齐墩果酸药理活性

齐墩果酸药理活性
齐墩果酸药理活性

Hybrid PET/MR imaging of tumors using an oleanolic acid-conjugated nanoparticle

Sung-min Kim1,Min Kyung Chae1,Min Su Yim,Il Ha Jeong,Janggeun Cho,

Chulhyun Lee**,Eun Kyoung Ryu*

Center of Magnetic Resonance Research,Korea Basic Science Institute(KBSI),Chungbuk363-883,Republic of Korea

a r t i c l e i n f o

Article history:

Received27June2013 Accepted22July2013 Available online8August2013

Keywords:

Oleanolic acid

Iron oxide nanoparticle

PET/MRI

Diagnosis

Colon cancer a b s t r a c t

Research into multifunctional nanoparticles is focused on creating an agent for use in an all-in-one multimodal imaging system that includes diagnostic imaging,drug delivery,and therapeutic moni-toring.We designed a new dual-modality tumor-targeting agent with a new tumor-targeting molecule, oleanolic acid(OA),which is derived from a natural compound and coupled with a macrocyclic chelating agent such as1,4,7-triazacyclononane-1,4,7-triacetic acid(NOTA),iron oxide nanoparticles(IONP),and radiolabeling components such as68Ga for dual-modality positron emission tomography(PET)/magnetic resonance imaging(MRI).We attempted to obtain fusion PET/MR images with the68Ga e NOTA e OA e IONP hybrid tumor-targeting imaging agent using colon cancer(HT-29)xenograft mice models.The HT-29cancer cells showed high uptake of68Ga e NOTA e OA e IONP,which also had an inhibitory effect on the cells.Moreover,we obtained PET and MRI tumor images as well as fusion PET/MRI images of the tumors using68Ga e NOTA e OA e IONP.Therefore,the dual-modality cancer-targeting radiolabeled nanoparticle reported here is a potent imaging agent that is suitable for PET,MRI,and PET/MRI-based diagnosis of tumors;it also has the advantage of not only detecting tumor functionality,but also simultaneously aiding in tumor resolution.

Crown Copyrightó2013Published by Elsevier Ltd.All rights reserved.

1.Introduction

Early detection of disease is a popular and important issue in current medical practice.Several imaging modalities are presently used for the diagnosis of human diseases,but despite the advanced technology used in such diagnostic instruments,it has become increasingly clear that a multimodal imaging modality may be crucial for precise detection of cancer.The combination of different imaging modalities overcomes the inherent disadvantages of each single instrument.Positron emission tomography(PET)has high signal sensitivity,but it does not provide any information regarding anatomical structure,which thus requires the use of single photon emission computerized tomography(CT).CT is useful for obtaining clear in vivo images of anatomical structures,and is especially economically favorable compared with other imaging modalities, but it is not useful for soft tissue imaging as it yields poor-quality images of soft tissues[1,2].Magnetic resonance imaging(MRI)provides excellent spatial resolution without any ionizing radiation, but it has low sensitivity.Consequently,the combination of PET and MRI should allow a more accurate diagnosis by overcoming the limitations particular to each technique without exposing the subject to ionizing radiation;it can also be helpful for improving our understanding of certain malignant and/or benign cancers in soft tissues[3e5].

Recently,multifunctional nanoparticles have been designed for use in multimodal imaging systems that combine diagnostic im-aging,drug delivery,and therapeutic monitoring[6,7].One example is a combination of an anti-cancer drug delivery/PET/MR imaging agent and a PET/MRI/?uorescence imaging agent.Nano-particles have a large surface area and functional groups can easily be introduced by appropriate surface modi?cation.In addition, nanoparticles have a long circulation time in the body due to their size(100nm)and they accumulate in lesions,which makes them ef?cient agents for drug delivery[8e11].

To date,many different types of multimodal imaging agents have been reported[12e15].Usually,these are composed of iron oxide nanoparticles(IONP),tumor-targeting molecules,and radioactive labeling components.Iron oxide nanoparticles are used as MRI contrast agents,and have been coated with substances

*Corresponding author.Tel.:t82432405091;fax:t82432405419.

**Corresponding author.Tel.:t82432405090;fax:t82432405419.

E-mail addresses:chulhyun@kbsi.re.kr(C.Lee),ekryu@kbsi.re.kr(E.K.Ryu). 1These authors contributed equally to this

work.Contents lists available at ScienceDirect Biomaterials

journal h omepage:

https://www.360docs.net/doc/2f18304816.html,/locate/biomaterials

0142-9612/$e see front matter Crown Copyrightó2013Published by Elsevier Ltd.All rights reserved. https://www.360docs.net/doc/2f18304816.html,/10.1016/j.biomaterials.2013.07.078

Biomaterials34(2013)8114e8121

such as dopamine,dextran,protein,and a functionalized poly-ethyleneglycol(PEG)-based polymer due to their stealth effect. These nanoparticles are stable in biological environments and are protected from unwanted non-speci?c binding and reticuloendo-thelial system uptake(RES)[16e18].

For multimodal imaging,functionalized IONP are coupled with macrocyclic chelating agents such as1,4,7-triazacyclononane-1,4,7-triacetic acid(NOTA)and1,4,7,10-tetraazacyclododecane-N-N0,N00,N000,-tetraacetic acid(DOTA)and are used for PET imaging and with tumor-targeting ligands(i.e.,cyclo(Arg e Gly e Asp e D e Phe e Cys)[c(RGDfC)],doxorubicin,and antibodies).The RGD class is the most promising of the tumor-targeting ligands.For example, Chen et al.synthesized an RGD-conjugated radiolabeled IONP and successfully obtained dual PET/MRI images by targeting a v b3 integrin expression by a tumor[12].An anti-tumor drug delivery and PET/MRI dual-imaging agent comprising radiolabeled IONP, doxorubicin(anti-tumor agent),and cRGD have also been reported [14].Target-speci?c binding is an important concept as it improves our understanding of the progression of disease and of drug effects using molecular imaging.

Several criteria have to be considered when developing imaging agents for human applications,including their pharmacokinetics, solubility,lipophilicity,ef?cacy,and toxicity.We consider toxicity and speci?c and selective targeting of a tumor to be the most important of these criteria.Oleanolic acid(3b-hydroxy-olea-12-en-28-oic acid,OA)is a non-toxic natural compound that is a member of the triterpenoid family.It is known to have potent hepatoprotective, antibacterial,antifungal,and anti-in?ammatory properties[19,20]. Moreover,OA has been shown to inhibit cancer cell proliferation and to induce apoptosis in cancer cells[21,22].In our previous studies,we found that OA derivatives showed strong inhibition of cancer cells, especially colon cancer cells,and induced apoptosis and cancer cell death.We have since attempted to develop an imaging agent for PET that combines both high tumor uptake and tumor-speci?c targeting.

In the present study,we report our design of a dual-modality tumor-targeting agent comprising a new tumor-targeting molecule (OA),IONP,and a radioactive chelator(NOTA)for PET/MRI dual im-aging.We synthesized IONP by a thermal decomposition reaction and by changing the coating material to a DSPE-mPEG2000/DSPE-mPEG2000amine,which made it possible for the agent to be dispersed in water.In addition,the functional amine groups of the PEG e phospholipid made it possible to introduce a tumor-targeting and radioactive ion chelating ligand for use as an MRI contrast agent.NOTA was used as the radioactive chelating ligand in order to bind radioactive isotopes(e.g.,68Ga,t1/2?68min)for PET.Finally,we attempted to obtain fusion PET/MR images with this hybrid tumor-targeting imaging agent using xenograft mice models of colon cancer.

2.Materials and methods

2.1.Preparation of IONP e OA e NOTA

2.1.1.Chemicals

All reagents were used without further puri?cation.Oleanolic acid,iron(III) acetylacetonate([Fe(acac)3])(99.9%),oleylamine(>70%),and diisopropylethylamine (DIEA)were purchased from Aldrich Chemical Co.(St.Louis,MO,USA).Oleic acid (90%)was purchased from Alfa-Aesar(Ward Hill,MA,USA).1,2-Distearoyl-sn-glyc-ero-3-phosphoethanol-amine-N-methoxy(polyethylene-glycol)2000(DSPE-mPEG 2000)and1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino-(polyethyl-englycol)2000](DSPE-mPEG2000amine)were purchased from Avanti Polar Lipids, Inc.(Huntsville,Ala,USA).O-Benzotriazole-N,N,N,N0-tetramethyl-uronium-hexa-?uoro-phosphate(HBTU)and hydroxybenzotriazole(HOBt)were purchased from BeadTech Inc.(Seoul,Korea),and(p-SCN-Bn)-NOTA$3HCl(NOTA)was procured from FutureChem Co.,Ltd.(Seoul,Korea).

2.1.2.Synthesis of Fe3O4nanoparticles

Fe3O4nanoparticles were synthesized by a reductive thermal decomposition reaction.Fe(acac)3(1.42g,4.02mmol),oleic acid(4mL,12.6mmol),oleylamine (4mL,12.4mmol),and1,4-hexadecanediol(5.15g,20mmol)were mixed and stirred at120 C with vigorous stirring for2h and then partially vacuumed to simulta-neously remove moisture and oxygen.The solution was then heated to200 C under argon and kept at this temperature for2h.Thereafter,the solution temperature was rapidly increased to300 C and kept at this temperature for30min.The solution turned a dark-brown color and was cooled down to room temperature and washed with ethanol.The nanoparticles were redispersed into hexane and precipitated by the addition of excess ethanol and then puri?ed by centrifugation.The?nal products were dispersed into hexane and stored under an argon atmosphere.

2.1.

3.Coating of Fe3O4nanoparticles(IONP)with PEG e phospholipid

A total of1mL of Fe3O4nanoparticles(3.3mg)in CHCl3was mixed with1mL of CHCl3containing76.5mg(4:1ratio of DSPE-mPEG2000:DSPE-mPEG2000amine) of DSPE-mPEG2000and DSPE-mPEG2000amine.The reaction mixture was then mixed for1h at room temperature.Thereafter,the mixture was dried under argon gas and left in a vacuum oven at40 C for1h to remove all traces of the organic solvent.

2.1.4.Coupling of the nanoparticles and oleanolic acid(OA e IONP)

The IONP?lm was dispersed in DMF(1mL)and mixed with OA(2mg),O-ben-zotriazole-N,N,N,N0-tetramethyl-uronium-hexa?uoro-phosphate(HBTU,4equiv.) and hydroxybenzotriazole(HOBt,4equiv.).The solution was then incubated in the basic condition(diisopropylethylamine,DIEA)at room temperature overnight.Next, the reaction mixture was washed with distilled water using a100kDa ultra?ltration unit,the Amicon Ultra-4(Millipore Corp.).The?nal OA e IONP complex was stored in 10m M borate buffer at4 C.

2.1.5.Coupling of OA e nanoparticles and NOTA(NOTA e OA e IONP)

The OA e IONP solution was buffer-changed with0.1M Na2CO3using a100kDa ultra?ltration unit.NOTA(3.6mg)was added into the OA e IONP solution and mixed for2h.The reaction mixture was then washed in distilled water by using a100kDa ultra?ltration unit,and?nally puri?ed through a PD-10column with10m M borate buffer.

