对外微分的讨论

《常微分方程》期末试卷

《常微分方程》期末试卷(16) 班级 学号 姓名 得分 评卷人 一、填空题(每小题5分,本题共30分) 1.方程x x y x y e sin d d =+的任一解的最大存在区间必定是 . 2.方程04=+''y y 的基本解组是 . 3.向量函数组)(,),(),(21x x x n Y Y Y 在区间I 上线性相关的________________条件是在区间I 上它们的朗斯基行列式0)(=x W . 4.李普希兹条件是保证一阶微分方程初值问题解惟一的 条件. 5.n 阶线性齐次微分方程的所有解构成一个 维线性空间. 6.向量函数组)(,),(),(21x x x n Y Y Y 在其定义区间I 上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈. 得分 评卷人 二、计算题(每小题8分,本题共40分) 求下列方程的通解 7. x y x y 2e 3d d =+ 8. 0)d (d )(3223=+++y y y x x xy x 9.0e =-'+'x y y 10.求方程x y y 5sin 5='-''的通解. 11.求下列方程组的通解. ???????+=+=y x t y y x t x 4d d d d 得分 评卷人 三、证明题(每小题15分,本题共30分)

12.设)(1x y ?=和)(2x y ?=是方程0)(=+''y x q y 的任意两个解,求证:它们的朗斯基行列式C x W ≡)(,其中C 为常数. 13.设)(x ?在区间),(∞+-∞上连续.试证明方程 y x x y sin )(d d ?= 的所有解的存在区间必为),(∞+-∞.

微分中值定理及其应用

第六章微分中值定理及其应用 微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用. 1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题. 2.教学重点与难点: 重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性. 难点是用辅助函数解决有关中值问题,函数的凸性. 3.教学内容: §1 拉格朗日定理和函数的单调性 本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性. 一罗尔定理与拉格朗日定理 定理6.1(罗尔(Rolle)中值定理)设f满足 (ⅰ)在[]b a,上连续; (ⅱ)在) a内可导; (b , (ⅲ)) a f= f ) ( (b

则),(b a ∈?ξ使 0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可. 如: 1o ? ??=<≤=1 010 x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足, 结论不成立. 2o x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立. 3o x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立. (ⅱ) 定理6.1中条件仅为充分条件. 如:[]1,1 )(2 2-∈?????-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f . (ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续 曲线上,若曲线两端点高度相等,则至少存在一条水平切线. 例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根. 证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式 n n n n n dx x d n x P )1(!21)(2-?= 在)1,1(-内有n 个互不相同的零点. 将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广

常微分方程期末考试题大全东北师大

证明题: 设()x f 在[)+∞,0上连续,且()b x f x =+∞ →lim ,又0>a ,求证:对于方程 ()x f ay dx dy =+的一切解()x y ,均有()a b x y x =+∞→lim 。 证明 由一阶线性方程通解公式,方程的任一解可表示为 ()()?? ????+=?-x at ax dt e t f C e x y 0, 即 ()()ax x at e dt e t f C x y ?+= 。 由于b x f x =+∞ →)(lim ,则存在X ,当X x >时,M x f >)(。因而 ()dt e M dt e t f dt e t f x X at X at x at ??? +≥0 )( ())(0 aX ax X at e e a M dt e t f -+ = ? , 由0>a ,从而有()∞=?? ????+?+∞→x at x dt e t f C 0lim ,显然+∞=+∞ →ax x e lim 。 应用洛比达法则得 ()()ax x at x x e dt e t f C x y ?+=+∞ →+∞ →0 lim lim ()ax ax x ae e x f +∞→=lim ()a b a x f x ==+∞ →lim 。 证明题:线性齐次微分方程组x A x )(t ='最多有n 个线性无关的解,其中)(t A 是定义在区间b t a ≤≤上的n n ?的连续矩阵函数。 证 要证明方程组x A x )(t ='最多有n 个线性无关的解,首先要证明它有n 个线性无关的解,然后再证明任意1+n 个解都线性相关。

