STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE

STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE
STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE

a r X i v :a s t r o -p h /9807187v 1 17 J u l 1998STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE Robert C.Kennicutt,Jr

Steward Observatory,The University of Arizona

Tucson,Arizona 85721

rkennicutt@https://www.360docs.net/doc/3f181784.html,

ABSTRACT

Observations of star formation rates (SFRs)in galaxies provide vital clues to the physical nature of the Hubble sequence,and are key probes of the evolutionary histories of galaxies.The focus of this review is on the broad patterns in the star formation properties of galaxies along the Hubble sequence,and their implications for understanding galaxy evolution and the physical processes that drive the evolution.Star formation in the disks and nuclear regions of galaxies are reviewed separately,then discussed within a common interpretive framework.The diagnostic methods used to measure SFRs are also reviewed,and a self-consistent set of SFR calibrations is presented as a aid to workers in the ?eld.KEY WORDS:galaxy evolution,starbursts,spiral galaxies,star formation rates,stellar populations To appear in Vol.36of Annual Review of Astronomy and Astrophysics 1INTRODUCTION One of the most recognizable features of galaxies along the Hubble sequence is the wide range in young stellar content and star formation activity.This variation in stellar content is part of the basis of the Hubble classi?cation itself (Hubble 1926),and understanding its physical nature and origins is fundamental to understanding galaxy evolution in its broader context.This review deals

with the global star formation properties of galaxies,the systematics of those properties along the Hubble sequence,and their implications for galactic evolution.I interpret “Hubble sequence”in this context very loosely,to encompass not only morphological type but other properties such as gas content,mass,bar structure,and dynamical environment,which can strongly in?uence the large-scale star formation rate (SFR).

Systematic investigations of the young stellar content of galaxies trace back to the early studies of resolved stellar populations by Hubble and Baade,and analyses of galaxy colors and spectra by Stebbins,Whitford,Holmberg,Humason,Mayall,Sandage,Morgan,and de Vaucouleurs (see Whitford 1975for a summary of the early work in this ?eld).This piecemeal information was synthesized by Roberts (1963),in an article for the ?rst volume of the Annual Review of Astronomy and Astrophysics .Despite the limited information that was available on the SFRs and gas contents

1

of galaxies,Roberts’analysis established the basic elements of the contemporary picture of the Hubble sequence as a monotonic sequence in present-day SFRs and past star formation histories. Quantifying this picture required the development of more precise diagnostics of global SFRs in galaxies.The?rst quantitative SFRs were derived from evolutionary synthesis models of galaxy colors(Tinsley1968,1972,Searle et al1973).These studies con?rmed the trends in SFRs and star formation histories along the Hubble sequence,and led to the?rst predictions of the evolution of the SFR with cosmic lookback time.Subsequent modelling of blue galaxies by Bagnuolo(1976), Huchra(1977),and Larson&Tinsley(1978)revealed the importance of star formation bursts in the evolution of low-mass galaxies and interacting systems.Over the next decade the?eld matured fully,with the development of more precise direct SFR diagnostics,including integrated emission-line?uxes(Cohen1976,Kennicutt1983a),near-ultraviolet continuum?uxes(Donas&Deharveng 1984),and infrared continuum?uxes(Harper&Low1973,Rieke&Lebofsky1978,Telesco& Harper1980).These provided absolute SFRs for large samples of nearby galaxies,and these were subsequently interpreted in terms of the evolutionary properties of galaxies by Kennicutt(1983a), Gallagher et al(1984),and Sandage(1986).