2.2.Radiolabeling of NOTA e OA e nanoparticles(68Ga e NOTA e OA e IONP)

The radioisotope,68Ga,was produced with a68Ge/68Ga generator(Eckert& Ziegler,Berlin,Germany)using0.1N HCl solution.For68Ga labeling of the nano-particles(68Ga e NOTAOA e IONP),NOTA e OA e IONP(5.8m mol)was dissolved in 300m L of0.5M phosphate buffer(pH7.4)added to the68Ga/0.1N HCl solution.The mixture was then adjusted to a pH of5.0e5.5,stirred for20min to induce a reaction at room temperature,and then puri?ed using size exclusion chromatography(PD-10 column).

2.3.Characterization of the synthesized nanoparticles

2.3.1.Measurement of the nanoparticles

A sample for transmission electron microscopy(TEM)analysis was prepared by drying a dispersion of the synthesized nanoparticles in solvent on amorphous carbon-coated copper grids.The particles were imaged using an FEI Tecnai G2F30ST microscope.The size distribution of the nanoparticles dispersed in solvent was characterized by dynamic light scattering(DLS)using a Nanosizer(Zetasizer Nano ZS,Malvern,U.K.).

2.3.2.Veri?cation of NOTA e OA e IONP by FT-IR spectroscopy

The FT-IR spectra of the nanoparticles were obtained with a microscopic FT-IR/ Raman Spectrometer(Vertex80V,Bruker,Germany).The powder samples(OA and NOTA e OA e IONP)were transformed into a thin plate with KBr pellet.

2.3.3.Measurement of T2relaxation properties

All MRI experiments were performed with a4.7T MRI(Bruker Biospec,Ger-many)equipped with a72-mm inner diameter quadrature RF coil at the Korea Basic Science Institute in Ochang,and elemental analysis of iron in the hydrophilic nanoparticle samples was performed using an inductive coupled plasma-atomic emission spectrometer(ICP-AES;Optima4300DV;PerkinElmer,USA)at the Korea Basic Science Institute in Gwangju.T2relaxation maps of OA e IONP and NOTA e OA e IONP were measured using the MSME sequence(TR/TE?1000/8ms,?ip angle?180)with a FOV of5?5cm and a slice thickness of2mm.The r2values were calculated by?tting a curve to1/T2relaxation time(sà1)versus the iron ion con-centration(m M).

2.4.Proliferation of nanoparticles in colon cancer

2.4.1.Cancer cell line

Colon cancer(HT-29)cells were obtained from a human cell line(KCLBò).The cells were cultured in RPMI1640(Gibco,Grand Island,New York,USA)supple-mented with10%heat-inactivated fetal bovine serum(FBS,Gibco)and penicillin (100units/mL).The culture was maintained at37 C in5%CO2.

S.-m.Kim et al./Biomaterials34(2013)8114e81218115

2.4.2.Tumor cell proliferation determined by XTT assay

The toxicity of the nanoparticles was determined using a sodium 3-[1-(phe-nylaminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate (XTT)solution (Cell Proliferation Kit II,Roche Diagnostics,Mannheim,Germany).The cells (1?103cells/well)were cultured on 96-well microplates (NunC,Denmark)containing RPMI-1640medium with 10%FBS for 24h,and then exposed to various concentrations (0,0.5,1,2,4,8,16,32,64,128,256,and 512m M )of IONP or OA-conjugated IONP and incubated for a further 24h at 37 C under 5%CO 2.Thereafter,10m L of XTT solution (1mg/mL)was mixed in 90m L of RPMI-1640me-dium and added to each well.Then,the proliferation rates of the cells were assessed with an ELISA reader (Molecular Devices,CA)at 490nm.The average of 4wells was used for analysis (mean ?SD).Control cells were treated with 0.1%DMSO alone.2.4.3.Cellular uptake of nanoparticles

Cellular uptake and binding with cell lysates of nanoparticles were visualized with Perls ’Prussian blue staining.HT-29cancer cells (2?104cells/well)were grown in 24-well polystyrene plates containing RPMI-1640with 10%FBS for 24h.The cells were then incubated for 3h with 30m M of nanoparticles and then ?xed with 4%paraformaldehyde.They were subsequently stained with potassium hex-acyanoferrate solution (4%potassium ferrocyanide/6%HCl,1:1v /v ,Sigma,St.Louis,MO,USA)for 30min.We used cancer cell lysates to assess binding with speci ?c cancer cell proteins.Whole cell lysates were separated by 10%SDS-PAGE (SDS-polyacrylamide gel electrophoresis),and transferred to a polyvinylidene di ?uoride (PVDF)membrane.The PVDF membrane was then incubated with 30m M of IONP or OA e IONP for 1h at room temperature,and stained with Perls ’Prussian blue staining solution.The stained membranes were observed under an inverted optical micro-scope (OLYMPUS IX81,Olympus Inc.,Japan)after counter-staining with 0.02%neutral red (Sigma,St.Louis,MO,USA).

2.5.In vitro binding of radiolabeled nanoparticles

Human colon cancer cells (HT-29)were cultured in RPMI 1640with 10%FBS and 50mg/mL penicillin/streptomycin.The cells were maintained at 37 C in 5%CO 2in air.They were seeded in 24-well plates at a density of 1?106cells/well.Their in vitro binding af ?nity was assessed by incubating the cells for 1,2,and 4h with 68Ga e NOTA e IONP or 68Ga e NOTA e OA e IONP.The cells were then added to 0.5mL of 0.1N NaOH and collected,and their radioactivity was determined using a g -counter (Beckman Coulter Inc.,Fullerton,CA,USA).2.6.In vivo hybrid PET/MRI tumor imaging

2.6.1.Animals

Animal experiments were performed according to a protocol approved by the local Institutional Review Committee on Animal Care (KBSI-AEC1001).BALB/c nu/nu mice (age 5weeks,male)were purchased from Central Lab.Animal Inc.(Seoul,Korea),and maintained under speci ?c pathogen-free conditions.Xenograft tumors were induced by subcutaneous injection of HT-29cells (a density of 1?106cells)into the dorsal region of the right thigh of each mouse.

2.6.2.MR imaging

Using a standard fast spin echo T2-weighted pulse sequence,15slices were acquired for each mouse.The acquisition parameters were as follows:TR/TE ?3500/36ms,FOV ?50.0?50.0mm,matrix size ?256?256mm,and slice thickness ?1.0mm.Parameters were monitored using a time series of MR images (from 0min to 105min).All MRI data measurements were made using a 4.7T animal MRI scanner (BioSpec 47/40;Bruker,Germany)with a 35mm volume coil.For im-aging,1mg/mL of IONP or OA e IONP was injected into the tail vein of a tumor-bearing mouse at 1,2,and 4h.The signal intensities were evaluated by the region of interest (ROI)method.The ROI included liver tissue with no obviously large vessels and the tumor.The relative signal intensities of the liver and tumor were calculated for each time point [23].

2.6.

3.PET imaging

MicroPET scans were performed using a microPET Inveon rodent model scanner (Siemens Medical Solutions,USA).HT29tumor-bearing mice were injected with 3.7MBq of 68Ga e NOTA e OA e IONP in 200m L of saline via the tail vein and 20-min

static PET scans were performed.The images were reconstructed with a maximum a posteriori (MAP)algorithm with no attenuation or scatter correction.For each microPET scan,ROIs were drawn over the tumor by using the IRW (Inveon Research Workshop)on decay-corrected whole body axial and coronal images.The tumor uptake of 68Ga e NOTA e OA e IONP was calculated in terms of the percentage injected activity per gram (%ID/g)in the ROIs.

2.6.4.PET/MRI fusion imaging

For PET/MRI fusion imaging,we used the same mice bed without moving the mice.MR images were obtained ?rst and then PET images 60min post-injection.All the MRI data were processed in ParaVision 4.0(Bruker,Germany)software and were converted to the DICOM format for co-registration with PET images.For PET/MRI fusion imaging,we manually registered the PET and MR images with the IRW software.2.7.In vivo binding of iron oxide nanoparticles

The tumor tissues were separated from the tail veins of injected mice with 1mg/mL of IONP and/or OA-conjugated IONP for 4h,and then ?xed in 4%para-formaldehyde for 4h.The specimens were subsequently dehydrated in graded ethanol,embedded in paraf ?n,and cut into 5-m m sections on a Reichert microtome.The sections were deparaf ?nized and hydrated,and then rinsed in PBS.Subsequently they were stained with Perls ’Prussian blue staining solution for 30min,and then counterstained with 0.02%neutral red (Sigma).The staining results were observed under an inverted optical microscope (OLYMPUS IX81,Olympus Inc.,Japan).

3.Results

3.1.Preparation of OA derivatives

OA is known to have an inhibitory effect on colon cancer cells.Therefore,in this study,we conjugated OA with nanoparticles and a NOTA chelator for 68Ga radiolabeling (Fig.1)to improve the cancer targeting activity of our new imaging agent and to facilitate dual imaging with PET and MRI.FT-IR spectroscopy was used to con ?rm the binding of the OA moiety and the nanoparticles (Fig.2(a)).To compare the r 2relaxivities of the nanoparticles as MRI agents,the IONP and NOTA e OA e IONP were examined by 4.7T MRI.As shown in Fig.2(b),the relaxivities of the NOTA e OA e IONP and NOTA e IONP were 157s à1m M à1and 221s à1m M à1,respectively.The reason for the lower relaxivity of the NOTA e OA e IONP was the thickness of its coating.To clarify the particles sizes and coating thickness,we measured TEM and DLS.As shown in Fig.2(c)and (d),the TEM image revealed the shape and size distribution of the IONP,and the DLS graphs clearly showed that the NOTA e OA e IONP were bigger (66nm)than the IONP (16nm)in PBS buffer.In addition,when the NOTA e IONP was coupled with a hydrophobic molecule,such as OA,low relaxivity was induced.As a result,the NOTA e OA e IONP had a lower relaxivity than the IONP.

We also examined the long-term stability of the IONP and NOTA e OA e IONP in PBS buffer and 10%FBS/PBS buffer (Fig.3(a)and (b)).In PBS buffer,the IONP and NOTA e OA e IONP had an analogous average size of about 14nm and 60nm,respectively,over 7days at room temperature.The size in 10%FBS/PBS buffer was also measured after 24h at room temperature,but no signi ?cant changes (18nm and 67nm,respectively)were observed.These ?ndings show that the IONP and NOTA e OA e IONP are stable under biological conditions and may possibly avoid unwanted aggrega-tion and RES uptake in the

body.

Fig.1.Schematic of the hybrid PET/MR imaging agent created with an OA-conjugated nanoparticle.

S.-m.Kim et al./Biomaterials 34(2013)8114e 8121

8116

3.2.In vitro inhibition of cancer cells by iron oxide nanoparticles We found that the viability of HT-29cancer cells was dose-dependently decreased by OA-conjugated IONP in the XTT assay results (Fig.4).Furthermore,the inhibitory effect of OA-conjugated IONP was signi ?cantly increased after treatment with concentrations greater than 64m M .In contrast,the OA-negative control,that is,the IONP alone,had no effect on HT-29cancer cells over 24h.

