09_FEKO_螺旋天线仿真

09_FEKO_螺旋天线仿真
09_FEKO_螺旋天线仿真

FEKO培训系列教程

螺旋天线(Helix)

螺旋线建模,MOM及MLFMM计算

EMSS CHINA

概述:Overview

?天线是单螺旋天线

–金属地板直径:

Ground_R=0.375个波长

–螺旋匝数: n=3.5

–螺距:s=0.225个波长

–螺旋的半径: R=1个波长/(2*pi)

–螺旋的高度: H=n*s

?电参数:

–工作频率:f=30 GHz

计算的问题

?计算的问题:

–螺旋天线的3D远场方向图

–Phi=0,phi=90平面内的方向图

启动CadFEKO

?CADFEKO 6.0 进入CadFEKO主界面

?设置单位为毫米mm,

天线的建模:定义几个主要参数

?点击菜单“Model\Add Variable”(或在左侧树型资源管理器中,点击双击“Variables”节点或选中“Variables”节点,点击鼠标右键选择“Add Variable”),即可弹出“Create Variable”对话框

–在Create Variable对话框中需要输入变量的名称及表达式,注释等,点击“Evaluate”按钮可以显示表达式的值,点击“Create”完成创建,点击

“Close”关闭“Create Variable”对话框

天线的建模‐参量定义

?按照先后顺序添加以下变量:

–sf=0.001

–freq =30e9 Hz;

lambda c0/freq/sf ;

–lambda=c0/freq/sf ;

–Ground_R=0.375*lambda;

–s=0.225*lambda;

–D=lambda/pi;

–n=3.5

天线的建模‐金属地板

?点击左侧的模型图标按钮“”来建立螺旋天线的金属地板:–Centre point:

?X: 0.0

?Y: 0.0

?Z: 0.0

–Dimensions

?R(x):Ground_R

?R(y):Ground_R

–Label:Ground

–Create按钮

–Close按钮

?点击

调整3D视图中的大小

天线的建模‐单螺旋

?点击左侧的模型图标按钮“”来建立螺旋天线的螺旋:

–Base Radius:D/2

–End Radius:D/2

–Height (Z): s*n

Height (Z): s n

–Turns: n

–Label: Helix1

–Create 按钮

–Close 按钮

天线的建模‐完成建模

?选中Ground模型,点击左侧的“”按钮弹出“Create imprint…”对话框,在3D视图中点击鼠标右键选择“Snap to->Geometry point”;

?把光标定在“Create imprint…”的Point1中,同时按住Ctrl+Shift键不放,移动鼠标到螺旋与地板的焦点位置,点击鼠标左键确认,这时该点的坐标会显示在Point1的黄色区域,点击创建按钮完成在地板Ground上建立一个点的操作。

天线的建模‐完成建模

?在CADFEKO几何模型树中,按

住ctrl同时选中圆板及螺旋线

?点击合并操作

?注:由于圆板和螺旋线有几何交

点,因此必选点击union操作,

将两者相连接。

?左图是完整的几何模型

端口定义

?选中Ports节点,点击鼠标右键选择“Create port-> Wire port”,弹出“Create wire port”对话框;

?在3D视图中用鼠标点击天线的螺旋部分,在“Create wire port”对话框中的Edge自动显示Union1.Wire2;

?Create按钮;

?Close按钮。

端口定义(也可以这样来创建)

?该步骤和上一步的创建端口步骤选择其一, 功能等效

?选中模型Union1, 展开其Edges节点, 选中Wire (x), 点击鼠标右键选择“Wire Port”, 弹出“Create Wire Port (Geometry)”对话框:Edge: Helix1.wire(X);

–Edge: Helix1wire(X);

–Place port on:

?Segment

–Location on wire:

?Start

–Label:

?Port1

–Create

–Close

添加激励

?展开Solution,选中Excitations节点,点击鼠标右键选择Voltage Source,弹出“Create Voltage Source”对话框:

–Port:Port1;

g();

–Magnitude (V): 1 V

–Phase(degrees): 0;

–Label:VoltageSource1;

–Create按钮;

–Close按钮

基本设置‐设定工作频率

?展开Solution节点,选中Frequency节点,点击鼠标右键选择“Set frequency” (或直接双击Frequency节点)弹出“Solution frequency”

对话框:

–Single frequency;

g q y;

–Frequency (Hz): freq

–点击“OK”按钮

基本设置‐定义计算远场‐xoz

?展开Solution节点,选中Calculation节点,点击鼠标右键选择“Request far fields”

弹出“request far fields”对话框:

–点击“Vertical cut(XZ plane)”按钮;

–修改Increment Theta:1.0;

–Label:xoz_ff;

–Create按钮;

–Close按钮。

基本设置‐定义计算远场‐yoz

?展开Solution节点,选中Calculation节点,点击鼠标右键选择“Request far fields”

弹出“request far fields”对话框:

