为-a 2,代换后继续算F(D)。 ******************************************************************************* 定理3: )()()()(F x v k D F e x v e D kx kx += 注意使用公式时的前后顺序 推论:)() (1)()(F 1x v k D F e x v e D kx kx += 例:x e x y y 22y 44?=+'-''

微分方程(习题及解答)

第十二章 微分方程 § 微分方程基本概念、可分离变量的微分方程、齐次微分方程 一、单项选择题 1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=; (C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ). (A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =; (C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D). 4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=; (C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A). 5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=; (C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D). 二、填空题 1.函数25y x =是否是微分方程2xy y '=的解 . 答:是 . 2.微分方程 3d d 0,4x x y y y x =+==的解是 . 答:2225x y +=. 3.微分方程2 3550x x y '+-=的通解是 . 答:32 52 x x y C =++. 4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =. 5'=的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是. 答: Cx y e x =. 三、解答题 1.求下列微分方程的通解. (1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解: (3) d 10d x y y x +=; (4) 23d (1)0.d y y x x ++=

函数微分的定义

函数微分的定义:设函数在某区间内有定义,x0及x0+△x在这区间内,若函数的增量可表示为,其中A是不依赖于△x 的常数,是△x的高阶无穷小,则称函数在点x0可微的。 叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:=。 通过上面的学习我们知道:微分是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。于是我们又得出:当△x→0时,△y≈dy.导数的记号为:,现在我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为: 由此我们得出:若函数在某区间上可导,则它在此区间上一定可微,反之亦成立。 导数的定义:设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地函数有增量 ,若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。记为:还可记为:, 函数在点x0处存在导数简称函数在点x0处可导,否则不可导。若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。这时函数对于区间(a,b)内的每一个确定的x值,都对

应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数的导函数。 导数公式微分公式 函数和、差、积、商的求导法则函数和、差、积、商的微分法则 拉格朗日中值定理 如果函数在闭区间[a,b]上连续,在开区间(a,b)内可导,那末在(a,b)内至少有一点c,使 成立。 这个定理的特殊情形,即:的情形,称为罗尔定理。描述如下: 若在闭区间[a,b]上连续,在开区间(a,b)内可导,且,那末在(a,b)内至少有一点c,使成立。 注:这个定理是罗尔在17世纪初,在微积分发明之前以几何的形式提出来的。 注:在此我们对这两个定理不加以证明,若有什么疑问,请参考相关书籍 下面我们在学习一条通过拉格朗日中值定理推广得来的定理——柯西中值定理柯西中值定理 如果函数,在闭区间[a,b]上连续,在开区间(a,b)内可导,且≠0,

最新微分算子法

微分算子法

仅供学习与交流,如有侵权请联系网站删除 谢谢6 高阶常微分方程的微分算子法 撰写 摘自《大学数学解题法诠释》 .徐利治,.冯克勤,.方兆本,.徐森林,.1999 高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。但是有一个例外:常系数线性微分方程。我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐 次方程的特解。本节主要讨论微分算子法。 1.求方程230y y y ''''''--=的通解. 解 记()n n y D y =,将方程写成 32230D y D y Dy --= 或32(23)0D D D y --= 我们熟知,其实首先要解特征方程 32 230D D D --= 得0,1,3D =-故知方程有三特解31,,x x e e -,由于此三特解为线性无关,故立得通解 3123x x y C C e C e -=++ 注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是 1 111 ()()() ()()n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---= ++++= 其中系数1(),,()n a x a x 是某区间(,)a b 上的连 续函数,上述方程又可写成 11()(()())n n n L y D a x D a x y -≡++ + ()f x = 可以把上面括号整体看作一种运算,常称为线性微分算子。本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。 2.求解 61160y y y y ''''''-+-= 解 写成 32(6116)0D D D y -+-= 从特征方程 3206116D D D =-+- (1)(2)(3)D D D =--- 解得 1,2,3D =共三实根,故可立即写成特解 23123x x x y C e C e C e =++ 3.求解 39130y y y y ''''''-++= 解 写成 32(3913)0D D D y -++= 或 2(1)(413)0D D D y +-+= 特征方程 2(1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -, 2cos3x e x , 2sin 3x e x 从而通解是 22123cos3sin 3x x x y C e C e x C e x -=++ 4.求(4)45440y y y y y ''''''-+-+=之通解. 解 写成 432(4544)0D D D D y -+-+= 或 22(2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1(cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程0y y ''+=的通解,写成2(1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0()(cos )()(sin )(cos )C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=??