3.3.Cellular uptake of iron oxide nanoparticles

We con ?rmed the HT29cellular uptake rates of IONP by Prus-sian blue staining assay.After treatment with IONP or OA e IONP,the cellular uptake of OA e IONP by HT-29cancer cells was signi ?cantly greater than that of IONP alone (Fig.5(a)).Speci ?cally,we found that the uptake of OA e IONP primarily occurred in the cellular membrane and in the intracellular surface area by a binding assay of OA e IONP with cells and/or cell lysates (Fig.5(b)).

To determine the tumor-targeting ability of the nanoparticle,we determined cancer cell uptake of radiolabeled nanoparticles (Fig.5(c)).The binding af ?nities of HT-29cells for 68Ga e NOTA e OA e IONP and 68Ga e NOTA e IONP were evaluated.HT-29cells were incubated with the radioligands for 1,2,and 4h.The cellular uptake of 68Ga e NOTA e OA e IONP at 1,2,and 4h was 3.08?0.06%,4.17?0.08%,and 5.59?0.18%,respectively.For IONP,the uptake rates were 2.45?0.08%,3.53?0.01%,and 5.16?0.05%,respectively.Both radiolabeled nanoparticles showed time-dependent

tumor

Fig.2.Characterization of the nanoparticles.a)Overlay IR spectra of OA and NOTA e OA e IONP.b)The r 2and 1/T 2values as a function of the Fe concentration of the NOTA e IONP and NOTA e OA e IONP nanoparticles.c)TEM image of IONP e OA e NOTA.d)Size distribution histograms of NOTA e IONP and NOTA e OA e IONP.

S.-m.Kim et al./Biomaterials 34(2013)8114e 81218117

uptake.However,the tumor uptake of 68Ga e NOTA e OA e IONP by HT-29cells was increased by 8e 26%compared with 68Ga e NOTA e IONP,that is,the nanoparticle without OA.3.4.In vivo PET/MR images

We also performed studies of male BALB/c nude mice bearing HT-29cells.We injected 68Ga e NOTA e OA e IONP or 68Ga e NOTA e IONP into a tail vein and then performed MRI scans.In the MR images taken with 68Ga e NOTA e IONP,the relative signal intensity of the liver was signi ?cantly decreased 5min after the injection (Fig.6(a)and (b)).However,the relative signal intensity of the tu-mor did not differ until 2h after the injection of 68Ga e NOTA e IONP without OA.When 68Ga e NOTA e OA e IONP was injected into the HT-29xenograft mice,the intensity pattern was similar to that of 68

Ga e NOTA e IONP in the liver and showed signi ?cant decreases at 5min post-injection (Fig.6(c)and (d).However,the tumor also showed a marked decreased within 5min and kept decreasing slowly until 25min;the highest peak occurred at 25min and this level was maintained for 80min after the injection of 68Ga e NOTA e OA e IONP.Therefore,68Ga e NOTA e OA e IONP appears to be suitable for use as a contrast agent for tumor diagnosis using MRI.After 60min,we performed a PET scan.In the PET images alone,the liver uptake was highest,which means the nanoparticle was cleared from the liver.The tumor also showed moderate uptake (%ID/g ?3.07?0.76),which indicates that the radiolabeled nanoparticle can be applied as a radioligand for PET (Fig.7).For the PET/MRI

fusion images of the tumor we manually registered the PET/MRI fusion images using the same FOV after injection of the dual function agent,68Ga e NOTA e OA e IONP.The two images were pre-cisely matched with respect to the tumor,which means that our new 68Ga e NOTA e OA e IONP nanoparticle can be used for tumor diagnosis using PET,MRI,or PET/MRI simultaneously.High quality tumor images and precise quanti ?cation of the tumor area were obtained from the PET/MRI fusion images.3.5.Histological study

After the imaging studies,we recon ?rmed the uptake of the nanoparticles by the HT29xenograft mice.The IONP staining re-sults showed that uptake of OA e IONP by tumor tissues was greater than the uptake of IONP (Fig.8).The OA-linked IONP induced apoptosis of tumor cells and in ?ltration of immune cells in the tumor,whereas IONP alone did not.Furthermore,the area of uptake of NOTA e OA e IONP was mostly around the vessels and periphery,and was concentrated in areas of the tumor populated by immune cells.Uptake of the negative control,IONP alone,was not or was only weakly detected in some regions of the vessels and in some peripheral regions on the tumor (Fig.8).4.Discussion

Both PET and MRI are powerful tools,but each still has some limitations with respect to tumor detection.Therefore,these

days

Fig.3.In vitro stability and proliferation of the nanoparticles.a)Long-term stability graphs showing the average size of the IONP and NOTA e OA e IONP nanoparticles in 10%FBS/PBS buffer (a)and PBS buffer (b)at room

temperature.

Fig.4.The cytotoxic effect of IONP and NOTA e OA e IONP on HT-29tumor cells.The viability of HT-29cancer cells was determined after treatment with IONP at several con-centrations (0.5,1,2,4,8,16,32,64,128,256,and 512m M )and/or with NOTA e OA e IONP.Survival of cancer cell lines was determined using the Cell Proliferation Reagent XTT (Sigma e Aldrich,USA).The experiment was repeated 3times in duplicate.

S.-m.Kim et al./Biomaterials 34(2013)8114e 8121

8118

fusion imaging modalities such as PET/MRI are required,and we have to develop imaging agents for use in these systems.Here,we present in vivo PET/MRI fusion images obtained with a hybrid im-aging agent,68Ga e NOTA e OA e IONP,which was targeted at the tumor and was derived from a natural compound,OA,which is known to have an inhibitory effect on cancer cells.

Oleanolic acid moiety binding to the nanoparticles was con ?rmed by FT-IR spectroscopy.However,it was dif ?cult to ?nd any evidence of the characteristic absorption bands of the IONP e OA e NOTA as the peaks overlapped.In spectrum a,the sharp peak at 1694cm à1was assigned to the carbonyl of OA and this carbonyl peak disappeared after the coupling with IONP.Therefore,we could indirectly ascertain that the IONP were coupled with the OA and NOTA by using 68Ga labeling and a cell uptake experiment [24].Moreover,we obtained different results from the XTT study and from a cell binding assay performed with and without OA.In OA-conjugated nanoparticles,the tumor targeting,uptake,and inhibition activity were higher than that observed in the nano-particles alone.

Regarding the size distribution of the nanoparticles,OA e NOTA e IONP was about 4-fold bigger than NOTA e IONP.The size of the nanoparticles may have affected their relaxivities;that is,the relaxivity of NOTA e OA e IONP was lower than that of NOTA e IONP.It is known that coating molecules can reduce their magnetic strength.In addition,hydrophobic coating molecules prevent ac-cess to water protons in magnetic nanoparticles [25e 27].

We found that the viability of the cancer cells was signi ?-cantly decreased in a dose-dependent manner when these were incubated with NOTA e OA e IONP,but no such effect was observed when the cells were incubated with IONP alone.These results clearly demonstrate that the viability of cancer cells was decreased by the OA.This natural compound is a member of the pentacyclic triterpenoid acids and many reports have noted that OA can induce apoptosis and inhibit the growth of cancer cells.In the cellular uptake experiment,we obtained evidence that OA increased cellular uptake of IONP in vitro and in vivo .Speci ?cally,in the cell lysate binding assay,we found that 4of the major bands of OA-linked IONP were bound with materials in the cell lysate.These materials may have included several receptors such as transforming growth factor (TGF-b 1)receptor,peroxisome proliferator-activated receptor g (PPAR g ),and insulin-related receptors,which are known to interact with pentacyclic tri-terpenoid acids,including OA.Moreover,TGF-b 1and PPAR g are strongly expressed in HT-29cancer cells.Thus,the high uptake of OA-linked IONP by the tumor tissue was probably due to their binding with TNF-b 1receptor and PPAR g .Further studies are necessary to determine whether such binding does in fact occur and whether it and related mechanisms can be applied in the design of therapeutic nanoparticles.

Hybrid PET/MR imaging was performed in living mice using a 4.7T animal MRI and microPET scanner with our new radiolabeled nanoparticle,which was developed to overcome the inherent limitations of each imaging modality.The in vivo data showed that PET and MRI fusion imaging was possible using our nanoparticle;the merged PET images of the tumor showed biochemical activity in the tumor tissue and the MRI images added clear morphological information relating to the tissue.Nanoparticles are of increasing interest in cancer diagnosis and therapeutic research because they have a variety of functions that can be used for biological,chem-ical,engineering,and medical applications,including

diagnosis

Fig.5.IONP and NOTA e OA e IONP cellular uptake and binding with cell lysate protein.a)Perls ’Prussian blue staining for iron in HT-29cells.HT-29cells (2?104cells/well)were seeded in 24-well plates and incubated for 3h with NOTA e IONP and NOTA e OA e IONP.b)SDS-PAGE of OA ligands from HT-29cell lysate proteins.IONP and NOTA e OA e IONP had captured some ligands of OA from puri ?ed whole protein extracted from HT-29.c)HT-29tumor cell uptake (%)of the radioligand at 1,2,and 4h with 68Ga e NOTA e IONP or 68Ga e NOTA e OA e IONP.

S.-m.Kim et al./Biomaterials 34(2013)8114e 81218119

and treatment of disease,due to their ability to link to biological molecules such as peptides,proteins,nucleic acids,and small-molecule ligands.Furthermore,to enable better detection of can-cer,nanoparticles can be developed for use as dual-modality cancer-targeting nanoparticle probes by linking these with radioligands for use in PET and MRI scans.Our ?ndings indicate that 68Ga e NOTA e OA e IONP is a powerful nanoparticle that can be used as a diagnostic agent for PET or MRI or PET/MRI fusion im-aging.Moreover,we intend to undertake further evaluations of its ability to induce tumor death and

apoptosis.

Fig.6.In vivo MR images.a)T2-weighted MR images of a mouse before (left,t ?0min)and after (right:t ?5min)the injection of the IONP solution into a tail vein.b)MR signals were derived from linear ?tting of plots (tumor/liver).c)T2-weighted MR images of a mouse before (left:t ?0min)and after (right:t ?5min)the injection of the OA e IONP solution into a tail vein.d)MR signals were derived from linear ?tting of plots (tumor/liver).The dramatic decrease in contrast signals in a mouse injected with OA e IONP was monitored by T2-weighted MRI after OA e IONP was injected into a tail

vein.

Fig.7.In vivo PET/MRI fusion images.PET and MR images of 68Ga e NOTA e OA e IONP administered to mice bearing HT-29xenografts (images were taken at 1h post-injection).The PET and MRI tumor images were registered for tumor diagnosis with 68Ga e NOTA e OA e IONP by IRW software.Arrows indicate the HT-29tumor.

