第三章 概率与概率分布习题及答案

第三章 概率与概率分布习题及答案
第三章 概率与概率分布习题及答案

第三章概率、概率分布与抽样分布

计算题:

1.某种零件加工必须依次经过三道工序,从已往大量的生产记录得知,第一、二、三道工序的次品率分别为0.2,0.1,0.1,并且每道工序是否产生次品与其它工序无关。试求这种零件的次品率。

2. 某项飞碟射击比赛规定一个碟靶有两次命中机会(即允许在第一次脱靶后进行第二次射击)。某射击选手第一发命中的可能性是80%,第二发命中的可能性为50%。求该选手两发都脱靶的概率。

3. 某企业决策人考虑是否采用一种新的生产管理流程。据对同行的调查得知,采用新生产管理流程后产品优质率达95%的占四成,优质率维持在原来水平(即80%)的占六成。该企业利用新的生产管理流程进行一次试验,所生产5件产品全部达到优质。问该企业决策者会倾向于如何决策?

4. 一家人寿保险公司某险种的投保人数有20000人,据测算被保险人一年中的死亡率为万分之5。保险费每人50元。若一年中死亡,则保险公司赔付保险金额50000元。试求未来一年该保险公司将在该项保险中(这里不考虑保险公司的其它费用):(1)至少获利50万元的概率;(2)亏本的概率;(3)支付保险金额的均值和标准差。

5. 某企业生产的某种电池寿命近似服从正态分布,且均值为200小时,标准差为30小时。若规定寿命低于150小时为不合格品。试求该企业生产的电池的:(1)合格率是多少?(2)电池寿命在200左右多大的范围内的概率不小于0.9。

6. 某商场某销售区域有6种商品。假如每1小时内每种商品需要12分钟时间的咨询服务,而且每种商品是否需要咨询服务是相互独立的。求:(1)在同一时刻需用咨询的商品种数的最可能值是多少?(2)若该销售区域仅配有2名服务员,则因服务员不足而不能提供咨询服务的概率是多少?

7. 美国汽车联合会(AAA)是一个拥有90个俱乐部的非营利联盟,它对其成员提供旅行、金融、保险以及与汽车相关的各项服务。1999年5月,AAA通过对会员调查得知一个4口之家出游中平均每日餐饮和住宿费用大约是213美元(《旅行新闻》Travel News,1999年5月11日)。假设这个花费的标准差是15美元,并且AAA所报道的平均每日消费是总体均值。又假设选取49个4口之家,并对其在1999年6月期间的旅行费用进行记录。⑴

描述x(样本家庭平均每日餐饮和住宿的消费)的抽样分布。特别说明x服从怎样

的分布以及x的均值和方差是什么?证明你的回答;⑵对于样本家庭来说平均每日消费大于213美元的概率是什么?大于217美元的概率呢?在209美元和217美元之间的概率呢?

解:a. 正态分布, 213, 4.5918 b. 0.5, 0.031, 0.938

概率论习题第三章答案

第三章连续型随机变量 3、1设随机变量 ξ 的分布函数为F(x),试以F(x)表示下列概率: 。 )()4();()3();()2();()1(a P a P a P a P >≥≤=ξξξξ 。 )(解:)0(1)()4(); (1)()3(); 0()(P 2); ()0()()1(+-=>-=≥+=≤-+==a F a P a F a P a F a a F a F a P ξξξξ 3、2函数x 211 F(x)+=就是否可以作为某一随机变量的分布函数,如果 在其它场合恰当定义。 在其它场合恰当定义;)(,0)3(,0)2(1<<∞-∞<<∞ <<∞-x x x 解:(1)F(x)在),(∞-∞内不单调,因而不可能就是随机变量的分布函数; (2)F(x)在)0∞,(内单调下降,因而也不可能就是随机变量的分布函数; (3)F(x)在) ,(-0∞内单调上升、连续且,若定义 ???≥<<∞=01 0)()(~x x X F x F - 则)(~ x F 可以就是某一随机变量的分布函数。 3、3函数 sinx 就是不就是某个随机变量ξ的分布函数?如果ξ的取值范围为 []。,);(,);(,)(?? ??????????πππ230302201 解:(1)当?? ????∈2,0πx 时,sinx 0≥且1sin 20=?πxdx ,所以 sinx 可以就是某个随机变量的分布密度; (2) 因为12sin 0≠=?πxdx ,所以sinx 不就是随机变量的分布密度; (3) 当 ?????? ∈23, ππx 时,sinx<=0所以sinx 不就是随机变量的分布密度。 3、4设随机变量ξ具有对称的分布函数p(x),即p(x)=p(-x) 证明:对任意的a>0,有