–点击“Vertical cut(YZ plane)”按钮;

–修改Increment Theta:2.0;

–Label:yoz_ff;

–Create按钮;

–Close按钮。

基本设置‐定义计算远场‐3D

?展开Solution节点,选中Calculation节点,点击鼠标右键选择“Request far fields”

弹出“request far fields”对话框:

–点击“3D Pattern”按钮;

–修改Increment Theta:2.0;

–修改Increment Phi:2.0;

–Label:ff_3d;

–Create按钮;

–Close按钮。

基本设置‐设定计算方法(忽略)

?点击菜单“Solution\Solution Settings”进入“Solution Settings”设定窗口:–MLFMM

?勾选Solve model with the fast multipole method MLFMM

–点击OK按钮

进行网格的剖分

?点击菜单“Mesh->Create Mesh”

?修改Global mesh sizes:

–Edge length: lambda/10;

–Segment length: lambda/15;

–Wire segment radius:

lambda/100;

?点击Create按钮

?开始进行网格剖分……

?完毕后点击Close

计算

?点击“File\Save as”保存为Helix_Antenna;

?点击菜单“Run\Prefeko”(或Alt+2)进行预处

理;

?点击菜单Run\runFeko

点击菜单“Run\runFeko”

(或Alt+4)开始运行;

显示结果‐3D

?点击菜单“Run\PostFEKO”或者点击弹出PostFEKO 后处理界面;

显示结果‐3D

?在Home菜单状态下,点击Far field;

–其中FarField1,2,3分别为定义xoz面,yoz面和3D

–分别选择FarField1,2,3来显示增益

–可以在左侧,选择显示物理量及设置成dB

显示结果‐2D

?首先添加Cartesian 2D视图,然后选择Far field1及Far field2

一种小型平面螺旋天线概要

一种小型平面螺旋天线 龙小专1 袁飞2 (西南电子设备研究所,成都四川,610036) 摘要:平面阿基米德螺旋天线是一种宽频带天线,其尺寸由低端工作频率决定,在许多实际应用中常需对其进行小型化设计。本文通过末端离散电阻加载设计,实现了天线的小型化。本文结合设计的小型平面马欠德平衡器馈电装置,得到了一种小型平面阿基米德螺旋天线。 关键词:平面阿基米德螺旋天线,小型化,电阻加载,平面马欠德平衡器 A Miniaturized Planar Spiral Antenna Long Xiaozhuan 1 Yuan Fei 2 (Southwest Institute of Electric Equipment, Chengdu, Sichuan, 610036) Abstract: Planar Archimedean spiral antenna was a broadband antenna, whose dimension was determined by its lowest working frequency, and it’s necessary to do some miniaturization design in many practical applications. The miniaturization of the antenna was realized by discrete resistance loading in the end of antenna. A miniaturized planar Archimedean spiral antenna was achieved, integrated with the feeding device of a miniaturized planar Marchand balun designed in this article. Keywords: Planar Archimedean Spiral Antenna; Miniaturization; Resistance Loading; Planar Marchand Balun 1 引言 2 电阻加载 平面阿基米德螺旋天线是一种宽频带天线,因其具有结构紧凑、重量轻、输入阻抗恒定、相位中心固定、辐射圆极化波等特点,在诸多领域有着重要的应用[1]。随着系统的发展要求,天线的小型化成为天线设计中的重要发展方向。一般来说,圆形平面阿基米德螺旋天线的外径至少应大于最低工作频率的波长除以π。若需再扩展天线的低端工作频率,或减小天线的尺寸,则需对天线进行小型化设计。在众多的小型化技术中,电阻加载不仅可以减小天线的驻波比,还可以显著减小天线的轴比,其应用最为广泛[2]。本文采用这种技术,对平面阿基米德螺旋天线末端进行离散电阻加载,并应用所设计的小型平面马欠德平衡器,最终得到一个工作于2.5GHz~6GHz的平面螺旋天线,其总尺寸仅为Ф30mm×25mm。 平面阿基米德螺旋天线一般由辐射螺旋面、馈电平衡器和背腔三大部分构成。在天线的设计中,可先分别对三个部分进行设计,然后再进行综合设计。辐射螺旋面一般是在一块圆形的介质基板的一个面上印制两根或多根螺旋线,螺旋线的半径随角度变化而均匀的增加,其极坐标方程可表示为: r=r0+aφ (1)

基于MATLAB的智能天线及仿真

基于M A T L A B的智能天 线及仿真 This model paper was revised by the Standardization Office on December 10, 2020