常微分方程与动力系统第二章课后题参考答案

常微分方程与动力系统第二章习题参考答案 1.证明:因为()t Φ是线性齐次系统(LH )的一个基本解矩阵,由定理2.5知()t Φ在区间J 上满足矩阵微分系统()M LH ,即. ()()()t A t t Φ=Φ, . 1 ()()() A t t t -=ΦΦ所以由()A t 确定的线性齐次系统(LH )必唯一。 2.证明:因为()t ?,()t ψ分别是. ()x A t x = 和. ()T x A t x =-的解,所以 11 1 () ()()n k k k n nk k k a d t A t t dt a ????==?? ? ?== ? ? ? ??? ∑∑ , 11211111122222* 121 ()()()n n k k k n n kn k n n n nn k a a a a a a a d t A t t dt a a a a ψψψψψψ==?????? ? ? ? ? ? ?=-ψ=-=- ? ? ? ? ? ? ????? ??? ∑∑ 因而 1111 112 2 1 1 (,)(,)(,),,n n k k k k k k n n kn k k nk k n n k a a d d d dt dt dt a a ψ??ψψ ??ψ?ψ ψ?ψ?ψ?====?? ?? ?????????? ?-?? ? ? ??? ??? ? ? ???=+= ?+?? ? ? ??? ?-?? ? ? ??? ????? ???? ??????? ?? ∑∑∑∑ 11 111 1 1 1()0 n n n n n n n n n n n n m m m m i ij j i ij j i mk k km k mk k km m m m m i j i j k k k k a a a a a a ?ψψ??ψ?ψ?ψ?ψ== === = == == = = -= += -=-=∑∑∑∑∑∑∑ ∑∑∑∑∑所以 (),() ()()1 n t t t t k k k ?ψ?ψ≡≡ ∑=常数。 3.证明:设)t Φ(为系统. ()x A t x = 的一个基本解矩阵,则由定理2.11知 [ ]1 () T t -Φ是系统. ()T x A t x =-的基本解矩阵,由定理 2.4知系统. ()x A t x = 满足初始条件00()x t x =的特解为1 00()))t t t x ?-=Φ(Φ(,[) 0,0,t t ∈+∞由题可 知)t Φ(与[ ]1 () T t -Φ在[)0,+∞上有界,从而由定理2.24知110()0 k k t ?=>

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程过点共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 2 1d d y x y -=)1,2 (πx x y x y +-=d d y x y =d d

微分中值定理

微分中值定理 班级: 姓名: 学号:

摘要 微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 罗尔定理 定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 几何意义: 在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。 (注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.) 例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程 ()()[]() ()x f a b a f b f x '222-=-至少存在一个根. 证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且 ()()()()b F a f b a b f a F =-=22 根据罗尔定理,至少存在一个ξ,使

()()[]() ()x f a b a f b f '222-=-ξ 至少存在一个根. 例2 求极限: 1 2 20(12) lim (1) x x e x ln x →-++ 解:用22ln )(0)x x x →:(1+有 20 2 12 012 01(12)2lim (1) 1(12)2 lim (12)lim 2(12)lim 2212 x x x x x x x x e x In x e x x e x x e x →→-→- →-++-+=-+=++=== 拉格朗日中值定理 定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导, 则在开区间(,)a b 内至少存在一点ξ,使得 ()() () f b f a f b a ξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形. 拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

第二章动力学系统的微分方程模型

第二章:动力学系统的微分方程模型 利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。 在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。 §2.1 动力学系统统基本元件 任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。 1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。 惯量(质量)= ) 加速度(力(2 /) s m N 惯量(转动惯量)= ) 角加速度(力矩(2/) s rad m N ? 2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。 对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。 x k F ?= 这里k 称为弹簧刚度,x ?是弹簧相对于原长的变形量,弹性力的方向总是指向弹 簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。 3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。阻尼力通常表示为: α x c R = 阻尼力的方向总是速度方向相反。当1=α,为线性阻尼模型。否则为非线性阻 尼模型。应注意当α等于偶数情况时,要将阻尼力表示为: ||1--=αx x c R 这里的“-”表示与速度方向相反