S.-m.Kim et al./Biomaterials 34(2013)8114e 8121

8120

5.Conclusion

In this study,we developed a new dual-modality cancer-targeting nanoparticle probe,68Ga e NOTA e OA e IONP,which is based on a natural compound and is very stable over time.68Ga e NOTA e OA e IONP enabled speci ?c detection of HT-29cancer cells in vitro as well as in vivo in xenograft tumor models using PET and MRI.The hybrid PET/MRI imaging agent can potentially be used not only for tumor diag-nosis and analysis of tumor functionality,but also for simultaneous tumor resolutionwith accurate quanti ?cation of the region of interest.Acknowledgments

This study was supported in part by a grant from the Korea Basic Science Institute (D33404)and by a National Research Foundation of Korea (NRF)grant funded by the Korean Government (MEST)(2012-0006388).References

[1]Beyer T,Townsend DW,Blodgett TM.Dual-modality PET/CT tomography for

clinical oncology.Q J Nucl Med 2002;46:24e 34.

[2]Townsend DW,Beyer T.A combined PET/CT scanner:the path to true image

fusion.Br J Radiol 2002:S24e 30.75Spec No .

[3]Cheon J,Lee JH.Synergistically integrated nanoparticles as multimodal probes

for nanobiotechnology.Acc Chem Res 2008;41:1630e 40.

[4]Cizek J,Herholz K,Vollmar S,Schrader R,Klein J,Heiss WD.Fast and robust

registration of PET and MR images of human brain.Neuroimage 2004;22:434e 42.

[5]Cherry SR.Multimodality in vivo imaging systems:twice the power or double

the trouble?Annu Rev Biomed Eng 2006;8:35e 62.

[6]Louie A.Multimodality imaging probes:design and challenges.Chem Rev

2010;110:3146e 95.

[7]Herzog H.PET/MRI:challenges,solutions and perspectives.Z Med Phys

2012;22:281e 98.

[8]Mailander V,Landfester K.Interaction of nanoparticles with cells.Bio-macromolecules 2009;10:2379e 400.

[9]Wagner V,Dullaart A,Bock AK,Zweck A.The emerging nanomedicine land-scape.Nat Biotechnol 2006;24:1211e 7.

[10]Kim BY,Rutka JT,Chan WC.Nanomedicine.N Engl J Med 2010;363:2434e 43.[11]Lewis DR,Kamisoglu K,York AW,Moghe PV.Polymer-based therapeutics:

nanoassemblies and nanoparticles for management of atherosclerosis.Wiley Interdiscip Rev Nanomedicine Nanobiotechnol 2011;3:400e 20.[12]Lee HY,Li Z,Chen K,Hsu AR,Xu C,Xie J,et al.PET/MRI dual-modality tumor

imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles.J Nucl Med 2008;49:1371e 9.

[13]Xie J,Chen K,Huang J,Lee S,Wang J,Gao J,et al.PET/NIRF/MRI triple func-tional iron oxide nanoparticles.Biomaterials 2010;31:3016e 22.

[14]Yang X,Hong H,Grailer JJ,Rowland IJ,Javadi A,Hurley SA,et al.cRGD-func-tionalized,DOX-conjugated,and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging.Biomaterials 2011;32:4151e 60.

[15]Locatelli E,Gil L,Israel LL,Passoni L,Naddaka M,Pucci A,et al.Biocompatible

nanocomposite for PET/MRI hybrid imaging.Int J Nanomedicine 2012;7:6021e 33.

[16]Cregan RF,Mangan BJ,Knight JC,Birks TA,Russell PS,Roberts PJ,et al.Single-mode photonic band gap guidance of light in air.Science 1999;285:1537e 9.[17]Garbuzenko O,Barenholz Y,Priev A.Effect of grafted PEG on liposome size

and on compressibility and packing of lipid bilayer.Chem Phys Lipids 2005;135:117e 29.

[18]Cattel L,Ceruti M,Dosio F.From conventional to stealth liposomes:a new

frontier in cancer chemotherapy.Tumori 2003;89:237e 49.

[19]Zhou R,Zhang Z,Zhao L,Jia C,Xu S,Mai Q,et al.Inhibition of mTOR signaling

by oleanolic acid contributes to its anti-tumor activity in osteosarcoma cells.J Orthop Res 2011;29:846e 52.

[20]Zhang P,Li H,Chen D,Ni J,Kang Y,Wang S.Oleanolic acid induces apoptosis in

human leukemia cells through caspase activation and poly(ADP-ribose)po-lymerase cleavage.Acta Biochim Biophys Sin 2007;39:803e 9.

[21]Juan ME,Wenzel U,Ruiz-Gutierrez V,Daniel H,Planas JM.Olive fruit extracts

inhibit proliferation and induce apoptosis in HT-29human colon cancer cells.J Nutr 2006;136:2553e 7.

[22]Yan SL,Huang CY,Wu ST,Yin MC.Oleanolic acid and ursolic acid induce

apoptosis in four human liver cancer cell lines.Toxicol In Vitro 2010;24:842e 8.

[23]Tacke J,Adam G,Classen H,Muhler A,Prescher A,Gunther RW.Dynamic MRI

of a hypovascularized liver tumor model:comparison of a new blood pool contrast agent (24-gadolinium-DTPA-cascade-polymer)with gadopentetate dimeglumine.J Magn Reson Imaging 1997;7:678e 82.

[24]Chen ZP,Zhang Y,Zhang S,Xia JG,Liu JW,Xu K,et al.Preparation and char-acterization of water-soluble monodisperse magnetic iron oxide nano-particles via surface double-exchange with DMSA.Colloids Surf A Physicochem Eng Asp 2008;316:210e 6.

[25]Duan H,Kuang M,Wang X,Wang YA,Mao H,Nie S.Reexamining the effects of

particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals:new insights into spin disorder and proton relaxivity.J Phys Chem C 2008;112:8127e 31.

[26]LaConte LE,Nitin N,Zurkiya O,Caruntu D,O ’Connor CJ,Hu X,et al.Coating

thickness of magnetic iron oxide nanoparticles affects R2relaxivity.J Magn Reson Imaging 2007;26:1634e 41.

[27]Tong S,Hou S,Zheng Z,Zhou J,Bao G.Coating optimization of super-paramagnetic iron oxide nanoparticles for high T2relaxivity.Nano Lett 2010;10:4607e 13

.

Fig.8.Histologic analysis of the HT-29xenograft cancer.The tumor tissues were stained using Perls ’Prussian blue staining solution after intravenous (i.v.)injection into a mouse with IONP and NOTA e OA e IONP.(?100,?200,original magni ?cation).

S.-m.Kim et al./Biomaterials 34(2013)8114e 81218121

茯苓药理作用

茯苓的药理作用研究概况 摘要: 茯苓这味药是个运用及其广泛,不分四季,将它与各类药物配伍不管寒热温湿都能发挥它的作用,本文主要介绍茯苓的产地,影响其质量的因素,主要功效和成分的现代研究(如茯苓素的利尿作用、茯苓多糖的对免疫功能的作用、对胃肠道菌群的影响、抗肿瘤、抗衰老的作用等)。 关键词:茯苓,利尿,镇静,茯苓多糖,茯苓素,三萜类。 1. 茯苓的基本概况: §茯苓是多孔菌科真菌茯苓的菌核,主产于安徽河南等地,以云南的产品质量最佳。主要含有茯苓多糖、纤维素、β—茯苓聚糖等多糖类、茯苓酸等三萜类、各种脂肪酸类等。茯苓性味甘淡,主要功效利水渗湿,健脾,宁心。主要用于水肿尿少、痰饮眩悸、脾虚食少、便溏泄泻、心神不安、惊悸失眠等。临床上利水渗湿常与猪苓、泽泻配伍;健脾和胃常与白术人参相配;宁心安神常与黄芪、当归、远志等配伍 。 2. 影响茯苓质量的因素: §2.1自然影响因素:经调查发现茯苓的野生资源濒临灭绝,现在主要是人工的栽培,故远远其功效要远远不足于古代时候的茯苓;茯苓对生长的生态环境相当密切,如海拔、温度、湿度、土壤等等,而现在却对环境不那么重视;在栽培中其菌种的选择上差异很大,各地没有一个标准[ 2 ]。 §2.2炮制:不同炮制方法炮制成的茯苓中的总糖及多糖的含量差异有显著性,其中总糖及多糖的含量从高到底的顺序依次为米汤制>明矾米汤制>土炒>朱砂制2>朱砂制1>生品。与生品相比较,茯苓经过炮制后,其总糖及多糖含量呈显著性增加的趋势[ 3 ]。 3. 药理作用: 3.1利尿作用: §3.1.1 其中茯苓素是起利尿的主要成分,可对Na+-k+-ATP酶和细胞中总ATP酶显著激活和茯苓素具有好醛固酮及其拮抗剂相似的功效。茯苓的利尿作用于实验动物的种属、清醒度或麻醉、急性或慢性实验以及生理状态的不同又密切关系。慢性实验明显利尿,急性不明显。对健康的人不具有利尿作用,但可增加水肿患者的尿液排出。 §3.1.2茯苓的 K+排出量较对照组显著升高,Na+/ K+较对照组降低,可能原因为茯苓促进Na+排泄与其中含 Na+量无关( 因其 Na+含量极低) ,而增加排泄与其所含大量钾盐有关。与袢利尿药呋塞米相比,茯苓的利尿作用较持久,由电解质紊乱所引起的乏力、心律失常、肠蠕动紊乱、倦怠、嗜睡、烦躁甚至昏迷等不良反应较少[ 4 ]。 §3.1.3 给兔耳缘静脉注射茯苓水煎醇沉液,能够更加直观的反应茯苓利尿效果,试验结果可见,1.5g/kg剂量组20min、30min内排尿量增加明显,2.5g/kg剂量组药效更为明显,排尿量在给药10分钟内迅速达到高峰,40min后利尿作用趋于平稳,但尿量仍远高于对照组水平,表明茯苓对家兔具有明显的利尿作用,并且存在一定程度的正向量效关系[ 5 ]。