摘要 随着移动通信技术的发展,与日俱增的移动用户数量和日趋丰富的移动增值服务,使无线通信的业务量迅速增加,无限电波有限的带宽远远满足不了通信业务需求的增长。另一方面,由于移动通信系统中的同频干扰和多址干扰的影响严重,更影响了无线电波带宽的利用率。并且无线环境的多变性和复杂性,使信号在无线传输过程中产生多径衰落和损耗。这些因素严重地限制了移动通信系统的容量和性能。因此为了适应通信技术的发展,迫切需要新技术的出现来解决这些问题。这样智能天线技术就应运而生。智能天线是近年来移动通信领域中的研究热点之一,应用智能天线技术可以很好地解决频率资源匮乏问题,可以有效地提高移动通信系统容量和服务质量。开展智能天线技术以及其中的一些关键技术研究对于智能天线在移动通信中的应用有着重要的理论和实际意义。 论文的研究工作是在MATLAB软件平台上实现的。首先介绍了智能天线技术的背景;其次介绍了智能天线的原理和相关概念,并对智能天线实现中的若干问题,包括:实现方式、性能度量准则、智能自适应算法等进行了分析和总结。着重探讨了基于MATLAB的智能天线的波达方向以及波束形成,阐述了music和capon两种求来波方向估计的方法,并对这两种算法进行了计算机仿真和算法性能分析; 关键字:智能天线;移动通信;自适应算法;来波方向; MUSIC算法 Abstract With development of mobile communication technology,mobile users and communication,increment service are increasing,this make wireless services increase so that bandwidth of wireless wave is unfit for development of communication,On the other hand,much serious Co-Channel Interruption and the Multiple Address interruption effect utilize rate of wireless wave’s bandwidth,so the transported signals are declined and wear down,All this has strong bad effect on the capacity and

一种低剖面平面螺旋天线的设计

一种低剖面平面螺旋天线的设计 [ 录入者:天线微波 | 时间:2008-12-19 12:31:09 | 作者:景小东张福顺 | 来 源: | 浏览:498次 ] 摘要文章提出了一种低剖面平面螺旋天线的设计方法,用金属反射板代替传统的A /4反射腔来实现螺旋天线的单向辐射,并在螺旋末端接以阻性负载,以改善天线的电性能。实验结果表明,对于工作频带为1.3GHz~2.1GHz的四臂平面阿基米德螺旋天线,在保证天线特性的前提下,整个天馈结构的厚度减小至17ram。 0 引言 平面螺旋天线由于其结构的自相似性,能在很宽的频带内辐射圆极化波,因而获得了广泛的应用¨J。平面螺旋天线的辐射是双向的,但在实际应用中,往往要求天线具有单向辐射特性。通常的做法是,在螺旋天线的一侧加装反射腔,并根据实际情况在腔内填充微波吸收材料。这种做法能使天线达到相当宽的频带(2GHz~ 18GHz) 』,但其最大的缺点是,由于微波吸收材料的存在,近一半的辐射能量将被吸收掉 J,这使得天线的效率大大降低;即使不填充吸收材料,反射腔A/4的高度又使得天线的厚度过大,这在某些应用中又令人难以接受。 文章根据四臂平面螺旋天线的原理,设计了相应的馈电网络,将其地板作为天线的平面反射器,代替A/4反射腔,并在螺旋终端接阻性负载,以减小由镜像电流引起的互耦对天线电性能的影响。 通过调整天线辐射器与馈电电路板的间距,在保证天线电性能的前提下,使天线厚度减薄至17ram,满足低剖面要求。 1 天线设计 1.1 平面阿基米德螺旋天线 平面螺旋天线的基本形式为等角螺旋天线和阿基米德螺旋天线,在结构上又有单臂、双臂、四臂之分。文章采用四臂平面阿基米德螺旋天线,其结构如图1所示。其中螺旋臂1的两条边缘线满足的曲线方程分别为:

螺旋天线综述

螺旋天线综述 1 引言 螺旋天线(helical antenna)是用导电性良好的的金属做成的具有螺旋形状的天线。螺旋天线具有圆极化,波束宽度宽的优点,因此被广泛在卫星通讯,个人移动通信中。 同轴线馈电是螺旋天线的常用馈电方式,可以采用底馈或者顶馈,此时同轴线的内导线和螺旋线的一端相连接,外导线则和接地板(金属圆盘或矩形板状等)相接,螺旋线的另一端是处于自由状态。 螺旋天线既可用做反射镜或透镜的辐射器,也可用做单独的天线(由一个或几个螺旋线组成)。 2 螺旋天线的发展 螺旋天线的辐射能力是美国科学家 JohnD.Kraus于1947年在实验中发现的,自此之后,螺旋天线以其在宽频带上具有近乎一致的电阻性输入阻抗和在同样的频带上按“超增益”端射阵的波瓣图工作特点很快在各领域得到了广泛的应用。许多学者对螺旋天线的辐射特性进行了研究,给出了螺旋天线辐射设计多经验公式。 20世纪70年代,苏联科学家尤尔采夫和鲁诺夫对各种形式的螺旋天线进行了比较系统的理论分析和设计研究。此后各国学者进行了这方面的研究,延伸出了很多变种,尤其是四臂螺旋天线因其高增益,方向性好,圆极化的特点,得到了深入的发展和实际应用,如图1所示。 2008年弗吉尼亚大学的Warren Stutzman教授制成了一种六臂螺旋天线,如图2所示。天线实现了几乎最优化的UWB性能,通过采用围绕一个金属中心核而卷绕的臂来维持与臂之间相对不变的距离,几乎完整的利用了天线罩内的整个三维空间。该天线具有10:1的瞬间带宽,它可以被用于频域、多带宽、多信道应用以及时域或脉冲应用。在低成本的应用中,该设计可以被蚀刻在天线罩的内部,或由曲线或曲管构建。