统计学统计学概率与概率分布练习题

第5章 概率与概率分布 练习题 5.1 写出下列随机事件的基本空间: (1) 抛三枚硬币。 (2) 把两个不同颜色的球分别放入两个格子。 (3) 把两个相同颜色的球分别放入两个格子。 (4) 灯泡的寿命(单位:h )。 (5) 某产品的不合格率(%)。 5.2 假定某布袋中装有红、黄、蓝、绿、黑等5个不同颜色的玻璃球,一次从中取出3个球, 请写出这个随机试验的基本空间。 5.3 试定义下列事件的互补事件: (1) A ={先后投掷两枚硬币,都为反面}。 (2) A ={连续射击两次,都没有命中目标}。 (3) A ={抽查三个产品,至少有一个次品}。 5.4 向两个相邻的军火库发射一枚导弹,如果命中第一个和第二个军火库的概率分别是、, 而且只要命中其中任何一个军火库都会引起另一个军火库的爆炸。试求炸毁这两个军火库的概率有多大。 5.5 已知某产品的合格率是98%,现有一个检查系统,它能以的概率正确的判断出合格品, 而对不合格品进行检查时,有的可能性判断错误(错判为合格品),该检查系统产生错判的概率是多少 5.6 有一男女比例为51:49的人群,已知男人中5%是色盲,女人中%是色盲,现随机抽中 了一个色盲者,求这个人恰好是男性的概率。 根据这些数值,分别计算: (1) 有2到5个(包括2个与5个在内)空调器出现重要缺陷的可能性。 (2) 只有不到2个空调器出现重要缺陷的可能性。 (3) 有超过5个空调器出现重要缺陷的可能性。 5.8 设X 是参数为4=n 和5.0=p 的二项随机变量。求以下概率: (1))2(

5.9 一条食品生产线每8小时一班中出现故障的次数服从平均值为的泊松分布。求: (1) 晚班期间恰好发生两次事故的概率。 (2) 下午班期间发生少于两次事故的概率。 (3) 连续三班无故障的概率。 5.10 假定X 服从12=N ,7=n ,5=M 的超几何分布。求: (1))3(=X P 。(2))2(≤X P 。(3))3(>X P 。 5.11 求标准正态分布的概率: (1))2.10(≤≤Z P 。 (2))49.10(≤≤Z P 。 (3))048.0(≤≤-Z P 。 (4))037.1(≤≤-Z P 。 (5))33.1(>Z P 。 5.12 由30辆汽车构成的一个随机样本,测得每百公里的耗油量数据(单位:L )如下: 试判断该种汽车的耗油量是否近似服从正态分布 5.13 设X 是一个参数为n 和p 的二项随机变量,对于下面的四组取值,说明正态分布是否 为二项分布的良好近似 (1)30.0,23==p n 。(2)01.0,3==p n 。 (3)97.0,100==p n 。(4)45.0,15==p n 。

概率与概率分布

第六章概率与概率分布 本章是推断统计的基础。 主要内容包括:基础概率,概率的数学性质,概率分布、期望值与变异数推断统计研究如何依据样本资料对总体性质作出推断,这是以概率论为基础的。 第一节基础概率 概率论起源于17世纪,当时在人口统计、人寿保险等工作中,要整理和研究大量的随机数据资料,这就需要一种专门研究大量随机现象的规律性的数学。 参赌者就想:如果同时掷两颗骰子,则点数之和为9 和点数之和为10 ,哪种情况出现的可能性较大? 例如17世纪中叶,贵族德·梅尔发现:将一枚骰子连掷四次,出现一个6 点的机会比较多,而同时将两枚掷24次,出现一次双6 的机会却很少。 概率论的创始人是法国的帕斯卡(1623—1662)和费尔马(1601—1665),他们在以通信的方式讨论赌博的机率问题时,发表了《骰子赌博理论》一书。棣莫弗(1667—1754)发现了正态方程式。同一时期瑞士的伯努利(1654一1705)提出了二项分布理论。1814年,法国的拉普拉斯(1749—1827)发表了《概率分析论》,该书奠定了古典概率理论的基础,并将概率理论应用于自然和社会的研究。此后,法国的泊松(1781—1840)提出了泊松分布,德国的高斯(1777—1855)提出了最小平方法。 1、随机现象和随机事件 概率是与随机现象相联系的一个概念。所谓随机现象,是指事先不能精确预言其结果的现象,如即将出生的婴儿是男还是女?一枚硬币落地后其正面是朝上还是朝下?等等。所有这些现象都有一个共同的特点,那就是在给定的条件下,观察所得的结果不止一个。随机现象具有非确定性,但内中也有一定的规律性。例如,事先我们虽不能准确预言一个婴儿出生后的性别,但大量观察,我们会发现妇女生男生女的可能性几乎一样大,都是0.5,这就是概率。