Activity in this?eld has grown enormously in the past decade,stimulated in large part by two major revelations.The?rst was the discovery of a large population of ultraluminous infrared starburst galaxies by the Infrared Astronomical Satellite(IRAS)in the mid-1980’s.Starbursts had been identi?ed(and coined)from groundbased studies(Rieke&Lebofsky1979;Weedman et al 1981),but IRAS revealed the ubiquity of the phenomenon and the extreme nature of the most luminous objects.The latest surge of interest in the?eld has been stimulated by the detection of star forming galaxies at high redshift,now exceeding z=3(Steidel et al1996,Ellis1997).This makes it possible to apply the locally calibrated SFR diagnostics to distant galaxies,and directly trace the evolution of the SFR density and the Hubble sequence with cosmological lookback time. The focus of this review is on the broad patterns in the star formation properties of galaxies, and their implications for the evolutionary properties of the Hubble sequence.It begins with a summary of the diagnostic methods used to measure SFRs in galaxies,followed by a summary of the systematics of SFRs along the Hubble sequence,and the interpretation of those trends in terms of galaxy evolution.It concludes with a brief discussion of the physical regulation of the SFR in galaxies and future prospects in this?eld.Galaxies exhibit a huge dynamic range in SFRs,over six orders of magnitude even when normalized per unit area and galaxy mass,and the continuity of physical properties over this entire spectrum of activities is a central theme of this review. With this broad approach in mind,I cannot begin to review the hundreds of important papers on the star formation properties of individual galaxies,or the rich theoretical literature on this subject. Fortunately,there are several previous reviews in this series that provide thorough discussions of key aspects of this?eld.A broad review of the physical properties of galaxies along the Hubble sequence can be found in Roberts&Haynes(1994).The star formation and evolutionary properties of irregular galaxies are reviewed by Gallagher&Hunter(1984).The properties of IR-luminous starbursts are the subject of several reviews,most recently those by Soifer et al(1987),Telesco (1988),and Sanders&Mirabel(1996).Finally an excellent review of faint blue galaxies by Ellis (1997)describes many applications to high-redshift objects.

2

2DIAGNOSTIC METHODS

Individual young stars are unresolved in all but the closest galaxies,even with the Hubble Space Telescope(HST),so most information on the star formation properties of galaxies comes from integrated light measurements in the ultraviolet(UV),far-infrared(FIR),or nebular recombination lines.These direct tracers of the young stellar population have largely supplanted earlier SFR measures based on synthesis modelling of broadband colors,though the latter are still applied to multicolor observations of faint galaxies.This section begins with a brief discussion of synthesis models,which form the basis of all of the methods,followed by more detailed discussions of the direct SFR tracers.

2.1Integrated Colors and Spectra,Synthesis Modelling

The basic trends in galaxy spectra with Hubble type are illustrated in Figure1,which shows examples of integrated spectra for E,Sa,Sc,and Magellanic irregular galaxies(Kennicutt1992b). When progressing along this sequence,several changes in the spectrum are apparent:a broad rise in the blue continuum,a gradual change in the composite stellar absorption spectrum from K-giant dominated to A-star dominated,and a dramatic increase in the strengths of the nebular emission lines,especially Hα.

Although the integrated spectra contain contributions from the full range of stellar spectral types and luminosities,it is easy to show that the dominant contributors at visible wavelengths are intermediate-type main sequence stars(A to early F)and G-K giants.As a result,the integrated colors and spectra of normal galaxies fall on a relatively tight sequence,with the spectrum of any given object dictated by the ratio of early to late-type stars,or alternatively by the ratio of young (<1Gyr)to old(3–15Gyr)stars.This makes it possible to use the observed colors to estimate the fraction of young stars and the mean SFR over the past108–109years.

The simplest application of this method would assume a linear scaling between the SFR and the continuum luminosity integrated over a?xed bandpass in the blue or near-ultraviolet.Although this may be a valid approximation in starburst galaxies,where young stars dominate the integrated light across the visible spectrum,the approximation breaks down in most normal galaxies,where a considerable fraction of the continuum is produced by old stars,even in the blue(Figure1). However the scaling of the SFR to continuum luminosity is a smooth function of the color of the population,and this can be calibrated using an evolutionary synthesis model.