14元阵列天线方向图及其MATLAB仿真

14元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真 1设计目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB 仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 2设计原理 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。 二元阵辐射场: 式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场: 令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数: 式中:ζφθψ+=cos sin kd 均匀直线阵最大值发生在0=ψ 处。由此可以得出 ])[,(212121ζθθθ?θj jkr jkr m e r e r e F E E E E --+=+=12 cos ),(21jkr m e F r E E -=ψ?θθζ φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζ?θθ?θ2πθ=)2/sin()2/sin(1)(ψψψN N A =kd m ζ?-=cos

这里有两种情况最为重要。 1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。 2.端射振,计最大辐射方向在阵轴方向上,此时0=m ?或π,也就是说阵的各元电流沿阵轴方向依次超前或滞后kd 。 3设计过程 本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。 14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b)); title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示: 14元端射振天线三维方向图的源程序为: y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); surf(x1,y1,z1); 2 π?±=m

用matlab 仿真不同天线阵列个天线的相关系数

2.3.1 阵列几何图 天线阵可以是各种排列,下图所示分别为圆阵(UCA)、线阵(ULA)、矩形阵(URA)排列方式与空间来波方向关系图,为简化整列分析,假设阵元间不考虑耦合,L 为天线数目,天线间距相等且均为d ,为入射在阵列上的水平波达角,为垂直波达角。 图2- 1 阵列排列方式与空间来波方向的关系 1) 圆阵排列方式的天线响应矢量为: 011cos() cos() cos() cos() (,)[,,...,,...,]l L j j j j T U C A a e e e e ξ?ψξ?ψξ?ψξ?ψ θ?-----= 公 式2- 1 其中2/,0,1,...,1l l L l L ψπ==-为第l 天线阵元的方位角,sin(),w w k r k ξθ=为波 数 2) 线阵排列方式的天线响应矢量为: cos sin (1)cos sin (,)[1,,...,]w w jk d jk d L T U LA a e e ?θ ?θ θ?-= 公式2- 2 3) 矩形阵列方式的天线响应矢量为: (1)()[(1)] (1)[(1)(1)](,)(()())[1,,...,,,,... ,...,,...,] T jv j p v ju j u v u URA N p j u p v j N u j N u p v T a vec a u a v e e e e e e e θ?-++---+-== 公式2- 3 ,N P 分别为x ,y 方向的天线数目,这里设x y d d =, (1)()[1,,...,]ju j N u T N a u e e -=; cos sin w x u k d ?θ=; (1)()[1,,...,]jv j p v T p a v e e -=;

一种小型平面螺旋天线

一种小型平面螺旋天线 龙小专1袁飞2 (西南电子设备研究所,成都四川,610036) 摘要:平面阿基米德螺旋天线是一种宽频带天线,其尺寸由低端工作频率决定,在许多实际应用中常需对其进行小型化设计。本文通过末端离散电阻加载设计,实现了天线的小型化。本文结合设计的小型平面马欠德平衡器馈电装置,得到了一种小型平面阿基米德螺旋天线。 关键词:平面阿基米德螺旋天线,小型化,电阻加载,平面马欠德平衡器 A Miniaturized Planar Spiral Antenna Long Xiaozhuan 1Yuan Fei 2 (Southwest Institute of Electric Equipment, Chengdu, Sichuan, 610036) Abstract: Planar Archimedean spiral antenna was a broadband antenna, whose dimension was determined by its lowest working frequency, and it’s necessary to do some miniaturization design in many practical applications. The miniaturization of the antenna was realized by discrete resistance loading in the end of antenna. A miniaturized planar Archimedean spiral antenna was achieved, integrated with the feeding device of a miniaturized planar Marchand balun designed in this article. Keywords: Planar Archimedean Spiral Antenna; Miniaturization; Resistance Loading; Planar Marchand Balun 1 引言 平面阿基米德螺旋天线是一种宽频带天线,因其具有结构紧凑、重量轻、输入阻抗恒定、相位中心固定、辐射圆极化波等特点,在诸多领域有着重要的应用[1]。 随着系统的发展要求,天线的小型化成为天线设计中的重要发展方向。一般来说,圆形平面阿基米德螺旋天线的外径至少应大于最低工作频率的波长除以π。若需再扩展天线的低端工作频率,或减小天线的尺寸,则需对天线进行小型化设计。在众多的小型化技术中,电阻加载不仅可以减小天线的驻波比,还可以显著减小天线的轴比,其应用最为广泛[2]。本文采用这种技术,对平面阿基米德螺旋天线末端进行离散电阻加载,并应用所设计的小型平面马欠德平衡器,最终得到一个工作于 2.5GHz~6GHz的平面螺旋天线,其总尺寸仅为Ф30mm×25mm。 2 电阻加载 平面阿基米德螺旋天线一般由辐射螺旋面、馈电平衡器和背腔三大部分构成。在天线的设计中,可先分别对三个部分进行设计,然后再进行综合设计。辐射螺旋面一般是在一块圆形的介质基板的一个面上印制两根或多根螺旋线,螺旋线的半径随角度变化而均匀的增加,其极坐标方程可表示为: r r aφ =+(1) 式(1)中, r是起始半径,a为螺旋增长率,φ是以弧度表示的幅角。双臂平面阿基米德螺旋天线如图1(a)所示。 平面阿基米德天线一般在螺旋面的中心起始端两点采用平衡馈电,而主要辐射区域是集中在平均周长为一个波长的那些环带上,也称有效辐射区。当频率改变时,有效辐射区随之改变,但辐射方向图基本不变。而当有效辐射区为天线的最外圈区域 ·553·