微分方程中的几个基础概念

微分方程中的几个基础概念 微分方程—基础 微分方程(Differential equation, DFQ)是一种用来描述函数与其导数之间关系的数学方程。与之前所接触初等数学代数方程的解不同,它的解不是数,而是符合方程关系的函数。 微分方程的起源约在十七世纪末,为了解决自然科学发展中遇到物理及天文学问题而产生,随着微积分的诞生与在各个科学领域中的广泛应用,很多问题被归化为某类微分方程的问题。 在微分方程分支中,存在很多各种各样已知类型的微分方程。实事上,提高对微分方程的理解的最好的方法之一是首先处理基本的分类系统。为什么?因为你可能永远不会遇到完全陌生的微分方程。大多数微分方程已经被解决了,因此,普遍适用的解决方法很可能已经存在。 除了描述方程本身的性质外,对微分方程进行分类和识别的真正附加值来自于为跳转点提供一张导图。求解微分方程的诀窍不是创造原始解法,而是对已证明的解法进行分类和应用;有时,可能需要几步把一类方程转换为另一类等效方程,以获得可实现的广义解。 最常用于描述微分方程的四个属性是: ?常微分与偏微分 ?线性与非线性 ?齐次与非齐次

?微分阶数 虽然这个列表并非详尽无遗,但是它是我们学习首先要掌握的知识,通常在微分方程学期课程的前几周会进行回顾;通过快速回顾每一个类别,我们将会配备基本的入门工具包来处理常见的微分方程问题。 常微分与偏微分 首先,我们在自然中所发现的微分方程最常见的分类来源于从我们手边的问题中所发现的导数类型;简单地说,方程是否包含偏导数? 如果不包含,那么它是一个常微分方程(, Ordinary differential equation)。如果包含,那么它是一个偏微分方程(, Partial differential equation)。 常微分方程是未知函数只含有一个自变量的微分方程,其微分基于该单一的自变量,通常是时间。一个常微分方程有一组离散的(有限的)变量;它们通常是一维动力系统的模型,例如:钟摆随时间的摆动。 另一方面,偏微分方程相当复杂,因为它们通常涉及多个自变量,其多种多样的偏微分方程可能基于也可能并不基于一个已知的自变量。偏微分方程常被用来描述自然界中各种各样的现象,例如:热,空间中的流体速度,或电动力学。这些似乎完全不同的物理现象被化为偏微分方程;它们在随机偏微分方程中得到推广。 下面的这些例子有助于我们分辨微分方程的导数类型包括:

微分方程的基础知识与练习

微分方程的基础知识与练习 (一)微分方程基本概念: 首先通过一个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在水平直线路上以20s m /的速度行驶;当制动时列车获得加速度 2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了 多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运 动规律的函数)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得

2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020 s t == 。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5),(6)都含有未知函数的导数,它们 都是微分方程。 1.微分方程的概念 一般地,凡含有未知函数、未知函数的导数及自变量的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。我们只研究常微分方程。微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。 例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+-是四阶微分方程。 一般地,n 阶微分方程的形式是 ()(,,',...,)0,n F x y y y = (11) 其中F 是个2+n 变量的函数。这里必须指出,在方程(11)中,)(n y 是必须出现的,而 )1(,...,',,-n y y y x 等变量则可以不出现。例如n 阶微分方程

微分的概念、性质及应用

第二章第 6 节:函数得微分 教学目得:掌握微分得定义,了解微分得运算法则,会计算函数得微分,会利用微分作近似计算 教学重点:微分得计算 教学难点:微分得定义,利用微分作近似计算 教学内容: 1.微分得定义 计算函数增量就是我们非常关心得。一般说来函数得增量得计算就是比较复杂得,我们希望寻求计算函数增量得近似计算方法。 先分析一个具体问题,一块正方形金属薄片受温度变 化得影响,其边长由变到(图21),问此薄片得面积改变了 多少? 设此薄片得边长为,面积为,则就是得函数:。薄片受温 度变化得影响时面积得改变量,可以瞧成就是当自变量自 取得增量时,函数相应得增量,即 。 从上式可以瞧出,分成两部分,第一部分就是得线性函 数,即图中带有斜线得两个矩形面积之与,而第二部分在图 中就是带有交叉斜线得小正方形得面积,当时,第二部分就 图21 是比高阶得无穷小,即。由此可见,如果边长改变很微小, 即很小时,面积得改变量可近似地用第一部分来代替。 一般地,如果函数满足一定条件,则函数得增量可表示为 , 其中就是不依赖于得常数,因此就是得线性函数,且它与之差 , 就是比高阶得无穷小。所以,当,且很小时,我们就可近似地用来代替。 定义设函数在某区间内有定义,及x在这区间内,如果函数得增量 可表示为 , ① 其中就是不依赖于得常数,而就是比高阶得无穷小,那么称函数在点就是可微得,而叫做函数在点相应于自变量增量得微分,记作,即。 定理1 函数在点可微得充分必要条件就是函数在点可导,且当在点可微时,其微分一定就是 。 设函数在点可微,则按定义有①式成立。①式两边除以,得。 于就是,当时,由上式就得到 。 因此,如果函数在点可微,则在点也一定可导(即存在),且。 反之,如果在点可导,即 存在,根据极限与无穷小得关系,上式可写成 , 其中(当)。由此又有