Synthesis models are used in all of the methods described here,so it is useful to summarize the main steps in the construction of a model.A grid of stellar evolution tracks is used to derive the e?ective temperatures and bolometric luminosities for various stellar masses as a function of time,and these are converted into broadband luminosities(or spectra)using stellar atmosphere models or spectral libraries.The individual stellar templates are then summed together,weighted by an initial mass function(IMF),to synthesize the luminosities,colors,or spectra of single-age populations as functions of age.These isochrones can then be added in linear combination to synthesize the spectrum or colors of a galaxy with an arbitrary star formation history,usually

3

Figure1:Integrated spectra of elliptical,spiral,and irregular galaxies,from Kennicutt(1992b). The?uxes have been normalized to unity at5500?A.

parametrized as an exponential function of time.Although a single model contains at least four free parameters,the star formation history,galaxy age,metal abundance,and IMF,the colors of normal galaxies are well represented by a one-parameter sequence with?xed age,composition and IMF,varying only in the time dependence of the SFR(Searle et al1973,Larson&Tinsley1978; Charlot&Bruzual1991).

Synthesis models have been published by several authors,and are often available in digital form. An extensive library of models has been compiled by Leitherer et al(1996a),and the models are described in a companion conference volume(Leitherer et al1996b).Widely used models for star forming galaxies include those of Bruzual&Charlot(1993),Bertelli et al(1994),and Fioc&Rocca-Volmerange(1997).Leitherer&Heckman(1995)have published an extensive grid of models that is optimized for applications to starburst galaxies.

The synthesis models provide relations between the SFR per unit mass or luminosity and the integrated color of the population.An example is given in Figure2,which plots the SFR per unit U,B,and V luminosity as functions of U?V color,based on the models of Kennicutt et al

4

Figure2:Relationship between SFR per unit broadband luminosity in the UBV passbands and integrated color,from the evolutionary synthesis models of Kennicutt et al(1994).The models are for10-billion-year-old disks,a Salpeter IMF,and exponential star formation histories.The U,B, and V luminosities are normalized to those of the Sun in the respective bandpasses.

(1994).Figure2con?rms that the broadband luminosity by itself is a poor tracer of the SFR;even the SFR/L U ratio varies by more than an order of magnitude over the relevant range of galaxy colors.However the integrated color provides a reasonable estimate of the SFR per unit luminosity, especially for the bluer galaxies.

SFRs derived in this way are relatively imprecise,and are prone to systematic errors from reddening or from an incorrect IMF,age,metallicity,of star formation history(Larson&Tinsley1978). Nevertheless,the method o?ers a useful means of comparing the average SFR properties of large samples of galaxies,when absolute accuracy is not required.The method should be avoided in applications where the dust content,abundances,or IMFs are likely to change systematically across

a population.

2.2Ultraviolet Continuum

The limitations described above can be avoided if observations are made at wavelengths where the integrated spectrum is dominated by young stars,so that the SFR scales linearly with luminosity. The optimal wavelength range is1250–2500?A,longward of the Lyαforest but short enough to minimize spectral contamination from older stellar populations.These wavelengths are inaccessible from the ground for local galaxies(z<0.5),but the region can be observed in the redshifted spectra of galaxies at z~1–5.The recent detection of the redshifted UV continua of large numbers of z>3

5

galaxies with the Keck telescope has demonstrated the enormous potential of this technique(Steidel et al1996).

The most complete UV studies of nearby galaxies are based on dedicated balloon,rocket,and space experiments(Smith&Cornett1982,Donas&Deharveng1984,Donas et al1987,1995,Buat 1992,Deharveng et al1994).The database of high-resolution UV imaging of galaxies is improving rapidly,mainly from HST(Meurer et al1995,Maoz1996)and the Ultraviolet Imaging Telescope (Smith et al1996,Fanelli et al1997).An atlas of UV spectra of galaxies from the International Ultraviolet Explorer has been published by Kinney et al(1993).A recent conference volume by Waller et al(1997)highlights recent UV observations of galaxies.