中西医结合执业医师考试整理-药理学

药理学 第一单元药物作用的基本原理 1、酸性药物过量中毒,为加速排泄,可以(碱化尿液,减少重吸收)。 2、药物进入经胸最常见的方式(脂深性跨膜扩散)。 第二单元拟胆碱药 一、毛果芸香碱(M胆碱受体激动药) 作用:直接作用于受体。 缩瞳;降低眼内压;调节痉挛。 用途:治疗青光眼。 二、新斯的明(抗胆碱酯酶药) 作用:影响递质的代谢。 兴奋骨骼肌、胃肠、膀胱平滑肌;减慢心室率;对抗筒箭毒碱和阿托品的作用。 用途:重症肌无力。尿潴留。室上性心动过速。 第三单元有机磷酸酯类中毒与解救 1、有机磷农药中毒的抢救:阿托品+AchE复活剂 2、有机磷酸酯类中毒时,产生M样症状的原因(胆碱能神经递质破坏减少)。 第四单元抗胆碱药 一、阿托品 作用:1、对眼睛:散瞳、升高眼内压和调节麻痹 2、解除平滑肌痉挛 3、抑制腺体分泌 4、解除迷走神对心脏的抑制。 5、扩张血管,改善微循环 6、提起抗诉乙酰胆碱 7、兴奋中枢神经系统 用途:1、虹膜捷状体炎 2、内脏绞痛 3、全身麻醉前给药;胃、十二指肠溃疡 4、缓慢型心律失常 5、感染性休克 6、有机磷酸酯类中毒 禁忌:青光眼;前列腺肥大者 二、山莨菪碱654-2 三、东莨菪碱――中枢性抗胆碱药 第五单元拟肾上腺素药 一、a和b受体激动药 (一)肾上腺素 用途:心跳骤停; 抗休克; 支气管哮喘及其他速发型变态反应性疾病。 局麻、制止鼻粘膜出血和牙龈出血。 不良反应:心律失常,室颤 (二)麻黄碱 用于腰麻术中所致的血压下降 二、a受体激动药 (一)去甲肾上腺素 用途:休克和低血压,用于药物中毒致低血压 上消化道出血 延长局麻药的局麻作用。 不良反应:局部组织缺血坏死(用酚妥拉明) 急性肾衰。 (二)间羟胺三、b受体激动药 (一)异丙肾上腺素 用途:心室自律缓慢,高度房室传导阻滞,窦房结功能衰竭II、III房室传导阻滞 支气管哮喘 休克 (二)多巴酚丁胺 用途:心源性休克;充血性心衰(首选强心苷) 四、a、b、DA受体激动药 多巴胺 用途:用于血容量已补足但有心收缩力减弱及尿量减少的休克。 充血性心衰:用强心甙、利尿药无效的难治性心衰 急性肾衰常合用利尿药。 第六单元抗肾上腺素药 一、a受体阻断药酚妥拉明(苄胺唑啉) 用途:外周血管痉挛性疾病 静滴去甲肾上腺素发生外漏 休克(感染性、出血性) 充血性心衰和急性心梗 防治手术时发生高血压危象 二、b受体阻断药(普萘洛尔、美托洛尔) 用途:心律失常、心绞痛、高血压 急性心梗早期 甲亢(辅助用药) 青光眼(原发性开角型) 偏头痛 禁忌证:严重左室心功能不全;支气管哮喘;我不是度房室传导阻滞;窦性心动过速。 第七单元镇静催眠药 一、安定(地西泮)――苯二氮卓类 用途:抗焦虑首选药 镇静催眠首选药 治疗癫痫持续状态的首选药 中枢性肌肉松弛。 二、巴比妥类(苯巴比妥、司可巴比妥、硫喷妥钠) 用途:主要是抑制中枢神经系统 苯巴比妥:常用于治疗癫痫大发作和癫痫持续状态。 麻醉:硫喷妥钠 第八单元抗癫痫药 一、苯妥英钠 用途:治疗大发作和部分性发作的首选药 不良反应:过敏反应;长期服低血钙。有致畸和齿龈增生。 二、苯巴比妥――防治大发作的首选药 三、乙琥胺――防治小发作的首选药失神发作 四、氯硝基安定――失神小发作 五、丙戊酸钠――广谱抗癫痫作用 六、卡巴西平――精神运动性发作(三叉神经痛) 第九单元抗精神失常药 一、氯丙嗪(冬眠灵) 作用: 1、中枢神经系统:镇吐作用――部位:延脑第四脑室底部;降低体温 2、内分泌系统(溢乳、闭经:阻滞结节-漏斗通路D2受体) 3、植物神经系统:降血压

杨宝峰-药理学第七版-药理之案例分析教学提纲

药理之案例分析 案例1 某男,24岁。患者因20 min前口服DDV15 ml而入院治疗。体检:嗜睡状,大汗淋漓,呕吐数次。全身皮肤湿冷,无肌肉震颤。双侧瞳孔直径2~3 mm,对光反射存在。体温、脉搏、呼吸及血压基本正常。双肺呼吸音粗。化验:WBC14.2×109/L,中性93%。余未见异常。诊断为急性有机磷农药中毒。入院后,用2%碳酸氢钠水洗胃,静脉注射阿托品10 mg/次,共3次。另静注山莨菪碱l0 mg,碘解磷定1 g,并给青霉素、庆大霉素及输液治疗后,瞳孔直径为5~6 mm,心率72次/min,律齐,皮肤干燥,颜面微红。不久痊愈出院。 讨论: (1)如何正确使用阿托品? (2)为什么在使用M受体阻断剂时,又给予碘解磷定治疗? 参考答案: (1)阿托品抢救有机磷农药中毒的病人时,用药剂量根据病情确定,不受极量限制,原则上应尽早、足量、反复用药,达到“阿托品化”后再减量维持。阿托品化的指标是瞳孔散大、颜面潮红、腺体分泌减少、口干、轻度躁动不安及肺部湿啰音明显减少或消失。如出现阿托品过量中毒症状,如谵妄、躁动、心率加快、体温升高等应减量或暂停用药。(参考教材P32、33、36) (2)阿托品是M受体阻断药,可以有效解除有机磷农药中毒病人的M样症状,如呕吐、流涎、大小便失禁、呼吸困难等。但对中枢症状如惊厥、躁动不安等对抗作用较差;对N 样症状(如肌肉震颤)无效;也不能使失活的AChE恢复活性。碘解磷定为AChE复活药,可使被有机磷农药抑制的AChE恢复活性,促使体内的有机磷由肾排出,并可迅速对抗肌肉震颤。故对中、重度有机磷农药中毒的病人,必须采用阿托品与AChE复活药合并应用的措施。(参考教材P32、33) 案例2 有一流脑病人,严重高热并烦躁不安,医生在抗感染治疗的同时,开出以下医嘱,请分析是否合理,为什么? 处方:盐酸哌替啶注射液100 mg 盐酸氯丙嗪注射液50 mg ×1 盐酸异丙嗪注射液50 mg 5%葡萄糖注射液250ml 用法:静脉滴注 参考答案: 此医嘱合理。医生采用了冬眠疗法。此法使病人的体温降至35℃或更低,机体处于保护性抑制状态,这时呼吸与脉搏减慢;代谢率及耗氧量降低,对缺氧的耐受性提高,小动脉扩张,微循环改善,使机体从严重创伤或中毒所致的缺氧或缺能量状况下,得以渡过危险期,为危重病症的抢救争得时间,以便采取其他救治措施。(参考教材P73) 案例3 某女,45岁。患者上腹绞痛,间歇发作已数年。入院前40天,患者绞痛发作后有持续性钝痛,疼痛剧烈时放射到右肩及腹部,并有恶心、呕吐、腹泻等症状,经某医院诊断为:胆石症,慢性胆囊炎。患者入院前曾因疼痛注射过吗啡,用药后呕吐更加剧烈,疼痛不止,呼吸变慢,腹泻却得到控制。患者来本院后,用抗生素控制症状,并肌内注射度冷丁50 mg、

茯苓化学成分及药理作用

药用价值编辑 化学成份 茯苓-药用部分[2] 茯苓菌核含多种成份: 三萜类:茯苓酸(pachymic acid),16α-羟基齿孔酸(tumulosic acid)3β-羟基-7.9(11),24-羊毛甾三烯-21-酸 [3β-hydroxylanosta-7.9(11),24-TCMLIBien-21-oic acid],茯苓酸甲酯(pachymic acid methyl ester),16α-羟基齿孔酸甲酯(tumulosic acid methyl ester),7,9(11)-去氢茯苓酸甲酯[7,9(11)-dehydropachymic acid methyl ester],3β,16α-二羟基-7,9(11),24(31)-羊毛甾三烯-21-酸甲酯[3β,16α-dihydrox-ylanosta-7,9(11),24(31)-TCMLIBien-21-oic acid methyl ester],多孔菌酸C甲酯(polypenic acid C methyl ester),3-氢化松苓酸(TCMLIBametenloic acid),齿孔酸(eburicoic acid),去氢齿孔酸 (dehy-droeburicoic acid),茯苓新酸(poricoic acid)A、B、C、D、DM、AM,β香树醇乙酸(β-羟基-16α-乙酰氧基-7,9(11),24-羊毛甾三烯-21-酸[3β-hydroxy-16α-acetylosy-lanosta-7,9(11),24-TCMLIBien-21-oic acid]及7,9(11)去氢茯苓酸[7,9(11)-dehydropachymic acid]。 多糖:茯苓聚糖(pachy-man)、茯苓次聚(Pachymaran)及高度(1,3)、(1,6)、分支的β-D-葡聚糖H11(gluan H11)。其他尚含麦角甾醇(ergo-sterol),辛酸(caprylic aid),十一烷酸(undecanoic),月桂酸(lauric acid),十二碳酸酯(dodecenoic acid),棕榈酸(palmitic acid),十二碳烯酸酯(dodecenoate),辛酸酸(caprylate)以及无机元素。 医学作用 1.多聚糖类主要为茯苓聚糖(pachyman),含量最高可达75%,为一种具有β(1→6)吡喃葡萄糖聚糖支链的β(1→3)吡喃葡萄糖聚糖,切断支链成β(1→3)葡萄糖聚糖,称茯苓次聚糖(pachymaran),常称为茯苓多糖(PPS),具抗肿瘤活性。羧甲基茯苓糖具免疫促进及抗肿瘤作用。[2]

2011年临床医学专业药理学案例式教学案例分析题例

1.郑某,女,23岁,患癫痫大发作3年余,某日大发作后持续处于痉挛、抽搐和昏迷状态,医生诊断为癫痫持续状态,宜选用下列何药治疗() A 口服地西泮 B 口服硝西泮 C 静注地西泮 D 口服阿普唑仑 E 口服劳拉西泮 2.王某,女,42岁。因咽痛、发热就诊,检查发现扁桃体肿大,体温39℃,医生给予青霉素注射治疗,同时还应选下列何药() A 吲哚美辛 B 对乙酰氨基酚 C 羟基保泰松 D 舒林酸 E 酮洛芬 3.张某,66岁。既往患“慢性心功能不全”。近日因严重头痛、头晕、恶心、呕吐而入院。体检:血压25.0/13.3kPa,诊断为“高血压危象”。应首选下列何药治疗() A 硝普钠 B可乐定 C 哌唑嗪 D 硝苯地平 E 卡托普利 4.一患慢性心功能不全的患者,因不遵遗嘱将两次的药一次服用,并自称是“首次剂量加倍”,结果造成强心苷用量过大,引起窦性心动过缓,应选择哪个治疗措施() A 停药 B 服用利尿药 C 服用氯化钾 D 服用苯妥英钠 E 以上均不对

1.有一位胆绞痛患者,疼痛剧烈,医生为其开出下列止痛处方,请分析是否合理?为什么? 处方: 盐酸吗啡注射液 10mg*1 用法:一次10mg,立即肌内注射 答案:不合理。 因为:吗啡可激活阿片受体,属中枢性镇痛药,具有很强的镇痛作用,可用于其他药无效的急性锐痛,但治疗剂量的吗啡即可引起胆道平滑肌痉挛、奥狄氏括约肌收缩,胆囊内压升高,甚至诱发和加重胆绞痛,因此该处方不合理。(应合用阿托品) 2.某帕金森病患者,伴有恶心、食欲不振,医生给与下列处方是否合理?为什么?处方: 左旋多巴片 0.25g*100 用法:一次0.5g,一日3次 片 10mg*30 维生素B 6 用法:一次20mg,一日3次 答案:不合理。 因为:左旋多巴可进入中枢神经系统在多巴脱羧酶作用下生成多巴胺,治疗帕金森病。但维生素B6是多巴脱羧酶的辅基,可增强外周脱羧酶的活性,使外周多巴胺生成增多,副作用增强,因此单独用左旋多巴时,禁同服维生素B6。