常微分方程期末考试练习题及答案

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

《常微分方程与动力系统》课程教学说明

上海交通大学 致远学院 2016年秋季学期 《常微分方程与动力系统》课程教学说明 一.课程基本信息 1.开课学院(系):致远学院 2.课程名称:《常微分方程与动力系统》 (An Introducation to Differential Equations and Dynamical Systems) 3.学时/学分:48学时/ 3学分 4.先修课程:数学分析、高等代数、空间解析几何;或线性代数、高等数学。 5.上课时间:星期五 6-8节(12:55-15:40) 6.上课地点:东下院 101 7.期末考试时间:2017-01-(02-13)考试周 8.任课教师:肖冬梅, xiaodm@https://www.360docs.net/doc/284964118.html, 9.办公室及电话:数学楼2305,54743151转2305 10.助教:何鸿锦,hehongjin000@https://www.360docs.net/doc/284964118.html, 11.答疑(office hour):星期三晚18:30 – 20:30,数学楼2305室二.课程主要内容(如何可以,请提供中英文) 除期中考试2学时+习题课2学时外,其余全是课堂教学 第一章基本概念(3学时) 主要内容: 1.1什么是微分方程?什么是常微分方程?常微分方程的分类 1.2什么是常微分方程解?什么是特解?什么是通解? 1.3常微分方程建模:初始值问题和边界值问题 1.4关于常微分方程和解的几何看法:向量场、积分曲线 重点与难点:常微分方程和解的几何观点,方向场和积分曲线的作图 第二章一阶常微分方程的初等解法(6学时) 主要内容: 2.1 变量分离法 2.2 一阶线性常微分方程 2.3 全微分方程(或恰当方程)和积分因子 2.4 替代法和某些可解的常微分方程 重点与难点:全微分方程和积分因子,变换的技巧 第三章基本理论(8学时) 主要内容:

微分中值定理历史与发展

微分中值定理历史与发展 卢玉峰 (大连理工大学应用数学系, 大连, 116024) 微分中值定理是微分学的基本定理之一, 研究函数的有力工具. 微分中值 定理有着明显的几何意义和运动学意义. 以拉格朗日(Lagrange) 定理微分中值定理为例,它的几何意义:一个定义在区间[]b a ,上的可微的曲线段,必有中一点()x f (b a ,)ξ, 曲线在这一点的切线平行于连接点())(,a f a 与割线.它的运动学意义:设是质点的运动规律,质点在时间区间()(,b f b )f []b a ,上走过的路程),()(a f b f ?a b a f b f ??)()(代表质点在()b a ,上的平均速度, 存在()b a ,的某一时刻ξ,质点在ξ的瞬时速度恰好是它的平均速度. 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在 几何研究中,得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的 底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes) 正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实: 曲线段上必有一点的切线平行于曲线的弦.这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了. 1637年,著名法国数学家费马(Fermat) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy) ,他是数学分析严格化运动的推动者,他的三部

常微分方程期末历年考试(B)

广西师范大学漓江学院试卷 课程名称:常微分方程课程序号:开课院系:理学系 任课教师: 年级、专业:07数学考试时间:120分钟 考核方式:闭卷 ■ 开卷 □试卷类型:A 卷□B 卷■ 一、填空题(本大题共10小题,每小题3分,共30分) (请在每小题地空格中填上正确答案,错填、不填均无分). 1、当_______________时,方程(,)(,)0M x y dx N x y dy +=称为恰当方程. 2、求(,)dy f x y dx =满足00()y x y =地解等价于求积分方程地连续解. 3、函数组t t t e e e 2,,-地朗斯基行列式值为. 4、二阶齐次线性微分方程地两个解)(),(21x y x y 为方程地基本解组充分必要条件是. 5、若矩阵A 具有n 个线性无关地特征向量n v v v ,,,21Λ,它们对应地特征值分别为n λλλΛ,,21,那么常系数线性方程组Ax x ='地一个基解矩阵)(t Φ=. 6、方程tan dy x y dx =地所有常数解是. 7、如果存在常数0L >,使得不等式对于所有12,),(,)x y x y R ∈(都成立,称函数),(y x f 在R 上关于y 满足利普希茨条件,其中L 为利普希茨常数. 8、)()(x Q y x P dx dy += 称为一阶线性方程,它有积分因子 ?-dx x P e )( ,其通解为 _________ . 9、方程22y x dx dy +=定义在矩形域R:-222,2≤≤-≤≤y x 上,则经过点(0,0)地解地存在区间是. 10、若(),()t t Φψ是齐次线性方程组()X A t X '=地基解矩阵,则()t Φ与()t ψ具有关系. 年 级 : 专 业: 装订密封线 考 生 答 题 不 得 出 现 红 色字 迹 , 除 画 图 外 , 不 能 使用 铅笔答 题;答题 留 空 不 足 时 , 可 写到 试卷 背面 ;请 注意 保 持试 卷完 整.