(整理)微分算子法

高阶常微分方程的微分算子法 撰写 摘自《大学数学解题法诠释》 .徐利治,.冯克勤,.方兆本,.徐森林,.1999 高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。但是有一个例外:常系数线性微分方程。我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐 次方程的特解。本节主要讨论微分算子法。 1.求方程230y y y ''''''--=的通解. 解 记() n n y D y =,将方程写成 32230D y D y Dy --= 或32 (23)0D D D y --= 我们熟知,其实首先要解特征方程 32230D D D --= 得0,1,3D =-故知方程有三特解31,,x x e e -,由于此 三特解为线性无关,故立得通解 3123x x y C C e C e -=++ 注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是 1111()()() ()() n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++= 其中系数1(),,()n a x a x 是某区间(,)a b 上的连续 函数,上述方程又可写成 11()(()())n n n L y D a x D a x y -≡++ + ()f x = 可以把上面括号整体看作一种运算,常称为线性微分算子。本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。 2.求解 61160y y y y ''''''-+-= 解 写成 32 (6116)0D D D y -+-= 从特征方程 3 2 06116D D D =-+- (1)(2)(3)D D D =--- 解得 1,2,3D =共三实根,故可立即写成特解 23123x x x y C e C e C e =++ 3.求解 39130y y y y ''''''-++= 解 写成 32 (3913)0D D D y -++= 或 2 (1)(413)0D D D y +-+= 特征方程 2 (1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin 3x e x 从而通解是 22123cos3sin 3x x x y C e C e x C e x -=++ 4.求(4) 45440y y y y y ''''''-+-+=之通解. 解 写成 432 (4544)0D D D D y -+-+= 或 22 (2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1 (cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2 (1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1 (cos )x -),解得 1s i n ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+

我的微分算子法总结

微分算子法小结 一、n 阶微分方程 1、二阶微分方程: 22 d y d x +p(x) x d dy +q(x)y=f(x) 2、n 阶微分方程: y (n)+a 1y (n-1) +a 2y (n-2)+a 3y (n-3)+ ... +a n y=f(x) 二、微分算子法 1、定义符号: D x =d d ,D 表示求导,如Dx 3=3x 2,D n y 表示y 对x 求导n 次;D 1表示积分,如D 1 x= x 2 12 , n D 1x 表示 对x 积分n 次,不要常数。 2、计算 将n 阶微分方程改写成下式: D n y +a 1D n-1y +a 2D n-2y +a 3D n-3y + ... +a n-1Dy +a n y=f(x) 即 (D n +a 1D n-1+a 2D n-2+a 3D n-3+ ... +a n-1D +a n )y=f(x) 记F(D)=D n +a 1D n-1+a 2D n-2+a 3D n-3+ ... +a n-1D +a n 规定特解: y * =) (F(D) 1 x f 3、 F (D ) 1 的性质 (1)性质一: F(D) 1e kx =F(k)1 e kx (F (k) 不等于0) 注:若k 为特征方程的m 重根时,有 F (D ) 1 e kx = x m (D) F 1(m) e kx = x m (k) F 1 (m) e kx

(2)性质二: F(D) 1e kx v (x)= e kx k) F(D 1+v (x) (3)性质三:特解形如F(D)1 sin(ax)和 F(D)1 cos(ax) i.考察该式(该种形式万能解法): F(D) 1 e iax 利用性质一和二解出结果,并取相应的虚部和实部 作为原方程的特解 注:欧拉公式 e iax = cos(ax)+i sin(ax) 虚数 i 2 = -1 ii.若特解形如) F(D 1 2sin(ax)和) F(D 1 2cos(ax),也 可按以下方法考虑: 若F (-a 2)≠ 0,则 ) F (D 12 sin(ax)=)F(-a 1 2 sin(ax) )F(D 1 2 cos(ax)=)F(-a 1 2 cos(ax) 若F (-a 2)= 0 ,则按i.进行求解,或者设-a 2为F (-a 2) 的m 重根,则 )F(D 12 sin(ax)=x m ) (D F 12 (m) sin(ax) ) F(D 1 2 cos(ax)=x m ) (D F 12 (m) cos(ax)

相关文档
最新文档