药理学课程简介及教学大纲

“药理学”课程简介及教学大纲 课程代码:222010051 课程名称:药理学 课程类别:专业方向课 总学时/学分:64 / 4 开课学期:第5学期 适用对象:药学专业本科生 先修课程:生理解剖学、微生物免疫学、生物化学 内容简介:药理学是药学的专业基础课,是研究药物与机体之间相互作用规律的一门科学。 主要研究药物效应动力学和药物代谢动力学,从而阐明药物的作用与作用机制, 以及药物在体内的吸收、分布、生物转化与排泄过程。本课程主要介绍:各类 药物对机体的作用和作用机制、在临床上的主要适应证、不良反应和禁忌证、 药物体内过程和用法等。 一、课程性质、目的和任务 药理学是药学专业的必修课。药理学是研究药物的学科之一,是一门为临床合理用药防治疾病提供基本理论的医学基础学科。主要研究药物效应动力学和药物代谢动力学,从而阐明药物的作用与作用机制,以及药物在体内的吸收、分布、生物转化与排泄过程。学生学习药理学的主要目的是要理解药物有什么作用、作用原理及如何充分发挥其临床疗效,减少其不良反应。 二、课程教学内容及要求 第一章绪言 [基本内容] 药理学的概念、研究内容、研究方法和学科任务、药理学在医药学中的地位、药理学的发展史。药理学在新药开发与研究中的重要地位。 [基本要求] 掌握药理学的概念及药理学研究的内容。 了解药理学的学科地位、药理学的任务、药理学的分支、药理学的发展史及在新药开发与研究中的重要地位。 第二章药物对机体的作用—药效学 [基本内容] 药物的基本作用。药物作用的性质和方式。 药物作用的选择性、药物作用的双重性:治疗作用和不良反应。 受体理论:受体的基本概念,受体的特性,受体类型和受体调节,受体学说。 药效学概述:激动药、拮抗药的概念,竞争性拮抗药物与非竞争性拮抗药对激动药量效曲线的影响。药物作用机制。 药物的构效关系与量效关系:量反应与质反应,药物作用的量效关系曲线,半数有效量、半数致死量、治疗指数与安全范围。药物量反应和质反应的剂量——效应关系、治疗作用与毒性作用评价。 [基本要求] 掌握药物的基本作用:兴奋作用、抑制作用、药物作用的选择性、治疗作用、不良反应、

茯苓的药理作用化学成分及临床应用研究

茯苓的药理作用化学成分及临床应用研究 曲汉卿田鑫程南针 (甘肃中医学院) 摘要:茯苓是一味利水渗注药。传统 用于脾胃气应所致的疾饮、水肿等证。 近年来发现有治疗肝炎、心悸、精神 分裂症,乙脑后遗症、失语、要幼儿 秋季腹泻、斑秃、胃痛等新用途。 现以近几年国内外相关文献为材料, 对获菩的化学成分及其药理活性进行 了综述,以促进获菩的开发利用。 关键词:综述;茯苓;药理作用;临床应用; 茯苓为多孔菌科真菌茯苓Poria cocos (Schw·) Wolf的干燥菌核[1],收载于2005版中国药典,具有渗湿利水、健脾宁心之功效。临床上常用于治疗水肿尿少、痰饮眩晕、脾虚食少、便溏泄泻、心神不安、惊悸失眠等症。《神农本草经》将茯苓列为上品,常与其他中药配伍使用,代表方剂有四君子汤、五苓散、桂枝茯苓汤等。现代药理学研究表明[2-3],茯苓主要化学成分为多糖和三萜类成分,具有抑制肿瘤、抗炎、调节免疫等作用。 1 .化学成分研究 1)茯苓糖 茯苓的主要化学成分为茯苓糖(Pachymose),含量约为84. 2%,含β-茯苓聚糖(β-pachymose)、葡萄糖、蔗糖及果糖,硬烷(Albuminoid)含0. 68%,纤维素含2. 84%.有研究表明:茯苓聚糖的结构是50个β(1~3)结合的葡萄糖单位中有1个β(1~6)结合的葡萄糖基支链和1~2个β(1~6)结合的葡萄基间隔[4].β-茯苓聚糖并无抗肿瘤成分,但切除β(1~6)支链后,既可得到茯苓多糖.茯苓多糖经羧甲基化得到溶于水的茯苓羧甲基茯苓多糖(CMC),其中β-茯苓聚糖(β-Pachyman)为主成分, 2)茯苓素

茯苓素为一组小分子的四环三萜类化合物,它以酸的形式存在于植物中,有报道从云南文山产茯苓(Poria cocos)菌核的外表皮中,用乙酸乙酯提取的部分可分离到6个萜类化合物,含茯苓酸(Pachymic acid)、松苓酸(Pmicoic acid)、块苓酸(Tumulosic acid)、齿孔酸(Eburicoic acid)、松苓新酸等.茯苓素具有免疫调节和抗癌活性,在体内还可拮抗醛固酮活性,另外,对人白血病细胞系HL-60有诱导分化作用. 3)其他成分 茯苓含麦角甾醇、硬烷(Albuminoid)0. 68%,纤维素2. 84%,还有三萜类、辛酸、月桂酸、十二酸、组氨酸、胆碱、蛋白质、脂肪、酶、腺嘌呤、树胶等成分.胆碱可以增强和改善大脑机能.即茯苓多糖、茯苓糖为其主要活性成分,约占干燥品的93%,具有抗肿瘤、提高免疫力的功能[5].茯苓多糖能增强人体免疫功能,可以提高人体抗病能力,起到防病、延缓衰老的作用,还可以促进细胞分裂,抗诱变、抗肿瘤,对肝炎、鼻咽癌和胃癌患者有一定的疗效[6].随着分离和测定技术的提高,中外学者已从茯苓中分离了3种化学骨架类型的羊毛甾三萜34个化合物,用化学方法合成了一些衍生物,并对其构效关系进行了研究[7] 2 药理作用 1)抗肿瘤作用 茯苓中多种成分均具有抗肿瘤的作用。国产茯苓菌核提取的茯苓素(Poriatin,三萜类混合物)体外对小鼠白血病L1210细胞的DNA有明显的不可逆的抑制作用,抑制作用随着剂量的增大而增强;对艾氏腹水癌、肉瘤S180有显著的抑制作用,对小鼠Lewis肺癌的转移也有一定的抑制作用[8].茯苓多糖与茯苓有明显的抗肿瘤作用.一方面是直接细胞毒作用,真菌多糖能非特异地刺激网状内皮细胞和血液系统功能.另一方面是通过增强机体免疫功能而抑制肿瘤生长.主要通过4个途径来激活机体抗肿瘤的作用: 1)依赖宿主的免疫系统激活机体对肿瘤免疫监视系统(特异性免疫和非特异性免疫),从而抑制肿瘤细胞的增殖和杀伤肿瘤细胞. 2)通过抑制肿瘤细胞DNA,RNA的合成而实现其对肿瘤细胞的直接杀伤作用. 3)升高肿瘤细胞膜上的唾液(SA)含量. 4)能增强肝脏SOD活性而清除氧自由基[9].茯苓的抗癌作用大致有如下6个方面: 1)抗肿瘤作用,首先影响人体细胞的DNA,RNA及蛋白质生物合成作用,从而抑制细胞的生长繁殖,导致癌细胞死亡. 2)直接影响复制.

执业医师药理学知识点归纳

药理学 药效学 药物效应动力学(药效学):是研究药物对机体的作用及作用机制的生物资源科学。 药物的不良反应: 1、副作用:在治疗剂量时出现的与治疗无关的不适反应,可以预知但是难以避免。 2、毒性反应:药物剂量过大或蓄积过多时机体发生的危害性反应,比较严重,可以预知避免。 3、后遗效应:停药后机体血药浓度已降至阈值以下量残存的药理效应。 4、停药反应:突然停药后原有疾病的加剧现象,双称反跳反应。 5、变态反应:机体接受药物刺激后发生的不正常的免疫反应,又称过敏反应。 6、特异性反应: 受体:能与受体特异性结合的物质称为配体,能激活受体的配体称为激动药,能阻断受体活性的配体称为拮抗药。 激动药:既有亲和力双有内在活性。 拮抗药:有较强的亲和力,但缺乏内在活性。分竞争性和非竞争性。 第二信使:环磷腺苷(cAMP)、环磷鸟苷( cGMP)、肌醇磷脂、钙离子、廿烯类 药动学 药物代谢动力学(药动学):研究机体对药物的处置,即药物在体内的吸收、分布、代谢、排泄。解离型药物极性大,脂溶性小,难以扩散;而非解离型药物极性小,脂溶性大,易跨膜扩散。 胆碱受体激动药 一、M、N胆碱受体激动药:乙酰胆碱(ACH) 作用: 1、M样作用:心率减慢、血管扩张、心肌收缩力减弱,扩张几乎所有血管,血压下降,胃 肠道、泌尿道及支气管等平滑肌兴奋,腺体分泌增加,眼瞳孔括约肌和睫状收缩。 2、N样作用:激动N1胆碱受体,表现为消化道、膀胱等处的平滑肌收缩加强,腺体分泌 增加,心肌收缩力加强和小血管收缩,血压上升。过大剂量由兴奋转入抑制。激 动N2胆碱受体,使骨骼肌收缩。 3、中枢作用:不易透过血脑屏障另有:氨甲酰胆碱 二、M胆碱受体激动药:毛果芸香碱 作用:1、眼:表现为缩瞳、降低眼内压调节痉挛。2、腺体:分泌增加尤以汗腺和唾液腺。 应用:1、青光眼2、缩瞳另有:氨甲酰甲胆碱 三、N胆碱受体激动药:烟碱、洛贝林 抗胆碱酯酶药和胆碱酯酶复活药 一、易逆性胆碱酯酶抑制剂:新斯的明:口服吸收小而不规则,不表现中枢作用。 应用:1、重症肌无力2、手术后腹气胀及尿潴留3、阵发性室上性心动过速 4、肌松药的解毒另有:毒扁豆碱 二、难逆性胆碱酯酶抑制剂:有机磷酸酯类 中毒症状:1、M样作用症状2、N 样作用症状3、中枢抑制系统症状 三、胆碱酯酶复活剂:碘解磷定:临用配制,静注给药氯磷定:肌注或静注 胆碱受体阻滞药 1、M胆碱受体阻滞药:平滑肌解痉药:阿托品 2、N1胆碱受体阻滞药:又称神经节阻断药,主用降血压,有六甲双铵、美加明