概率论与数理统计习题及答案第三章

习题3-1 1. 而且12{P X X =. 求X 1和X 2的联合分布律. 解 由12 {0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布必形 于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律

(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04 P X P X =?== ≠, 所以X 1和X 2 不独立. 2. 一盒子中有3只黑球、2只红球和2只白球, 在其中任取4只球. 以X 表示取到黑球的只数, 以Y 表示取到红球的只数. 求X 和Y 的联合分布律. 解 从7只球中取4球只有354 7 =C 种取法. 在4只球中, 黑球有i 只, 红 球有j 只(余下为白球4i j -- 只)的取法为 4322i j i j C C C --,0,1,2,3,0,1,2,i j i j ==+≤4. 于是有 022 322 1{0,2}35 35 P X Y C C C ====,111322 6{1,1}35 35 P X Y C C C ====, 121322 6 {1,2}35 35 P X Y C C C ====,202322 3 {2,0}35 35 P X Y C C C ==== , 211 322 12{2,1}35 35P X Y C C C ==== ,220 322 3{2,2}35 35P X Y C C C === = , 301 322 2 {3,0}3535P X Y C C C === =, 310 322 2 {3,1}3535 P X Y C C C ====, {0,0}{0,1}{1,0}{3,2}0P X Y P X Y P X Y P X Y ============. 3. (,)(6),02,24, 0,.f x y k x y x y =--<<<

概率习题答案3

第三章多维随机变量及其分布 3.1 二维随机变量及其分布 习题1 设(X,Y)的分布律为 X\Y 1 2 3 1 1/6 1/9 1/18 2 1/3a1/9 求a. 分析: dsfsd1f6d54654646 解答: 由分布律性质∑i?jPij=1, 可知 1/6+1/9+1/18+1/3+a+1/9=1, 解得 a=2/9. 习题2(1) 2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示: (1)P{aa,Y≤b}. 解答: P{X>a,Y≤b}=F(+∞,b)-F(a,b). 习题3(1) 3.设二维离散型随机变量的联合分布如下表: 试求: (1)P{12

P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3} =P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3} =14+0+0=14. 习题3(2) 3.设二维离散型随机变量的联合分布如下表: 试求: (2)P{1≤X≤2,3≤Y≤4}; 解答: P{1≤X≤2,3≤Y≤4} =P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4} =0+116+0+14=516. 习题3(3) 3.设二维离散型随机变量的联合分布如下表: 试求: (3)F(2,3). 解答: F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3) =14+0+0+116+14+0=916. 习题4 设X,Y为随机变量,且 P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47, 求P{max{X,Y}≥0}. 解答: P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0} =47+47-37=57. 习题5 (X,Y)只取下列数值中的值: (0,0),(-1,1),(-1,13),(2,0) 且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布. 解答: (1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件: {X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1} 均为不可能事件,其概率必为零. 因而得到下表:

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12(34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k

概率论与数理统计修订版第三章练习答案郝志峰,谢国瑞

概率论与数理统计第三章习题 率分布。 ,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1 。 出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2