螺旋天线介绍

螺旋天线介绍 由金属导线绕成螺旋形状的天线。它由同轴线馈电,在馈电端有一金属板(图1)。螺旋天线的方向性在很大程度上取决于螺旋的直径(D)与波长(λ)的比值D/λ。当D/λ<0.18时,螺旋天线在包含螺旋轴线的平面上有8字形方向图,在垂直于螺旋轴线的平面上有最大辐射,并在这个平面得到圆形对称的方向图。这种天线称为法向模螺旋天线(图2a),用于便携式电台。当D/λ=0.25~0.46(即一圈螺旋周长约为一个波长)时,天线沿轴线方向有最大辐射,并在轴线方向产生圆极化波。这种天线称为轴向模螺旋天线(图2b),常用于通信、雷达、遥控遥测等。当D/λ进一步增大时,最大辐射方向偏离轴线方向(图2c)。

轴向模螺旋天线应用最广。图1中,D为螺旋天线直径;S为螺距;l为一圈周长;n 为圈数;α为升角;L为轴线长。它们的关系是 l2=(πD)2+S2 L=nS α=0的螺旋为平面上的单圈螺旋,取周长近似等于一个波长,并假定线上运载行波电流。在某一瞬时线上是正弦电流分布(图3)。在和x与y轴对称的任意四点A、B、C、D,电流存在下列关系: 这些电流的方向相反,它们的作用彼此抵消,所以在z轴方向只有Ey分量起作用。绕圈运载的是行波,电流沿线圈的分布将绕z轴旋转。因此,在z轴方向的电场Ey也绕z轴

旋转,于是在轴向产生圆极化波,并有最大辐射,故称为轴向模辐射。这种天线具有圆极化辐射的特点,它的频带很宽,在1:1.7通频带内方向图变化不大,而且天线的输入阻抗几乎恒定,约为140欧。朝辐射方向看,螺旋右绕产生右旋波,左绕产生左旋波。为了进一步展宽频带,可将螺旋天线做成圆锥形(图4)。 法向模螺旋天线(D/λ<0.18)实质上是细线天线,为了缩短长度,可把它卷绕成螺旋状。因此,它的特性与单极细线天线(见不对称天线)相仿,具有8字形方向图,并且频带很窄,一般用作小功率电台的通信天线。 边射式螺旋天线是一种法向模螺旋天线。它是在螺旋的中心轴线上放置一根金属导体,当螺旋一圈的周长l=Mλ(M=2,3,…整数)时,也在螺旋的法向产生最大辐射(图5)。这种天线可用作电视发射天线。

MATLAB仿真天线阵代码

天线阵代码 一、 clc clear all f=3e9; N1=4;N2=8;N3=12; a=pi/2; %馈电相位差 i=1; %天线电流值 lambda=(3e8)/f; %lambda=c/f 波长 d=lambda/2; beta=2.*pi/lambda; W=-2*pi:0.001:2*pi; y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子 y1=abs(y1); r1=max(y1); y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子 y2=abs(y2); r2=max(y2); y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子 y3=abs(y3); r3=max(y3); %归一化阵因子绘图程序, figure(1) subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=4,d=1/2波长,a=π/2') subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=8,d=1/2波长,a=π/2') subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=12,d=1/2波长,a=π/2') %--------------------- %只有参数N改变的天线方向图 t=0:0.01:2*pi; W=a+(beta.*d.*cos(t)); z1=(N1/2).*(W);