执业医师考试之《药理学》历年考试真题大汇总

执业医师考试之《药理学》历年考试真题大汇总 药理学 第一章药物效应动力学 【考纲要求】 1.不良反应:(1)副反应;(2)毒性反应;(3)后遗效应;(4)停药反应;(5)变态反应;(6)特异质反应。 2.药物剂量与效应关系:(1)半数有效量;(2)治疗指数。 3.药物与受体:(1)激动药;(2)拮抗药。 【考点纵览】 1.副作用与毒性反应的区别? 2.何谓后遗效应、停药反应? 3.治疗指数的概念与意义? 4.何谓受体完全激动药、部分激动药、拮抗药? 【历年考题点津】 1.药物的副反应是 A.难以避免的 B.较严重的药物不良反应 C.剂量过大时产生的不良反应 D.药物作用选择性高所致 E.与药物治疗目的有关的效应 答案:A 2.有关药物的副作用,不正确的是 A.为治疗剂量时所产生的药物反应 B.为与治疗目的有关的药物反应’ C.为不太严重的药物反应气 D.为药物作用选择性低时所产生的反应 E.为一种难以避免的药物反应 答案:B (3~4题共用备选答案) A.快速耐受性 B.成瘾性 C.耐药性 D.反跳现象 E.高敏性 3.吗啡易引起 答案:B 4.长期应用氢化可的松突然停药可发生 答案:D 第二章药物代谢动力学 【考纲要求】 1.首关消除。 2.血脑屏障和胎盘屏障。 3.生物利用度。 4.一级消除动力学和零级消除动力学。 【考点纵览】 1.什么是首关消除? 2.舌下给药和肛门给药有无首关消除? 3.脂溶性高,分子量小及蛋白结合率低的药物易通过血脑屏障。 4.何谓生物利用度? 5.一级动力学消除为恒比消除,药物半衰期固定。零级动力学消除为恒量消除,半衰期不固定。血药浓度越高,半衰期越长。【历年考题点津】 1.用药的间隔时间主要取决于 A.药物与血浆蛋白的结合率 B.药物的吸收速度 C.药物的排泄速度 D.药物的消除速度 E.药物的分布速度 答案:D 2.按一级动力学消除的药物特点为 A.药物的半衰期与剂量有关

药理学教学内容

内容选取 坚持科学性、合理性、针对性和实用性的原则?根据专业人才培养目标,充分考虑学生技术领域的任职要求,遵循学生职业能力培养的基本规律,参照执业医师职业资格标准,确立了理论知识必需够用、突出职业能力的工作思路,使选取的教学内容系统准确,容量难易适度,重点难点合理,教、学、做结合,理论与实践一体化,能紧密联系实际工作,关注学生的个性差异,可满足不同学生学习需要。 内容组织 1.教材内容 将药理学教学内容优化整合为12个模块,其中新增3个模块。 教材为主优化整合内容见表-1。 学科发展新增优化模块见表-2。 表-1 药理学知识模块及学时分配 除教学大纲所规定的必讲内容外,根据最新信息,注意补充新的教学内容。如配合新处方管理办法的实施,医疗保险制度和农村合作医疗制度等的普及推广,增补了处方药、非处方药、处方的一般知识、国家基本药物遴选等新的知识模块。 表-2 新增知识模块及学时分配

药理学主要研究手段是通过实验,所以,药理学实验课在整个药理学教学中具有举足轻重的地位和作用。实践性教学的设计思想根据专业培养目标,强调“三基”即基本理论、基本知识和基本技能,加强“三严”即严肃态度、严格要求和严密方法的原则,培养具有创造性思维的学生,为捕捉学科前沿最新信息,为今后进行相关的科学研究毕业后就业和执业打下坚实的基础。 实验教学的形式和内容的改革与课程在培养人才过程中的定位相适应能体现培养目标的要求,重视能力培养和训练,收到了很好的效果。可以通过实验结果的直观性和趣味性激发学生的学习兴趣,加强学生对理论的理解和提高学习效果,培养学生的观察、分析、解决问题的能力和动手能力。 共开设实验实训项目14个,其中验证性项目4个,综合性项目7个,设计性项目3个。 表-3 药理学实验实训项目 表-4 药理学学习参考资料表

《药理学》教学大纲

《药理学》教学大纲 课程编号:0231218 总学时数:32学时 先修课及后续课:先修课有《普通生物学》、《免疫学》、《细胞生物学》、《药剂学》,后续课有《现代生物技术制药工艺学》。 一、说明部分 1、课程性质 药理学属于学科专业基础课,是临床、护理、药学、制药及其相关专业所开设的专业课之一,它是一门理论联系实际,应用性较强的课程。本课程是研究药物与机体之间相互作用规律及其机理的医学基础学科。药理学根据科学事实和客观规律,阐明在药物影响下机体细胞功能的变化及机体对药物的处理,阐明药理基础理论和重要新进展,使学生获得各类药物作用规律及作用特点的知识。了解如何正确应用药物防治疾病,培养学生辩证的科学的思维方法,并培养学生药理试验的基本技能。 2、教学目标及意义 本课程要求学生掌握重点药物的药理作用、作用机制、临床应用、不良反应、禁忌症。熟悉药物分类及分类依据。了解某些药物的作用特点,临床应用及主要的不良反应。要理论联系实际了解药物再发挥疗效中的因果关系。 3、教学内容与教学要求 药理学是研究药物的学科之一,是一门为临床合理用药防治疾病提供基本理论的医学基础学科,药理学研究药物与机体,药物与病原菌相互作用的规律及其原理。通过本课程的学习,使学生掌握药物的作用、作用机制。了解熟悉其如何充分发挥其临床疗效。熟悉药物再体内的过程,掌握药物对机体的影响。了解新药研究过程。为其他课程学习提供理论基础。 4、教学重点、难点 重点内容有:药物效应动力学、药物代谢动力学、解热镇痛抗炎药、抗心绞痛与动脉粥样硬化药、抗高血压药、组胺受体阻断药、β内酰胺类抗生素、抗恶性肿瘤药和影响免疫功能的药物等内容。

茯苓化学成分及药理作用

药用价值 化学成份 茯苓-药用部分[2] 茯苓含多种成份: 类:(pachymic acid),16α-羟基齿孔酸(tumulosic acid)3β-羟基-7.9(11),24-羊毛甾三烯-21-酸[3β-hydroxylanosta-7.9(11),24-TCMLIBien-21-oi c acid],茯苓酸甲酯(pachymic acid methyl ester),16α-羟基齿孔酸甲酯(tumulosic acid methyl ester),7,9(11)-去氢茯苓酸甲酯[7,9(11)-dehydropachymic acid methyl ester],3β,16α-二羟基-7,9(11),24(31)-羊毛甾三烯-21-酸甲酯[3β,16α-dihydrox-ylanosta-7,9(11),24(31)-TCMLIBien-21-oic acid methyl ester],多孔菌酸C甲酯(polypenic acid C methyl ester),3-氢化松苓酸(TCMLIBametenloic acid),齿孔酸

(eburicoic acid),去氢齿孔酸(dehy-droeburicoic acid),茯苓新酸(poricoic acid)A、B、C、D、DM、AM,β香树醇(β-羟基-16α-乙酰氧基-7,9(11),24-羊毛甾三烯-21-酸 [3β-hydroxy-16α-acetylosy-lanosta-7,9(11),24-TCMLIBien-21-oic acid]及7,9(11)去氢茯苓酸[7,9(11)-dehydropachymic acid]。 :茯苓聚糖(pachy-man)、茯苓次聚(Pachymaran)及高度(1,3)、(1,6)、分支的β-D-葡聚糖H11(gluan H11)。其他尚含麦角甾醇(ergo-sterol),辛酸(caprylic aid),十一烷酸(undecanoic),月桂酸(lauric acid),十二碳酸酯(dodecenoic acid),棕榈酸(palmitic acid),十二碳烯酸酯(dodecenoate),辛酸酸(caprylate)以及无机元素。 医学作用 1.多聚糖类主要为茯苓聚糖(pachyman),含量最高可达75%,为一种具有β(1→6)聚糖支链的β(1→3)吡喃葡萄糖聚糖,切断支链成β(1→3)葡萄糖聚糖,称茯苓次聚糖(pachymaran),常称为茯

《临床药理学》名词解释和问答(考试后总结版)

1. 临床药理学:是药理学的分支,时研究药物在人体内作用规律和人体与药物间相互作用过程的一门学科 2.消除半衰期:药物的消除半衰期是指药物在体内消除一半所需要的时间,或血药浓度下降一半所需要的时间。 3.时间药理学:时间药理学是研究药物与生物周期相互关系的一门学科。其主要研究内容包括机体的昼夜节律对药物作用或体内过程的影响,药物对机体昼夜节律的影响。 5.国家基本药物:指一个国家根据各自国情,按照符合实际的科学标准从临床各类药品中遴选出的疗效可靠、不良反应较轻、质量稳定、价格合理、使用方便的药品。 6.临床试验:评价新药的疗效和毒性为国家食品药品监督管理局批准新药生产提供科学依据,我国新药的临床试验分为Ⅰ、Ⅱ、Ⅲ、Ⅳ期,各类新药视类别不同进行Ⅰ、Ⅱ、Ⅲ、Ⅳ期临床试验。 7.不良事件:在使用药物治疗期间发生的不良医疗事件,它不一定和治疗有因果关系 8.药物耐受性:指人体在重复用药条件下形成的一种对药物的反应性逐渐减弱的状态。在此状态下,该药原用剂量的效应明显减弱,必须增加剂量方可获原用剂量的相同效应。 9.不良反应:是药物在正常用法和用量时由药物引起的不良和不期望产生的反应包括副作用毒性反应、依赖性、特异质反应、过敏反应、致畸、致癌和致突变反应。 10.生物利用度:用药代动力学原理来评价和研究药物进入血循环的速度和程度,是评价药物有效性的指标。通常用药时曲线下浓度、达峰时间、峰值血药浓度来表示。 11.处方药POM:指必需凭执业医师处方才可在正规药店或药房调配、购买和使用的药品 12.药物滥用drug abuse:指人们背离医疗、预防和保健目的,间断或不见断地自行过量用药行为。这种用药具有无节制反复用药地特征,往往导致对用药个人精神和身体地危害。 13. 非处方药OTC:指经过国家药品监督管理部门批准,不需要凭执业医师处方,消费者可自行判断购买和使用的药品 14. TDM治疗药物:在药代动力学原理的指导下,应用灵敏快速的分析技术,测定血液中或其他体液中药物浓度,研究药物浓度与疗效及毒性间的关系,进而设计或调整给药方案。 15.药品:是指用来预防、治疗和诊断疾病,并有目的改善机体病理生理状态,有明确适用征、用法和用量的物质 16.药物依赖性:指具有精神活性药物滥用条件下,机体与滥用药物相互作用所形成的一种特殊精神状态,有些滥用药物还会使机体形成一种特殊身体状态。分为身体依赖性、精神依赖性和交叉依赖性。 17.新药:是指未在中国境内上市销售的药品 18.信号:是指一种药品和某一不良事件之间可能存在的因果关联性的报告信息,这种关联性应是此前未知的或尚未证实的 19.血管合体膜:所谓胎盘屏障是有合体细胞、合体细胞基底膜、绒毛间质、毛细血管基底膜和毛细血管内皮细胞组成的血管合体膜(VSM) 20.药物警戒:是与发现、评价、理解和预防不良反应或其他任何可能与药物相关问题的科学研究与活动。 21.生物等效:两种药物的吸收程度和吸收速度相同,那么这两种药物生物等效,它们的疗效也相似。 22.联合用药:是指同时或相隔一定时间内使用两种或多种药物 23.精神活性物质:系可显著影响动物或人精神活动的物质,包括麻醉药品、精神药品和烟草、酒精及挥发性溶剂等不同类型的物质