常微分方程期末试题B答案

2005——2006学年第二学期 常微分方程课程试卷(B) 一、填空题(每空2 分,共16分)。 1.李普希滋条件是初值问题存在唯一解的充分条件. 2. 一阶微分方程的一个特解的图像是二 维空间上的一条曲线. 3.线性齐次微分方程组Y A Y ) ( d d x x =的一个基本解组的个数不能多于n个,其中R ∈ x,n R Y∈. 4.二阶线性齐次微分方程的两个解) ( 1 x y? =,) ( 2 x y? =成为其基本解组的充要条件是线性无关. 5.方程2 sin() y xy y '' =+的通解是 6.变量可分离方程()()()()0= +dy y q x p dx y N x M的积分因子是()() x P y N 1 7.性齐次微分方程组的解组) ( , ), ( ), ( 2 1 x x x n Y Y Y 为基本解组的充分必要条件是它们的朗斯基行列式0 ) (≠ x W. 8.方程540 y y y ''' ++=的基本解组是x x e e4 ,- - 二、选择题(每小题3 分,共15分)。 9.两个不同的线性齐次微分方程组( D )的基本解组. (A) 一定有相同(B) 可能有相同 (C) 一定有相似(D) 没有相同 10.方程组 ? ? ? ?? ? ? + = + = y x t y y x t x 4 3 d d 2 d d 的奇点)0,0(的类型是(D ). (A)稳定焦点(B)不稳定焦点(C)鞍点(D)不稳定结点11.方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是( C ). (A) 1± = x(B)1± = y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( D ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程4d d +-=x y x y ( A )奇解. (A) 无 (B) 有一个 (C) 有两个 (D) 可能有 三、计算题(每小题8分,共48分) 。 14.求方程 x y x y x y tan d d +=的通解 解:令x y u =,则u x u y '+=', u x u x tan d d = 当0tan ≠u 时,等号两边积分 1d tan d C x x u u +=?? C x u ln ln sin ln += 0≠C Cx x y =sin 15.求方程0d d )1(2=+--y x x y x 的通解 解:积分因子21)(x x =μ, 则 0d 1d 122=+--y x x x y x 为全微分方程.取10=x ,00=y ,于是通积分为 1012 2d d 1C y x x y x y x =+--?? 即 C x x x y =++1 16.求方程2221)(x y x y y + '-'=的通解 解:令 p y =',得到2 2 2x xp p y +-= (*) ,两端同时关于求导,

微分中值定理论文

引言 通过对数学分析的学习我们知道,微分学在数学分析中具有举足轻重的地位,它是组成数学分析的不可缺失的部分。对于整块微分学的学习,我们可以知道中值定理在它的所有定理里面是最基本的定理,也是构成它理论基础知识的一块非常重要的内容。由此可知,对于深入的了解微分中值定理,可以让我们更好的学好数学分析。通过对微分中值定理的研究,我们可以得到它不仅揭示了函数整体与局部的关系,而且也是微分学理论应用的基础。微分中值定理是一系列中值定理总称,但本文主要是以拉格朗日定理、罗尔定理和柯西定理三个定理之间的关系[1-3]以及它们的推广为研究对象,利用它们来讨论一些方程根(零点)的存在性, 和对极限的求解问题,以及一些不等式的证明。 中值定理的内容及联系 基本内容[4][5] 对于,微分中值定理的了解,我们了解到它包含了很多中值定理,可以说它是一系列定理的总称。而本文主要是以其中的三个定理为对象,进行探讨和发现它们之间的关系。它们分别是“罗尔(Rolle )定理、拉格朗日(Lagrange )定理和柯西(Cauchy )定理”。这三个定理的具体内容如下: Rolle 定理 若()f x 在[],a b 上连续,在(),a b 内可导,且()()f a f b =,则至少存在一点(),a b ξ∈,使()0f ξ'=。 Lagrange 定理 若()f x 在[],a b 上连续,在(),a b 内可导,则至少存在一点(),a b ξ∈,使()()()() =f b f a f b a ξ-'- Cauchy 定理 设()f x ,()g x 在[],a b 上连续,在(),a b 内可导,且()0g x '≠,则至少存在一点 (),a b ξ∈,使得 ()()()()()() f b f a f g b g a g ξξ'-='-。 三个中值定理之间的关系 现在我们来看这三个定理,从这三个定理的内容我们不难看出它们之间具有一定的关系。那它们之间具体有什么样的关系呢?我们又如何来探讨呢?这是我们要关心的问题,我们将利用推广和收缩的观点来看这三个定理。首先我们先对这三个定理进行观察和类比,从中可以发现,如果把罗尔定理中的()()f a f b =这一条件给去掉的话,那么定理就会变成为拉格朗日定理。相反,如果在拉格朗日定理中添加()()f a f b =这一条件的话,显然就该定理就会成为了罗尔定理。通过这一发现,可以得到这样的一个结论:拉格朗日定理是罗尔定理的推广,而罗尔定理是拉格朗日定理的收缩,或是它的特例。继续用这一思路来看拉格朗日