The conversion between the UV?ux over a given wavelength interval and the SFR can be derived using the synthesis models described earlier.Calibrations have been published by Buat et al(1989), Deharveng et al(1994),Leitherer et al(1995b),Meurer et al(1995),Cowie et al(1997),and Madau et al(1998),for wavelengths in the range1500–2800?A.The calibrations di?er over a full range of ~0.3dex,when converted to a common reference wavelength and IMF,with most of the di?erence re?ecting the use of di?erent stellar libraries or di?erent assumptions about the star formation timescale.For integrated measurements of galaxies,it is usually appropriate to assume that the SFR has remained constant over timescales that are long compared to the lifetimes of the dominant UV emitting population(<108yr),in the“continuous star formation”approximation.Converting the calibration of Madau et al(1998)to a Salpeter(1955)IMF with mass limits0.1and100M⊙yields:

SFR(M⊙yr?1)=1.4×10?28Lν(ergs s?1Hz?1).(1) For this IMF,the composite UV spectrum happens to be nearly?at in Lν,over the wavelength range1500–2800?A,and this allows us to express the conversion in Equation1in such simple form.The corresponding conversion in terms of Lλwill scale asλ?2.Equation1applies to galaxies with continuous star formation over timescales of108years or longer;the SFR/Lνratio will be signi?cantly lower in younger populations such as young starburst galaxies.For example, continuous burst models for a9Myr old population yield SFRs that are57%higher than those given in Equation1(Leitherer et al1995b).It is important when using this method to apply an SFR calibration that is appropriate to the population of interest.

The main advantages of this technique are that it is directly tied to the photospheric emission of the young stellar population,and it can be applied to star forming galaxies over a wide range of redshifts. As a result,it is currently the most powerful probe of the cosmological evolution in the SFR (Madau et al1996,Ellis1997).The chief drawbacks of the method are its sensitivity to extinction and the form of the IMF.Typical extinction corrections in the integrated UV magnitudes are0–3 magnitudes(Buat1992,Buat&Xu1996).The spatial distribution of the extinction is very patchy, with the emergent UV emission being dominated by regions of relatively low obscuration(Calzetti et al1994),so calibrating the extinction correction is problematic.The best determinations are based on two-component radiative transfer models which take into account the clumpy distribution of dust,and make use of reddening information from the Balmer decrement or IR recombination lines(e.g.,Buat1992,Calzetti et al1994,Buat&Xu1996,Calzetti1997).

6

The other main limitation,which is shared by all of the direct methods,is the dependence of the derived SFRs on the assumed form of the IMF.The integrated spectrum in the1500–2500?A range is dominated by stars with masses above~5M⊙,so the SFR determination involves a large extrapolation to lower stellar masses.Fortunately there is little evidence for large systematic variations in the IMF among star forming galaxies(Scalo1986,Gilmore et al1998),with the possible exception of IR-luminous starbursts,where the UV emission is of little use anyway.

2.3Recombination Lines

Figure1shows that the most dramatic change in the integrated spectrum with galaxy type is a rapid increase in the strengths of the nebular emission lines.The nebular lines e?ectively re-emit the integrated stellar luminosity of galaxies shortward of the Lyman limit,so they provide a direct, sensitive probe of the young massive stellar population.Most applications of this method have been based on measurements of the Hαline,but other recombination lines including Hβ,Pα,Pβ, Brα,and Brγhave been used as well.

The conversion factor between ionizing?ux and the SFR is usually computed using an evolutionary synthesis model.Only stars with masses>10M⊙and lifetimes<20Myr contribute signi?cantly to the integrated ionizing?ux,so the emission lines provide a nearly instantaneous measure of the SFR,independent of the previous star formation history.Calibrations have been published by numerous authors,including Kennicutt(1983a),Gallagher et al(1984),Kennicutt et al(1994), Leitherer&Heckman(1995),and Madau et al(1998).For solar abundances and the same Salpeter IMF(0.1–100M⊙)as was used in deriving equation[1],the calibrations of Kennicutt et al(1994) and Madau et al(1998)yield:

SFR(M⊙yr?1)=7.9×10?42L(Hα)(ergs s?1)=1.08×10?53Q(H0)(s?1).(2) where Q(H0)is the ionizing photon luminosity,and the Hαcalibration is computed for Case B recombination at T e=10000K.The corresponding conversion factor for L(Brγ)is8.2×10?40 in the same units,and it is straightforward to derive conversions for other recombination lines. Equation2yields SFRs that are7%lower than the widely used calibration of Kennicutt(1983a), with the di?erence re?ecting a combination of updated stellar models and a slightly di?erent IMF (Kennicutt et al1994).As with other methods,there is a signi?cant variation among published calibrations(~30%),with most of the dispersion re?ecting di?erences in the stellar evolution and atmosphere models.