一种平面等角螺旋天线及其巴伦的设计

一种平面等角螺旋天线及其巴伦的设计 夏成刚 (华南理工大学电子与信息学院) 摘要:本文设计了一种双臂平面等角螺旋天线,工作频率0.4-2GHz。根据天线的平衡结构和宽带特性,设计了一种微带梯形结构的巴伦,以便采用50Ω同轴电缆馈电。仿真计算结果显示天线及巴伦具有良好的圆极化及宽带特性。 关键词:螺旋天线;巴伦;设计 Design of A Planar Equiangular Spiral Antenna and the Balun XIA cheng-gang (School of Electronic and Information Engineering, South China University of Technology)Abstract: In this paper,We designed a double-armed planar equianguar spiral antenna and fed by 50 ohm coaxial-cable ,it works at 0.4-2GHz.To match the balance structure an the wideband character of the antenna,its balun is microstrip line-parallel wire which is exponentially trapezia type。 Simulator results show that the proposed antenna is of good circular polarization and wideband characteristics. Key words: Spiral Antenna ,Balun,Design 1 引言 平面等角螺旋天线是一种宽频带天线,具有频带宽、尺寸小、重量轻、加工方便等优点,容易实现圆极化等优点,因而在超宽带及RFID等领域得以广泛应用。常用的平面螺旋天线有阿基米德螺旋天线和平面等角螺旋天线等,这类天线都有互补周期性结构,能够在较宽频带内保持天线的输入主抗基本不变,易于匹配,通常采用巴伦进行匹配。本文设计了一种双臂平面等角螺旋天线,并设计了匹配的巴伦,通过HFSS仿真计算,给出了0.4-2GHz范围内天线的增益、阻抗、圆极化轴比及部分频率点的方向图。 2 平面等角螺旋天线的设计 2.1 平面等角螺旋天线 平面等角螺旋天线是一种完全由角度确定形状的天线,其曲线方程[1]为 r=r0e a(Φ-Φ0) (2.1) 式中:r0是对应Φ0时的矢径,a为螺旋增长率,Φ0为螺旋的起始角。平面等角螺旋天线如图1所示。当a减小时,螺旋臂曲度增大,电流沿螺旋臂衰减变快。通常a取值为0.12-1.20,当螺旋臂等于或大于一个波长时,天线开始呈现出非频变天线特性,因此通常要求臂长大于一个波长,天线半径R则至少等于λ/4。 图1 平面等角螺旋天线(δ=90)

MATLAB仿真天线阵代码

天线阵代码 .pudn./downloads164/sourcecode/math/detail750575.htm l 一、 clc clear all f=3e9; N1=4;N2=8;N3=12; a=pi/2; %馈电相位差 i=1; %天线电流值 lambda=(3e8)/f; %lambda=c/f 波长 d=lambda/2; beta=2.*pi/lambda; W=-2*pi:0.001:2*pi; y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子 y1=abs(y1); r1=max(y1); y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子 y2=abs(y2); r2=max(y2); y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子 y3=abs(y3);

r3=max(y3); %归一化阵因子绘图程序, figure(1) subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=4,d=1/2波长,a=π/2') subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=8,d=1/2波长,a=π/2') subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=12,d=1/2波长,a=π/2') %--------------------- %只有参数N改变的天线方向图 t=0:0.01:2*pi; W=a+(beta.*d.*cos(t)); z1=(N1/2).*(W); z2=(1/2).*(W); W1=sin(z1)./(N1.*sin(z2)); %非归一化的阵因子K1 K1=abs(W1); %---------------------- W=a+(beta.*d.*cos(t));