11880 54 99101112123)3(132054 109112123)2(132 27 119123)1(12 9 )0(3 210191911011111121121311019111121121311119112131121 9= ???=???=== ??=??=== ?=?=== ==C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令 .1188054132054132271293210 ??? ? ??的分布列为 所以,ξ 废品数的概率分布。 况,求出取得)取后放回两种不同情)取后不放回;(个,试分别就(件,每次取个废品,现从中任取混有个同类型的一堆产品内设在2113210.3 .008.0096.0384.0512.03210 008.0)3(096.0)2(384.0)1(512.0)0(32102210)2()1()0(2 1013 1101 22 1101211018231101 22 1101 8133 1101831022183101228310383 10 2 2 18310122831038??? ? ??=??? ? ??===???? ?????? ??===??? ? ????? ? ??===???? ??==???? ? ?????==?====的分布列为 所以,,,,有 ,,,,则可能取值有:)设废品数为(的分布列为 所以,,,,,的可能值有:代表废品数,则)令解:(ηηηηηηξξξξξξC C P C C C C C P C C C C C P C C P C C C C C C C C C C C P C C C P C C P

随机变量及其分布练习题

随机变量及其分布练习 题 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第二章随机变量及其分布练习题 1.甲、乙两人各进行一次射击,甲击中目标的概率是,乙击中目标的概率是,则两人都击中目标的概率是( ) A. B. C. D. 2.设随机变量1 ~62X B ?? ??? ,,则(3)P X =等于( ) A. 516 B. 316 C.5 8 D. 716 3.设随机变量X 的概率分布列为 X 1 2 3 P 则E (X +2)B . 4.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑台数的均值为( ) A.ab B.a b + C.1ab - D.1a b -- 5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是,,,则三人中至少有一人达标的概率为( ) A . B . 6.设随机变量~()X B n p ,,则2 2 ()()DX EX 等于( ) A.2p B.2(1)p - C.np D.2(1)p p - 7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出 2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是( ).

8.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=(). 9.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于(). p B.1-p C.1--p 10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ

概率论第三章习题答案

第三章练习题 一、单项选择题 1.设二维随机变量(X ,Y )的分布律为 Y X 1 2 3 1 2 101 103 102 101 102 101 则P{XY=2}=( C )A .5 B .10 C .2 D .5 2.设二维随机变量(X ,Y )的概率密度为 ? ??≤≤≤≤=,,0; 10,10,4),(其他y x xy y x f 则当0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度为f Y ( y ) 1 =(,)4f x y dx xydx +∞ -∞ ==? ?= ( D ) A .x 21 B .2x C .y 21 D .2y 3.设随机变量X ,Y 相互独立,其联合分布为 1+9 α 12 1 +9 α 1+18β 116=+9918 α?? ??? 则有( B ) A .92 ,91==βα B .91,92==βαC .32,31==βα D .3 1,32==βα 二、填空题 1.设随机变量X ,Y 相互独立,且P{X ≤1}=21,P{Y ≤1}=3 1 , 则P{X ≤1,Y ≤1}=_ 1 6 __. 2.已知二维随机变量(X ,Y )的分布律为 0 2 5 0 0.1 0.1 0.3 Y X

1 0.25 0 0.25 则P (X ≤0,Y =2)=___0.1___. 3.设二维随机变量(X ,Y )的分布律为 Y X 1 2 3 1 2 61 121 81 81 41 4 1 则P{Y=2}=____ 4 _______. 4.设随机变量(X,Y)的概率密度为f(x,y)=? ??≤≤≤≤其他02 y 0,1x 0xy , 则X 的边缘概率密度f x (x)= 2 (,)f x y dy xydy +∞ -∞ ==? ?_____2x___________. 三、计算题 1.设二维随机变量(X ,Y )只能取下列数组中的值:(0,0),(-1,1),(-1,3 1 ),(2,0), 且取这些值的概率依次为61,31,121,12 5 .(1)写出(X ,Y )的分布律; (2)分别求(X ,Y )关于X ,Y 的边缘分布律. (1) {} {} 1351112 3 121166551212 71112 12 3 01-10 00020 1 j i X Y P Y y P X x == (2) 13711 12 12 3 1 X P 5 5112 6 12 10 2 Y P - 2.设二维随机变量(X ,Y )的概率密度为?? ???>>=+.,0;0,0,e ),()-(其他y x y x f y x (1)分别求(X ,Y )关于X 和Y 的边缘概率密度; f x (x)= ()0 (,),0x y x f x y dy e dy e x +∞ ∞ -+--∞ ==>? ? f Y ( y ) ()0 = (,),0x y y f x y dx e dx e y +∞ ∞ -+--∞ ==>? ? (2) 问:X 与Y 是否相互独立,为什么? () ()()(,)x y x y X Y f x y e e e f x f y -+--==?=?,因此相互独立 3.设二维随机变量(X ,Y )的分布律为 0.7 0.4 0.2 0.4 (1)求(X ,Y )分别关于X ,Y 的边缘分布律;(2)试问X 与Y 是否相互独立,为什么?