微分动力系统的应用一

微分动力系统的应用(一)--竞争模型 设在一个池塘里饲养两种食用鱼:鳟鱼和鲈鱼. 设它们在时刻t 的尾数分别是x(t)和y(t). 假定鳟鱼的尾数x(t)的增长速度正比于鳟鱼尾数x(t), 增长率为k; 即 kx t x =d d . (1) 由于鲈鱼的存在而争夺食物、减小了鳟鱼的增长率. 鲈鱼越多,鳟鱼的增长率越小,可设鳟鱼的增长率k = a – by, 其中a>0, b>0是常数. 因此我们可以写出如下的描述鳟鱼尾数的微分方程: x by a t x )(d d -=, 0≥x , 0≥y . (2) 同理由于鳟鱼的存在而争夺食物、减小了鲈鱼的增长率. 我们可得到描述鲈鱼尾数的微分方程: y nx m t y )(d d -=, (3) 其中 m>0, n>0是常数. 当鳟鱼的尾数x(t) > m/n, 鲈鱼的尾数 y(t)a/b 时, 由方程 (3)可见鲈鱼的尾数y 将增加, 由方程 (2)可见鳟鱼尾数x(t)将减少. 现在的问题是: 设在t=0时鳟鱼和鲈鱼的初值分别是x 0和y 0尾, 要研究这两种鱼的增长情况. 是否存在x 0>0和y 0>0, 使得这两种鱼能够和平共处, 长期共存呢? 首先可见方程组 (2), (3)有常数解

b a y n m x ==,. (4) 因此在t=0时鳟鱼x 0=m/n, 和鲈鱼y 0=a/b 尾时, 由方程可见鳟鱼和鲈鱼的增长速度是零, 所以鳟鱼和鲈鱼的尾数保持不变. 那么这种状态是否是稳定的呢? 就是说, 若鱼的尾数由于某种原因稍有变化, 这两种鱼是否还能和平共处, 长期共存呢? 由常微分方程的理论, 我们知道 (m/n, a/b) 是方程组的奇点, 我们只要分析这个奇点的稳定性就行了. 方程组(2),(3) 的向量场的Jacobi 矩阵在奇点(m/n, a/b)的值是 ?????? ??--=???? ??----=00 b na n bm nx m ny bx by a J (5) J 的两个特征值为 ma ±, 因此奇点是鞍点, 鞍点是不稳定的. 所以若鱼的尾数由于某种原因稍有变化, 这两种鱼的尾数将有大的变化. 方程组(2), (3)还有一个奇点 (0, 0), 向量场的Jacobi 矩阵在奇点(0, 0)的值是 ???? ??=???? ??----=m a nx m ny bx by a J 00 (6) J 的两个特征值为a>0, m>0, 因此奇点(0, 0)是不稳定的结点. 在奇点(0, 0) 附近的轨线当时间t 增大时都离开奇点(0,0). 另外方程组 (2), (3) 有两条半直线轨道: (1): x=0, y>0, 对应的轨线是 mt y y e 0=, 表示鲈鱼的尾数呈指数增长. (2): y=0, x>0, 对应的轨线是 at x x e 0=, 表示鳟鱼的尾数呈