Large Hαsurveys of normal galaxies have been published by Cohen(1976),Kennicutt&Kent (1983),Romanishin(1990),Gavazzi et al(1991),Ryder&Dopita(1994),Gallego et al(1995), and Young et al(1996).Imaging surveys have been published by numerous other authors,with some the largest including Hodge&Kennicutt(1983),Hunter&Gallagher(1985),Ryder&Dopita (1993),Phillips(1993),Evans et al(1996),Gonz′a lez Delgado et al(1997),and Feinstein(1997). Gallego et al(1995)have observed a complete emission-line selected sample,in order to measure the volume-averaged SFR in the local universe,and this work has been applied extensively to studies of the evolution in the SFR density of the universe(Madau et al1996).

7

The primary advantages of this method are its high sensitivity,and the direct coupling between the nebular emission and the massive SFR.The star formation in nearby galaxies can be mapped at high resolution even with small telescopes,and the Hαline can be detected in the redshifted spectra of starburst galaxies to z?2(e.g.Bechtold et al1997).The chief limitations of the method are its sensitivity to uncertainties in extinction and the IMF,and to the assumption that all of the massive star formation is traced by the ionized gas.The escape fraction of ionizing radiation from individual HII regions has been measured both directly(Oey&Kennicutt1997)and from observations of the di?use Hαemission in nearby galaxies(e.g.,Hunter et al1993,Walterbos &Braun1994,Kennicutt et al1995,Ferguson et al1996,Martin1997),with fractions of15–50%derived in both sets of studies.Thus it is important when using this method to include the di?use Hαemission in the SFR measurement(Ferguson et al1996).However the escape fraction from a galaxy as a whole should be much lower.Leitherer et al(1995a)directly measured the redshifted Lyman continuum region in four starburst galaxies,and they derived an upper limit of 3%on the escape fraction of ionizing photons.Much higher global escape fractions of50–94%, and local escape fractions as high as99%have been estimated by Patel&Wilson(1995a,b), based on a comparison of O-star densities and Hαluminosities in M33and NGC6822,but those results are subject to large uncertainties,because the O-star properties and SFRs were derived from UBV photometry,without spectroscopic identi?cations.If the direct limit of<3%from Leitherer et al(1995a)is representative,then density bounding e?ects are a negligible source of error in this method.However it is very important to test this conclusion by extending these types of measurements to a more diverse sample of galaxies.

Extinction is probably the most important source of systematic error in Hα-derived SFRs.The extinction can be measured by comparing Hα?uxes with those of IR recombination lines or the thermal radio continuum.Kennicutt(1983a)and Niklas et al(1997)have used integrated Hαand radio?uxes of galaxies to derive a mean extinction A(Hα)=0.8–1.1mag.Studies of large samples of individual HII regions in nearby galaxies yield similar results,with mean A(Hα)=0.5–1.8mag (e.g.Caplan&Deharveng1986,Kaufman et al1987,van der Hulst et al1988,Caplan et al1996). Much higher extinction is encountered in localized regions,especially in the the dense HII regions in circumnuclear starbursts,and there the near-IR Paschen or Brackett recombination lines are required to reliably measure the https://www.360docs.net/doc/3f181784.html,pilations of these data include Puxley et al(1990),Ho et al(1990),Calzetti et al(1996),Goldader et al(1995,1997),Engelbracht(1997),and references therein.The Paschen and Brackett lines are typically1–2orders of magnitude weaker than Hα, so most measurements to date have been restricted to high surface brightness nuclear HII regions, but it is gradually becoming feasible to extend this approach to galaxies as a whole.The same method can be applied to higher-order recombination lines or the thermal continuum emission at submillimeter and radio wavelengths.Examples of such applications include H53αmeasurements of M82by Puxley et al(1989),and radio continuum measurements of disk galaxies and starbursts by Israel&van der Hulst(1983),Klein&Grave(1986),Turner&Ho(1994),and Niklas et al (1995).