【免费下载】概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X 、Y 分别表示甲乙命中的次数,求(X,Y )联合分布律。2.袋中有两只白球,两只红球,从中任取两只以X 、Y 表示其中黑球、白球的数目,求(X,Y )联合分布律。3.设,且P{}=1,求()的X 1=(?1011/41/21/4) X 2=(011/21/2)X 1X 2=0X 1,X 2联合分布律,并指出是否独立。 X 1,X 24.设随机变量X 的分布律为Y=,求(X,Y )联合分布律。X 2X Y 01

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 5.设(X,Y )的概率分布为 且事件{X=0}与{X+Y=1}独立求a ,b 。6. 设某班车起点上车人数X 服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 (1)C 的值 (2), (3)P{X+Y ≤1}并判别X 与Y 是否独立。f z (x)f Y (y)9.设f(x,y)= 为(X,Y )的密度函数,求{10 |y |1/2|Y>0}(2) f Y|X (y|x ), f X|Y (x|y )10. 设f(x,y)= 为(X,Y )的密度函数,求 {12x 2y 0 1x ≤y ≤x,x ≥1 其它 f X|Y (x|y )11. 设f(x,y)= 为(X,Y )的密度函数,求的联合分布 {4xy 0 0≤x ≤1,0≤y ≤1 其它 (X,Y )

概率论答案第三章测试题

第三章测试题 1箱子里装有12件产品,其中两件是次品.每次从箱子里任取1件产品,共取两次(取后不放回).定义随机变量X Y ,如下: 0X=1???,若第一次取出正品,若第一次取出次品 0Y=1??? ,若第二次取出正品,若第二次取出次品 (1)求出二维随机变量X Y (,)的联合分布律及边缘分布律; (2)求在Y=1的条件下,X 的条件分布律。 解 (2) 2 设二维随机变量 X Y (,)的概率密度Cy(2-x),0x 1,0y x, f(x,y)=0,.≤≤≤≤??? 其他 (1)试确定常数C ;(2)求边缘概率密度。 解 (1)1)(=??+∞∞-+∞∞-dy dx x f 即1)2(100=??-x dxdy x Cy x ,5 12 = ∴C 3设X Y (,)的联合分布律为: 求(1)Z X Y =+的分布律;(2)V min(X ,Y )=的分布律 (2)

4设X 和Y 是两个相互独立的随机变量,X 服从(0,1)上的均匀分布,Y 的概率密度为: y 212Y e ,y 0 f (y )0,y 0 -??>=? ≤?? (1)求X 和Y 的联合概率密度; (2)设含有a 的二次方程为2 a 2Xa Y 0++=,试求a 有实根的概率。 解 (1)X 1,0x 1 f (x )0,other <<<==∴-other y x e y f x f y x f y Y X , 00,10,21)()(),(2 (2)2 a 2Xa Y 0++=有实根,则0442≥-=?Y X ,即求02 ≥-Y X 的概率 ?-=??=??=≥---≥-1 01 00 20 2 2 22 121),(}0{dx e dy e dx dxdy y x f Y X P x x y y x 3413.0)0()1(211 2 2=Φ-Φ=?- dx e x π ,π23413.010 22=?∴-dx e x