微分中值定理及应用综述

微分中值定理及应用综述 谢娟 09211045 江苏师范大学 数学与统计学院 徐州 221116 摘 要:微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理、泰勒定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁和基石.本文对微分中值定理中的一些条件给予了相关说明,介绍了微分三大中值定理以及它们之间的关系,后又在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 关键词:微分中值定理;关系;应用 引言 微分中值定理是微分学的基本定理,是沟通函数与其导数之间的桥梁,是应用导数的局部性研究函数整体性的重要数学工具,应用十分广泛. 1 浅谈微分中值定理 1.1 微分中值定理的基本内容 微分中值定理是反映导数值与函数值之间的联系的定理, 它们分别是罗尔定理、拉格朗日定理和柯西中值定理.具体内容如下: 1.1.1 罗尔定理 如果函数()y f x = 满足: ( 1) 在闭区间[],a b 上连续; ( 2) 在开区间(),a b 内可导; ( 3) 在区间端点的函数值相等, 即()()f a f b =, 那么在区间(),a b 内至少有一 点ε()a b ε<< , 使函数()y f x =在该点的导数等于零, 即 ()/0f ε= 几何分析 在(图1) 中可见()y f x =曲线在[],a b 上是一条连续光滑的曲线, 曲线()y f x =在 (),a b 内处处有切线且没有垂直于x 轴的切线.在曲线的两端点一般高(罗尔定理的三条件在 平面几何中成立), 因而在(),a b 内曲线()y f x =至少有一点处的切线平行于x 轴(罗尔定理的结论成立,/ ()0f x =).通过对罗尔定理的几何分析, 抽象的罗尔定理得到了具体化(这也反应了数学的一般思想, 抽象思维具体化)。对于我们理解和掌握罗尔定理大有帮助.

常微分方程与动力学系统

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。

第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程) 5.应用举例 第三章常微分方程基本定理(10, 2) (一)本章教学目的与要求: 要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。 本章教学重点是介绍常微分方程基本定理,给出几何含意,不追求定理条件的减弱,所涉及的方程至少是连续,使条件、结论及证明简洁,学生易于掌握,也为本学科的后续课程奠定基础。在习题课中,可介绍这些基本定理的应用,如证明初等函数恒等式,及推导欧拉公式。 (二)教学内容: 1. 皮卡存在和唯一性定理,用构造毕卡序列,并有它的一致收敛性来证明此定理; 2. 佩亚若存在定理; 3.解的延拓(几何含意);用两个例子说明延拓到边界的含义:时间的边界或状态空间的边界。 4. 解的全局存在唯一性定理,为动力系统理论奠定基础。 5. 比较定理(几何含意); 6.解对初值和参数的连续依赖性(几何含意); 7.解对初值和参数的连续可微性(几何含意)。 第四章奇解(2,1) (一)本章教学目的与要求: 要求学生正确掌握微分方程奇解的定义,并对几类一阶隐式方程会求奇

数学分析微分中值定理及其应用

第六章 微分中值定理及其应用(计划课时: 8时 ) § 1中值定理( 3时 ) 一 思路: 在建立了导数的概念并讨论了其计算后,应考虑导数在研究函数方面的 一些作用。基于这一目的,需要建立导数与函数之间的某种联系。还是从导数的定义出发: 00)()(lim x x x f x f x x --→=)(0x f '.若能去掉导数定义中的极限符号,即 0) ()(x x x f x f --=?)(0x f ',则目的就可达到.这样从几何上说就是要考虑曲线的割线与切线之间的平行关系. 一方面 要考虑给定割线, 找平行于该割线的切线; 另一方面要考虑给定切线, 找平行于该切线的割线. (1)若给定的割线是水平的、斜的或曲线的方程以参数方程的形式给出,则分别可找出相应的切线平行于该割线,再分析所需要的条件,就可建立起Rolle 定理、Lagrange 定理、Cauchy 定理. 这三个微分中值定理用一句话概括:对于处处连续、处处有切线曲线的每一条割线都可以找到平行于该割线的切线. (2)若给定切线, 找平行于该切线的割线, 则不一定能实现. 二 微分中值定理: 1. Rolle 中值定理: 叙述为Th1. ( 证 ) 定理条件的充分但不必要性. 2. Lagrange 中值定理: 叙述为Th2.( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理. Lagrange 中值定理的各种形式. 关于中值点的位置. 系1 函数)(x f 在区间I 上可导且)( ,0)(x f x f ?≡'为I 上的常值函数. (证) 系2 函数)(x f 和)(x g 在区间I 上可导且,)()( ),()(c x g x f x g x f +=?'≡'.I ∈x 系 3 设函数)(x f 在点的某右邻域)(0x + 上连续,在)(0x + 内可导.若 )0()(lim 00 +'='+→x f x f x x 存在 , 则右导数)(0x f +'也存在, 且有).0()(00+'='+x f x f (证) 但是, )0(0+'x f 不存在时, 却未必有)(0x f +'不存在. 例如对函数 ??? ??=≠=.0 ,0,0 ,1sin )(2 x x x x x f 虽然)00(+'f 不存在,但)(x f 却在点0=x 可导(可用定义求得0)0(='f ). Th3 (导数极限定理)设函数)(x f 在点的某邻域 )(0x 内连续, 在)(0x 内可导.若极限 )(lim 0 x f x x '→存在, 则)(0x f '也存在, 且).(lim )(0 0x f x f x x '='→( 证 ) 由该定理可见, 若函数)(x f 在区间I 上可导,则区间I 上的每一点,要么是导函数 )(x f '的连续点,要么是)(x f '的第二类间断点.这就是说,当函数)(x f 在区间I 上点点可导时, 导函数)(x f '在区间I 上不可能有第二类间断点. 3. Cauchy 中值定理: Th 4 设函数和在闭区间],[b a 上连续, 在开区间),(b a 内可导, 和在),(b a 内不同时为零, 又).()(b g a g =/ 则在),(b a 内至少存在一点 使得