药理学课程教学大纲

《药理学》课程教学大纲 一、课程基本信息 课程编号:100701110 课程名称:药理学 课程类型:学科基础课适用专业:护理学 学分数:3 学时数:72 开课学期:第三学期制定/修订日期: 2013 年 5 月 18 日 二、教学目标 药理学是研究药物与机体相互作用及作用规律的一门科学。本门课程通过课堂讲授与实验课等教学环节,使学生掌握临床常用药物的药理作用、机制、临床应用、不良反应及其防治措施,以确保临床用药安全有效。教学内容要密切结合护理专业特点,重点阐明药物的药理作用、作用机制、临床用途、不良反应及其防治,为临床合理用药,发挥药物最佳疗效,防治药物不良反应及用药护理提供理论依据,为开发新药、发现药物新用途提供重要的科学依据和研究方法。 三、课程内容及要求 第一章总论 【教学要求】 1.掌握药理学概念及其研究内容。 2.理解护理工作者在药物治疗中的作用;理解药物制剂的基本知识。 3.了解药理学的学习方法、任务、发展简史及研究方法。 【教学重点与难点】 药理学概念及其研究内容。 【教学内容】 一、药理学的性质与任务 二、药物与药理学的发展史 三、药学制剂基本知识 四、处方的基本知识

五、新药研究与开发 第二章药物效应动力学 【教学要求】 1.掌握副作用、毒性反应、反跳现象、停药反应、治疗量、极量、治疗指数等概念及临床意义。 2.理解药物作用的方式、两重性;理解受体、激动剂、部分激动剂、竞争性拮抗剂和非竞争性拮抗剂的概念、量效关系。 3.了解药物最小有效量、最小中毒量、致死量概念。 【教学重点与难点】 1.副作用、毒性反应、极量、治疗指数的临床意义。 2.受体激动剂、部分激动剂、竞争性拮抗剂和非竞争性拮抗剂的概念。 【教学内容】 第一节药物的基本作用 第二节药物的剂量与效应关系 第三节药物的作用机制 第四节药物与受体 一、受体的概念与特性 二、受体的类型 三、药物与受体相互作用的学说 四、受体与药物反应动力学 五、作用于受体的药物分类 六、细胞内信号转导和第二信使 七、受体的调节 第三章药物代谢动力学 【教学要求】 1.掌握药物体内过程的基本规律和基本过程;掌握药物吸收、分布、代谢、排泄及半衰期概念。

执业医师考试——药理学试题及答案

[A1型题] 以下每一考题下面有A、B、C、D、E 5个备选答案,请从中选一个最佳答案,并在答题卡将相应题号的相应字母所属方框涂黑。 1. 不良反应不包括 A.副作用 B.变态反应 C.戒断效应 D.后遗效应 E.继发反应 2.首次剂量加倍的原因是 A.为了使血药浓度迅速达到Css B.为了使血药浓度继持高水平 C.为了增强药理作用 D.为了延长半衰期 E.为了提高生物利用度 3.血脑屏障的作用是 A.阻止外来物进入脑组织 B.使药物不易穿透,保护大脑 C.阻止药物进人大脑 D.阻止所有细菌进入大脑 E.以上都不对 4.有关毛果芸香碱的叙述,错误的是 A.能直接激动M受体,产生M样作用 B.可使汗腺和唾液腺的分泌明显增加 C.可使眼内压升高 D.可用于治疗青光眼 E.常用制剂为1%滴眼液 5.新斯的明一般不被用于 A. 重症肌无力 B.阿托品中毒 C.肌松药过量中毒 D.手术后腹气胀和尿潴留 E.支气管哮喘 6.有关阿托品药理作用的叙述,错误的是 A. 抑制腺体分泌 B.扩张血管改善微循环 C.中枢抑制作用

D.松弛内脏平滑肌 E.升高眼内压,调节麻痹 7.对α受体和β受体均有强大的激动作用的是 A.去甲肾上腺素 B.多巴胺 C.可乐定 D.肾上腺素 E.多巴酚丁胺 8.下列受体和阻断剂的搭配正确的是 A.异丙肾上腺素——普萘洛尔 B. 肾上腺素——哌唑嗪 C.去甲肾上腺素——普荼洛尔 D.间羟胺——育亨宾 E.多巴酚丁胺——美托洛尔 9.苯二氮草类取代巴比妥类的优点不包括 A.无肝药酶诱导作用 B. 用药安全 C.耐受性轻 D. 停药后非REM睡眠时间增加 E.治疗指数高,对呼吸影响小 10.有关氯丙嗪的叙述,正确的是 A.氯丙嗪是哌嗪类抗精神病药 B.氯丙嗪可与异丙嗪、杜冷丁配伍成“冬眠”合剂,用于人工冬眠疗法C.氯丙嗪可加强中枢兴奋药的作用 D.氯丙嗪可用于治疗帕金森氏症 E.以上说法均不对 11.吗啡一般不用于治疗 A.急性锐痛 B.心源性哮喘 C.急慢性消耗性腹泻 D.心肌梗塞 E.肺水肿 12.在解热镇痛抗炎药中,对PG合成酶抑制作用最强的是 A.阿司匹林 B.保泰松 C.非那西丁 D.吡罗昔康 E.吲哚美

土茯苓的化学成分及药理作用

土茯苓的化学成分及药理作用 摘要:本文主要通过对土茯苓的临床应用及功效作用的研究来了解土茯苓的化学成分和药理作用。通过研究得出:土茯苓的主要化学成分含菝葜皂甙类(smilax saponins)和提果皂甙元(tigogenin)、鞣质。其主要药理作用有:抗癌、保护心血管系统、细胞免疫抑制、利尿、镇痛、保护实验性肝损伤以及解毒的作用。 关键词:土茯苓化学成分药理作用 Glabrous Greenbrier Rhizome’s chemical constituents and pharmacological effects Mingzi(tel) Teacher: good number: Department of Computer Science ? Computer Science and Technology (Normal) Abstract:This article on soil Fuling clinical application and effectiveness of the role of research to understand the chemical composition of soil Fuling and pharmacological effects. Through the research: The main chemical components of soil containing Fuling Smilax saponin (smilax saponins), and provide fruit sapogenin (tigogenin), tannin. The main pharmacological effects are: anti-cancer, protect the cardiovascular system, immune suppression, diuretic, analgesic, and the protection of experimental liver injury in the role of detoxification. Key words: Glabrous Greenbrier Rhizome chemical constituents pharmacological effects 前言:土茯苓为百合科植物叶菝葜Smilax glabra Roxb.的干燥块茎。根茎略呈圆柱 形,稍扁或呈不规则条块,有结节状隆起,具短分枝,长5~22cm,直径2~5cm。表面黄棕色或灰褐色,凹凸不平,有坚硬的须根残基,分枝顶端有圆形芽痕,有的外皮现不规则裂纹,并有残留的鳞叶。质坚硬。切片呈长圆形或不规则,厚l~5mm,边缘不整齐;切面类白色至淡红棕色,粉性,可见点状维管束及多数小亮点;质略韧,折断时有粉尘飞扬,以水湿润后有黏滑感。无臭,味微甘、涩。常切成厚1~5mm的薄片。[1]长江流域及南部各省均有分布。夏、秋二季采收,除去残茎和须根,洗净、晒干;或趁鲜切成薄片,干燥,生用。 1.化学成分 本品含落新妇苷、异黄杞苷、胡萝卜苷、3,5,4’-三羟基芪、(一)表儿茶精L、琥珀酸、β-谷甾醇等皂苷、糅质、黄酮、树脂类等,还含有挥发油、多糖、淀粉等。 [2] 2.功效应用 2.1 杨梅毒疮,肢体拘挛 本品甘淡,解毒利湿,通利关节,又兼解汞毒,故对梅毒或因梅毒服汞剂中毒而致肢体拘挛、筋骨疼痛者疗效尤佳,为治梅毒的要药。可单用本品水煎服,如土萆薢汤(《景岳

2020年临床执业医师《药理学》试题及答案(卷二)

2020年临床执业医师《药理学》试题及答案(卷二)A型题 1、去甲肾上腺素治疗上消化道出血时的给药方法是: A.静脉滴注 B.皮下注射 C.肌肉注射 D.口服稀释液 E. 以上都不是 2、具有明显舒张肾血管,增加肾血流的药物是: A.肾上腺素 B.异丙肾上腺素 C.麻黄碱 D.多巴胺 E.去甲肾上腺素 3、防治硬膜外麻醉引起的低血压宜先用: A.肾上腺素 B.去甲肾上腺素 C.麻黄碱 D.多巴胺 E.异丙肾上腺素 4、非儿茶酚胺类的药物是: A.多巴胺

B.异丙肾上腺素 C.肾上腺素 D.麻黄碱 E.去甲肾上腺素 5、去甲肾上腺素与肾上腺素的下列哪项作用不同: A.正性肌力作用 B.兴奋β受体 C.兴奋α受体 D.对心率的影响 E.被MAO和COMT灭活 6、去甲肾上腺素扩张冠状血管主要是由于: A.激动β2受体 B.激动M胆碱受体 C.使心肌代谢产物增加 D. 激动α2受体 E. 以上都不是 7、治疗房室传导阻滞的药物是: A. 肾上腺素 B. 去甲肾上腺素 C. 异丙肾上腺素 D. 阿拉明 E. 普萘洛尔

8、肾上腺素对血管作用的叙述,错误的是: A.皮肤、粘膜血管收缩强 B.微弱收缩脑和肺血管 C.肾血管扩张 D.骨骼肌血管扩张 E.舒张冠状血管 9、异丙肾上腺素不具有肾上腺素的哪项作用: A.松弛支气管平滑肌 B.兴奋β2受体 C.抑制组胺等过敏介质释放 D.促进CAMP的产生 E.收缩支气管粘膜血管 10、大剂量肾上腺素静注,血压的变化是: A.收缩压和舒张压均缓慢、持久升高 B.收缩压上升,舒张压不变或稍下降 C.收缩压上升,舒张压上升,脉压变小 D.收缩压上升,舒张压上升不明显,脉压增大 E.收缩压上升,舒张压下降,脉压增大 11、小剂量去甲肾上腺素静脉滴注,血压变化是: A.收缩压和舒张压均缓慢、持久升高 B.收缩压上升,舒张压不变或稍下降 C.收缩压上升,舒张压上升,脉压变小

相关文档
最新文档