统计学习题 第六章 概率与概率分布

第六章 概率与概率分布 第一节 概率论 随机现象与随机事件·事件之间的关系(事件和、事件积、事件的包含与相等、互斥事件、对立事件、互相独立事件)·先验概率与古典法·经验概率与频率法 第二节 概率的数学性质 概率的数学性质(非负性、加法规则、乘法规则)·排列与样本点的计数·运用概率方法进行统计推断的前提 第三节 概率分布、期望值与变异数 概率分布的定义·离散型随机变量及其概率分布·连续型随机变量及其概率分布·分布函数·数学期望与变异数 一、填空 1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设( 机会均等 )。 2.分布函数)(x F 和)(x P 或 )(x 的关系,就像向上累计频数和频率的关系一样。所不同的是,)(x F 累计的是( 概率 )。 3.如果A 和B ( 互斥 ),总合有P(A/B)=P 〔B/A 〕=0。 4.( 大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。 5.抽样推断中,判断一个样本估计量是否优良的标准是( 无偏性 )、( 一致性 )、( 有效性 )。 6.抽样设计的主要标准有( 最小抽样误差原则 )和( 最少经济费用原则 )。 7.在抽样中,遵守( 随机原则 )是计算抽样误差的先决条件。 8.抽样平均误差和总体标志变动的大小成( 正比 ),与样本容量的平方根成( 反比 )。如果其他条件不变,抽样平均误差要减小到原来的1/4,则样本容量应( 增大到16倍 )。 9.若事件A 和事件B 不能同时发生,则称A 和B 是( 互斥 )事件。 10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是( 1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。 二、单项选择 1.古典概率的特点应为(A ) A 、基本事件是有限个,并且是等可能的; B 、基本事件是无限个,并且是等可能的; C 、基本事件是有限个,但可以是具有不同的可能性;

MXT-概率与概率分布习题

概率思考题 1.有一种体育彩票的中奖规则时所选号码和顺序与摇奖结果一致。每个位置上的中奖号码时0~9这十个数字中随机摇出的。某期体育彩票摇奖现场的电视节目主持人说:“今年体育彩票开奖以来,在这个位置上,2这个数字出现了27次,是出现概率最大的数字“。 请问,该主持人的说法是否正确? 2.怎样理解频率和概率的关系?频率的极限是概率吗? 3.概率的三种定一个有什么应用场合和局限性? 4.全概率公式和逆概率公式分别用于什么场合? 5.离散型随机变量和连续型随机变量的概率分布的描述有些什么不同? 6.两个随机事件的独立性意味着什么?协方差和相关系数由何关系? 7.二项分布和超级和分布的适用场合有什么不同?它们的均值和方差有什么区别? 8.正态分布所描述的随机现象有什么特点?为什么许多随机现象服从或近似服从正态分布? 9.对于同一险种,为什么投保人越多,保险公司的相对风险越小? 练习题 1.某技术小组有12人,他们的性别和职称如下表所示。现要产生一名幸运者。试求这位幸运者分别是以下几种可能的概率:(1)女性;(2)工程师;(3)女工程师;(4)女性或工程师。 3.某种零件加工必须以此经过三道工序,从以往大量的生产纪录得知,第一、第二、第三道工序的次品率分别是0.2,0.1,0.1,并且每道工序是否产生次品与其他工序无关。 试求这种零件的次品率。 4.已知参加某项考试的全部人员合格的占80%,在合格人员中成绩优秀的只占15%。试求任一参加考试人员成绩优秀的概率。 5.设每次射击命中率为0.2,问至少必须进行多少次独立射击,才能使至少击中一次的概率不小于0.9? 6.已知某地区男子寿命超过55岁的概率为84%,超过70岁的概率为63%。试求任一位刚过55岁生日的男子将会活到70岁以上的概率为多少。 7.一批产品共有10个正品2个次品,从中任取两次,每次取一个(不放回)。则第二次取出的是次品的概率为多少? 8.某公司从甲乙丙三个企业采购了同一种产品,采购数量分别占总采购量的25%、30%和45%。这三个企业产品的次品率分别为4%、5%、3%。如果从这些产品中随机抽出以一件,试问:(1)抽出次品的概率是多少;(2)若发现抽出的产品是次品,则该产品来自丙厂的概率是多少? 9.一袋中装有m枚正品硬币,n枚次品硬币(次品硬币的两面均印有国徽)从袋中任取一枚,已知将它投掷r次,每次都得到国徽,问这枚硬币是正品的概率是多少? 10.设M件产品中有件次品,从中任取两件,已知所取两件中有一件不是次品,则另

第三章 概率与概率分布习题及答案

第三章概率、概率分布与抽样分布 计算题: 1.某种零件加工必须依次经过三道工序,从已往大量的生产记录得知,第一、二、三道工序的次品率分别为0.2,0.1,0.1,并且每道工序是否产生次品与其它工序无关。试求这种零件的次品率。 2. 某项飞碟射击比赛规定一个碟靶有两次命中机会(即允许在第一次脱靶后进行第二次射击)。某射击选手第一发命中的可能性是80%,第二发命中的可能性为50%。求该选手两发都脱靶的概率。 3. 某企业决策人考虑是否采用一种新的生产管理流程。据对同行的调查得知,采用新生产管理流程后产品优质率达95%的占四成,优质率维持在原来水平(即80%)的占六成。该企业利用新的生产管理流程进行一次试验,所生产5件产品全部达到优质。问该企业决策者会倾向于如何决策? 4. 一家人寿保险公司某险种的投保人数有20000人,据测算被保险人一年中的死亡率为万分之5。保险费每人50元。若一年中死亡,则保险公司赔付保险金额50000元。试求未来一年该保险公司将在该项保险中(这里不考虑保险公司的其它费用):(1)至少获利50万元的概率;(2)亏本的概率;(3)支付保险金额的均值和标准差。