画平面螺旋天线

画平面螺旋天线 1.首先,画一个平面,以一个圆面为例吧 2.然后,点击工具栏Draw/spiral,选择一个轴,这时弹出一个对话框,选择螺旋方向,半径,螺旋圈数3。点击确定螺旋即可画好,然后在绕z轴旋转180度,可得双臂平面螺旋天线 HFSS学习小结 已经接触HFSS近两个月了,想用于材料电磁场屏蔽的设计和计算,不知是否可行,now have followed the example _heat sink in the chapter 9.0 _ EMC/EMI in full book 10.0 成功的做出了个结果,现在把看到别人的、自己知道的做一下总结:The main process : building 3D solid modeling; set boundaries and excitations ; analyze the result Before we build the modeling, we should think about what kind of method we use, there are three kinds of solution type: driven model; driven terminal; eigenmode 模式驱动(Driven)------计算以模式为基础的S参数.根据波导模式的入射和反射功率表示S参数矩阵的解,波导,天线等用这个模式多终端驱动(Driven Terminal)------计算以终端为基础的多导体传输线端口的S参数。此时,根据传输线终端的电压和电流表示S参数矩阵的解----微带类用这个比较多! 本征模(Eignemode)-----计算某一结构的本征模式或谐振.本征模解算器可以求出该结构的谐振频率以及这些谐振频率下的场模式! Eignemode solver does not use ports and don’t support radiation boundaries. After launching the software, we should set tool options, included HFSS option and 3D modeler option Select the menu item tool >option we can see those options Software will open a project by default First step is select solution type HFSS>solution type Set the units 3D modeler>units 单位可以在其它状态下改变3D modeler包括了与模型有关的操作和设置Set default material 在set 一次后的情况下其后建立的modeler 都是在此material 下的在default 的情况下history 的列表中按材料的种类进行分类建立模型过程中使用相对坐标会很方便,3D modeler>coordinate system > create> relative CS >Offset , 在建模过程中可能要使用很多相对坐标,在set相对坐标的时候,offset是相对于当前CS的位移,在3D Modeler>coordinate system>set working CS 可以选择使某个坐标为当前工作坐标,在history 的coordinate system 的列表中显示所有的坐标系,当前工作坐标将有个W的标记。在模型复杂的时候需要用适当的方式进行选择某些面、体进行编辑,在edit 里提供了多种方式,常用edit>select>by name 在选择后可以set boundary 等一些操作同样可以在history里双击某项名字从而edit property,设置好boundary和excitation 就可以进行analysis setup HFSS>analysis setup>add solution setup 其中包括最大迭代次数maximum number of pass 每两步迭代之间的误差,看来上的数值分析还是有用的在analyze 之前运行一下model validation select the menu item HFSS>validation check 运行check 以后虽然没出现问题,也不能说明,模型正确,一定能计算出结果,只是说明完成了建模过程中的每个步骤,由message 窗口,得到信息,以便修改Analyze HFSS>analyze all 在message 窗口中可以知道analyze 的完成情况;从solution data 中有三个标签,其中主要可以从convergence中看出迭代计算的收敛情况;同样可以看到场的分布状况首先选择model 某个部位, HFSS>fields>fields从这个菜单中可以选择要显示电场或者磁场例子中选择的是地平面edit>select>by name>ground 显示某个部位的场分布HFSS>fields>fields>

matlab仿真天线辐射图

微波技术与天线作业 电工1001,lvypf(12) 1、二元阵天线辐射图matlab实现 1)matlab程序: theta = 0 : .01*pi : 2*pi; %确定θ的范围 phi = 0 : .01*pi : 2*pi; %确定φ的范围 f = input('Input f(Ghz)='); %输入频率f c = 3*10^8; %常量c lambda = c / (f*10^9); %求波长λ k = (2*pi) / lambda; %求系数k d = input('Input d(m)='); %输入距离d zeta = input('Input ζ='); %输入方向系数ζ E_theta=abs(cos((pi/2)*cos(theta))/sin(theta))*abs(cos((k*d*sin(theta)+zeta)/2)); %二元阵的E面方向图函数 H_phi=abs(cos((k*d*cos(phi)+zeta)/2)); %二元阵的H面方向图函数 subplot(2,2,1); polar(theta,E_theta); title('F_E_θ') subplot(2,2,2); polar(phi,H_phi); title('F_H_φ'); subplot(2,2,3); plot(theta,E_theta); title('F_E_θ'); grid xlim([0,2*pi]) subplot(2,2,4); plot(phi,H_phi); grid xlim([0,2*pi]) title('F_H_φ');

2)测试数据生成的图形: a)f=2.4Ghz,d=lambda/2,ζ=0 图1,f=2.4Ghz,d=lambda/2,ζ=0 b)f=2.4Ghz,d=lambda/2,ζ=pi 图2,f=2.4Ghz,d=lambda/2,ζ=pi

手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计—— 用MATLAB仿真天线方向图 吴正琳 天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。天线的基本单元就是单元天线。 1、单元天线 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

1.1用MATLAB画半波振子天线方向图 主要是说明一下以下几点: 1、在Matlab中的极坐标画图的方法: polar(theta,rho,LineSpec); theta:极坐标坐标系0-2*pi rho:满足极坐标的方程 LineSpec:画出线的颜色 2、在方向图的过程中如果rho不用abs(f),在polar中只能画出正值。也就是说这时的方向图只剩下一半。 3、半波振子天线方向图归一化方程: Matlab程序: clear all lam=1000;%波长 k=2*pi./lam;