(完整版)常微分方程期末考试试卷(6)

常微分方程期末考试试卷(6) 学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______ 一. 填空题 (共30分,9小题,10个空格,每格3分)。 1.当_______________时,方程M(x,y)dx+N(x,y)dy=0称为恰当方程,或称全 微分方程。 2、________________称为齐次方程。 3、求dx dy =f(x,y)满足00)(y x =?的解等价于求积分方程____________________的连续解。 4、若函数f(x,y)在区域G 内连续,且关于y 满足利普希兹条件,则方程),(y x f dx dy = 的解 y=),,(00y x x ?作为00,,y x x 的函数在它的存在范围内是__________。 5、若)(),...(),(321t x t x t x 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________________________。 6、方程组x t A x )(/=的_________________称之为x t A x )(/=的一个基本解组。 7、若)(t φ是常系数线性方程组Ax x =/的基解矩阵,则expAt =____________。 8、满足___________________的点(**,y x ),称为方程组的奇点。 9、当方程组的特征根为两个共轭虚根时,则当其实部________时,零解是稳定 的,对应的奇点称为___________。 二、计算题(共6小题,每题10分)。 1、求解方程:dx dy =3 12+++-y x y x 2.解方程: (2x+2y-1)dx+(x+y-2)dy=0

控制系统的微分方程

控制系统的微分方程

数学模型:描述系统输入、输出变量以及内部各变量之间关系的数学表达式。 描述各变量动态关系的表达式称为动态数学模型,常用的动态模型为微分方程。 建立数学模型的方法分为解析法和实验法。 解析法:依据系统及元件各变量之间所遵循的物理、化学定律列写出变量间的数学表达式,并实验验证。 实验法:对系统或元件输入一定形式的信号(阶跃信号、单位脉冲信号、正弦信号等),根据系统或元件的输出响应,经过数据处理而辨识出系统的数学模型。

建立微分方程的步骤: 1、分析各元件的工作原理,明确输入、输出量; 2、按照信号的传递顺序,列写各变量的动态关系式; 3、化简(线性化、消去中间变量),写出输入、输出变量 间的数学表达式。

例:RLC 无源网络如图所示,图中R 、L 、C 分别为电阻(Ω)、电感(H)、电 容(F);建立输入电压u r (V)和输出电压u c (V)之间的动态方程。 解由基尔霍夫定律得: ()1 ()()()r di t u t Ri t L i t dt dt C =++?1 ()()c C u t i t dt =?

消去中间变量i (t ),可得: 2 2 2 ()d ()2()()c c c r d u t u t T T u t u t dt dt ζ++=2 2 ()()()()c c c r d u t du t LC RC u t u t dt dt ++=令,则微分方程为: 2 ,2LC T RC T ζ==式中:T 称为时间常数,单位为s, 称为阻尼比,无量纲。 ζ

例设有一弹簧、质量块、阻尼器组成的系统如图所示,当外力F 作用于系统时,系统将产生运动。建立外力F 与质量块位移y (t )之间的动态方程。其中弹簧的弹性系数为k ,阻尼器的阻尼系数为f ,质量块的质量为m 。 解对质量块进行受力分析,作用在质量块上的力有: 外 力: F 弹簧恢复力:Ky(t) 阻尼力:() dy t f dt 由牛顿第二定律得: 2 ()()()d y t dy t m F f Ky t =??

相关文档
最新文档