5. 某企业生产的某种电池寿命近似服从正态分布,且均值为200小时,标准差为30小时。若规定寿命低于150小时为不合格品。试求该企业生产的电池的:(1)合格率是多少?(2)电池寿命在200左右多大的范围内的概率不小于0.9。 6. 某商场某销售区域有6种商品。假如每1小时内每种商品需要12分钟时间的咨询服务,而且每种商品是否需要咨询服务是相互独立的。求:(1)在同一时刻需用咨询的商品种数的最可能值是多少?(2)若该销售区域仅配有2名服务员,则因服务员不足而不能提供咨询服务的概率是多少? 7. 美国汽车联合会(AAA)是一个拥有90个俱乐部的非营利联盟,它对其成员提供旅行、金融、保险以及与汽车相关的各项服务。1999年5月,AAA通过对会员调查得知一个4口之家出游中平均每日餐饮和住宿费用大约是213美元(《旅行新闻》Travel News,1999年5月11日)。假设这个花费的标准差是15美元,并且AAA所报道的平均每日消费是总体均值。又假设选取49个4口之家,并对其在1999年6月期间的旅行费用进行记录。⑴ 描述x(样本家庭平均每日餐饮和住宿的消费)的抽样分布。特别说明x服从怎样 的分布以及x的均值和方差是什么?证明你的回答;⑵对于样本家庭来说平均每日消费大于213美元的概率是什么?大于217美元的概率呢?在209美元和217美元之间的概率呢? 解:a. 正态分布, 213, 4.5918 b. 0.5, 0.031, 0.938

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布 习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律. (X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }= 35147 2222=C C C P {X=1, Y=1 }=356 47 221213=C C C C P {X=1, Y=2 }= 3564 7 1 2 2213=C C C C P {X=2, Y=0 }=353 472 223=C C C P {X=2, Y=1 }= 35124 712 1223=C C C C P {X=2, Y=2 }=353 47 2 223=C C C P {X=3, Y=0 }= 35247 1233=C C C P {X=3, Y=1 }=352 47 1233=C C C P {X=3, Y=2 }=0 习题3-2 设随机变量),(Y X 的概率密度为 ?? ?<<<<--=其它 , 0, 42,20), 6(),(y x y x k y x f (1) 确定常数k ; (2) 求{}3,1<

?? ????????<<<<=42,20),(y x y x D o 解:(1)∵??? ? +∞∞-+∞ ∞ ---= = 20 12 )6(),(1dydx y x k dy dx y x f ,∴8 1= k (2)8 3 )6(8 1)3,1(32 1 ? ?= --= <

第三章 概率与概率分布习题及答案教学提纲

第三章概率与概率分布习题及答案

第三章概率、概率分布与抽样分布 计算题: 1.某种零件加工必须依次经过三道工序,从已往大量的生产记录得知,第一、 二、三道工序的次品率分别为0.2,0.1,0.1,并且每道工序是否产生次品与其它工序无关。试求这种零件的次品率。 2. 某项飞碟射击比赛规定一个碟靶有两次命中机会(即允许在第一次脱靶后进行第二次射击)。某射击选手第一发命中的可能性是80%,第二发命中的可能性为50%。求该选手两发都脱靶的概率。 3. 某企业决策人考虑是否采用一种新的生产管理流程。据对同行的调查得知,采用新生产管理流程后产品优质率达95%的占四成,优质率维持在原来水平(即80%)的占六成。该企业利用新的生产管理流程进行一次试验,所生产5件产品全部达到优质。问该企业决策者会倾向于如何决策?