螺旋天线设计

天线 ――螺旋天线物理尺寸对天线效率的影响 一、天线概览 绝大多数天线具有可逆性:即天线用作接收天线时的特性与其处于发射状态时的特性时相同的。 辐射方向图:表示给定距离下天线的辐射随角度的变化,辐射的强弱由离天线给定距离r处的功率密度S来评价。接收模式下,天线对于某方向来波的响应正比于辐射方向图上该方向的值。 方向系数:表示最大辐射强度于全空间均匀辐射时的平均辐射强度之比。 极化:描述了天线辐射时电场矢量的特征,瞬时电场矢量随时间的轨迹图决定波动的极化特性。 天线的输入阻抗:是天线终端电压与电流之比,通常的目的是使天线的输入阻抗与传输线的特征阻抗相匹配。 §天线分类 依据频率特性的不同,可以把天线分成四种基本类型。 ◎电小天线:天线的尺寸比一个波长l小很多。特征:很弱的方向性,低输入电阻,高输入电抗,低辐射效率。适合于VHF或更低的波段。如短振子,小环。 ◎谐振天线:在谐振频率点或某个窄频带内工作令人满意。特征:低或中等增益,实输入阻抗,带宽狭窄。主要用于HF到低于1GHz的频段。如半波振子,微带贴片,八木天线。 ◎宽带天线:在一个很宽的频率范围内,方向图、增益和阻抗几乎是常数,并且能够用有效辐射区的概念表述其特征,该区域在天线上的位置随频率的变化而变化。特征:低到中等增益,增益恒定,实输入阻抗,工作频带宽。主要用于VHF直至数个GHz的频段。如螺线天线,对数周期天线。 ◎口径天线:由一个供电磁波通过的开放的物理口径。特征:高增益,增益随频率增大,带宽中等。用于UHF和更高的频段。如喇叭天线,反射面天线。 §天线的电气特性 (1)方向特性――方向图(BW0.5,FSLL)、方向系数D、增益G。 (2)阻抗特性――输入阻抗Zin、效率 2 640 r h R l 骣 ÷ ? ?÷ ?÷ ?桫 A h,(辐射阻抗Z S) (3)带宽特性――带宽、上限频率f1,下限频率f2。(4)极化特性――极化、极化隔离度。

一种RFID小型圆极化四臂螺旋天线

一种RFID小型圆极化四臂螺旋天线 摘要设计了一种用于UHF频段射频识别系统的小型右手圆极化四臂螺旋天线。天线由印制在微带介质板的4个长条形臂组成,通过微带功分器馈电。天线在进行4个端口的单独匹配和功分器相连时,需采用一种新的匹配方法。通过仿真优化,天线尺寸为60 mm×60 mm×6 mm,峰值增益为3.8 dB,带内轴比<3 dB,3 dB波束宽度>120°,前后比>15 dB。实物测试结果与仿真结果吻合。 近年来射频识别(Radio Frequency of Identificatio,RFID)技术的应用逐渐广泛,同时也倍受重视。特别是UHF频段的RFID系统,由于其传输距离远、传输速率高,受到了更多地关注。典型的RFID系统由RFID阅读器和标签两部分组成,RFID无源标签依靠RFID 阅读器发射的电磁信号供电,并通过反射调制电磁信号与阅读器通信。因此,RFID标签天线设计的优劣对其系统工作性能有关键的影响。 常见的射频识别阅读器天线有折合振子天线、分形天线、微带天线以及轴向模螺旋天线。由于折合振子天线和分形天线一般为线极化天线,难以满足阅读器对各方向电子标签的识别要求,所以在较多场合不适用;而微带天线由于其面积尺寸过大,在小型化的阅读器手持机上的使用受到了限制;轴向模螺旋天线同样因轴向高度过高,在实际使用中也受到了限制。因此,如何设计出一种小尺寸、低剖面、高性能的圆极化射频识别天线成为了关注的焦点。 四臂螺旋天线由于其圆极化性能出色,被广泛应用于GPS领域。随后经过进一步发展,Wang—lk Son等人将四臂螺旋天线应用至RFID,并利用平面倒F天线代替了传统的单极子天线作为四臂螺旋天线的天线臂,如图1所示,实现了良好的效果。文中利用该方式,设计了一种在尺寸和性能上更具优势的RFID阅读器天线。 1 小型化四臂螺旋天线的设计 1.1 四臂螺旋天线的设计 文中设计的倒F四臂螺旋天线的结构如图2所示。天线由4个完全相同的倒F天线组成,水平部分印制在介电常数为9.6,尺寸为60 mm× 60 mm,厚度为1 mm的矩形微波复合介质板上,垂直部分印制在相同的4个厚度为1 mm的FR4小介质板上。4个天线馈电为等幅馈电,相位按逆时针相位依次滞后90°,形成右手圆极化。

元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真 1设计目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB 仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 2设计原理 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。 二元阵辐射场: 式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场: 令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数: ])[,(212121ζθθθ?θj jkr jkr m e r e r e F E E E E --+=+=12 cos ),(21jkr m e F r E E -=ψ?θθζ φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζ?θθ?θ2 πθ=) 2/sin() 2/sin(1)(ψψψN N A =

式中:ζφθψ+=cos sin kd 均匀直线阵最大值发生在0=ψ 处。由此可以得出 这里有两种情况最为重要。 1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。 2.端射振,计最大辐射方向在阵轴方向上,此时 0=m ?或π,也就是说阵的 各元电流沿阵轴方向依次超前或滞后kd 。 3设计过程 本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。 14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b)); title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示: kd m ζ?-=cos 2π ?±=m

相关文档
最新文档