4. 一家人寿保险公司某险种的投保人数有20000人,据测算被保险人一年中的死亡率为万分之5。保险费每人50元。若一年中死亡,则保险公司赔付保险金额50000元。试求未来一年该保险公司将在该项保险中(这里不考虑保险公司的其它费用):(1)至少获利50万元的概率;(2)亏本的概率;(3)支付保险金额的均值和标准差。 5. 某企业生产的某种电池寿命近似服从正态分布,且均值为200小时,标准差为30小时。若规定寿命低于150小时为不合格品。试求该企业生产的电池的:(1)合格率是多少?(2)电池寿命在200左右多大的范围内的概率不小于0.9。

6. 某商场某销售区域有6种商品。假如每1小时内每种商品需要12分钟时间的咨询服务,而且每种商品是否需要咨询服务是相互独立的。求:(1)在同一时刻需用咨询的商品种数的最可能值是多少?(2)若该销售区域仅配有2名服务员,则因服务员不足而不能提供咨询服务的概率是多少? 7. 美国汽车联合会(AAA)是一个拥有90个俱乐部的非营利联盟,它对其成员提供旅行、金融、保险以及与汽车相关的各项服务。1999年5月,AAA通过对会员调查得知一个4口之家出游中平均每日餐饮和住宿费用大约是213美元(《旅行新闻》Travel News,1999年5月11日)。假设这个花费的标准差是15美元,并且AAA所报道的平均每日消费是总体均值。又假设选取49个4口之家,并对其在1999年6月期间的旅行费用进行记录。⑴ 描述x(样本家庭平均每日餐饮和住宿的消费)的抽样分布。特别说明x服从怎样 的分布以及x的均值和方差是什么?证明你的回答;⑵对于样本家庭来说平均每日消费大于213美元的概率是什么?大于217美元的概率呢?在209美元和217美元之间的概率呢? 解: a. 正态分布, 213, 4.5918 b. 0.5, 0.031, 0.938

概率与概率分布(一)

第六章 概率与概率分布(一) 第一节 概率论 随机现象与随机事件·事件之间的关系(事件和、事件积、事件的包含与相等、互斥事件、对立事件、互相独立事件)·先验概率与古典法·经验概率与频率法 第二节 概率的数学性质 概率的数学性质(非负性、加法规则、乘法规则)·排列与样本点的计数·运用概率方法进行统计推断的前提 第三节 概率分布、期望值与变异数 概率分布的定义·离散型随机变量及其概率分布·连续型随机变量及其概率分布·分布函数·数学期望与变异数 一、填空 1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设( 机会均等 )。 2.分布函数)(x F 和)(x P 或 )(x 的关系,就像向上累计频数和频率的关系一样。所 不同的是,)(x F 累计的是( 概率 )。 3.如果A 和B ( 互斥 ),总合有P(A/B)=P 〔B/A 〕=0。 4.( 大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。 5.抽样推断中,判断一个样本估计量是否优良的标准是( 无偏性 )、( 一致性 )、( 有效性 )。 6.抽样设计的主要标准有( 最小抽样误差原则 )和( 最少经济费用原则 )。 7.在抽样中,遵守( 随机原则 )是计算抽样误差的先决条件。 8.抽样平均误差和总体标志变动的大小成( 正比 ),与样本容量的平方根成( 反比 )。如果其他条件不变,抽样平均误差要减小到原来的1/4,则样本容量应( 增大到16倍 )。 9.若事件A 和事件B 不能同时发生,则称A 和B 是( 互斥 )事件。 10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是( 1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。 二、单项选择 1.古典概率的特点应为(A ) A 、基本事件是有限个,并且是等可能的; B 、基本事件是无限个,并且是等可能的; C 、基本事件是有限个,但可以是具有不同的可能性;

概率论与数理统计习题及答案 第三章

《概率论与数理统计》习题及答案 第 三 章 1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。 解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以 1 1()(1)(1),2,3,.k k P X k p p p p k --==-+-=L 2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个 数X 的分布列。 解 从a b +个球中任取r 个球共有r a b C +种取法,r 个球中有k 个黑球的取法有k r k b a C C -,所以X 的分布列为 ()k r k b a r a b C C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+L , 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。 3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1 (1,2,3)1 i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。 解 设i A =‘第i 个零件是合格品’1,2,3i =。则 1231111 (0)()23424 P X P A A A === ??= , 123123123(1)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 1111211136 23423423424 = ??+??+??= , 123123123(2)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424 = ??+???+??=,

相关文档
最新文档