The ionizing?ux is produced almost exclusively by stars with M>10M⊙,so SFRs derived from this method are especially sensitive to the form of the IMF.Adopting the Scalo(1986)IMF,for example,yields SFRs that are~3times higher than derived with a Salpeter IMF.Fortunately,

8

the Hαequivalent widths and broadband colors of galaxies are very sensitive to the slope of the IMF over the mass range1–30M⊙,and these can be used to constrain the IMF slope(Kennicutt 1983a,Kennicutt et al1994).The properties of normal disks are well?tted by a Salpeter IMF (or by a Scalo function with Salpeter slope above1M⊙),consistent with observations of resolved stellar populations in nearby galaxies(e.g.Massey1998).As with the UV continuum method,it is important when applying published SFRs to take proper account of the IMF that was assumed.

2.4Forbidden Lines

The Hαemission line is redshifted out of the visible window beyond z~0.5,so there is considerable interest in calibrating bluer emission lines as quantitative SFR tracers.Unfortunately the integrated strengths of Hβand the higher order Balmer emission lines are poor SFR diagnostics,because the lines are weak and stellar absorption more strongly in?uences the emission-line?uxes.These lines in fact are rarely seen in emission at all in the integrated spectra of galaxies earlier than Sc(Kennicutt 1992a,also see Figure1).

The strongest emission feature in the blue is the[OII]λ3727forbidden-line doublet.The luminosities of forbidden lines are not directly coupled to the ionizing luminosity,and their excitation is sensitive to abundance and the ionization state of the gas.However the excitation of[OII]is su?ciently well behaved that it can be calibrated empirically(through Hα)as a quantitative SFR tracer.Even this indirect calibration is extremely useful for lookback studies of distant galaxies,because[OII] can be observed in the visible out to redshifts z~1.6,and it has been measured in several large samples of faint galaxies(Cowie et al1996,1997,Ellis1997,and references therein). Calibrations of SFRs in terms of[OII]luminosity have been published by Gallagher et al(1989), based on large-aperture spectrophotometry of75blue irregular galaxies,and by Kennicutt(1992a), using integrated spectrophotometry of90normal and peculiar galaxies.When converted to the same IMF and Hαcalibration the resulting SFR scales di?er by a factor of1.57,re?ecting excitation di?erences in the two samples.Adopting the average of these calibrations yields:

SF R(M⊙yr?1)=(1.4±0.4)×10?41L[OII](ergs s?1),(3) where the uncertainty indicates the range between blue emission-line galaxies(lower limit)and samples of more luminous spiral and irregular galaxies(upper limit).As with Equations1and 2,the observed luminosities must be corrected for extinction,in this case the extinction at Hα, because of the manner in which the[OII]?uxes were calibrated.

The SFRs derived from[OII]are less precise than from Hα,because the mean[OII]/Hαratios in individual galaxies vary considerably,over0.5–1.0dex in the Gallagher et al(1989)and Kennicutt (1992a)samples,respectively.The[OII]-derived SFRs may also be prone to systematic errors from extinction and variations in the di?use gas fraction.The excitation of[OII]is especially high in the di?use ionized gas in starburst galaxies(Hunter&Gallagher1990,Hunter1994,Martin1997), enough to more than double the L[OII]/SFR ratio in the integrated spectrum(Kennicutt1992a). On the other hand,metal abundance has a relatively small e?ect on the[OII]calibration,over most

9

of the abundance range of interest(0.05Z⊙≤Z≤1Z⊙).Overall the[OII]lines provide a very useful estimate of the systematics of SFRs in samples of distant galaxies,and are especially useful as a consistency check on SFRs derived in other ways.

2.5Far-Infrared Continuum

A signi?cant fraction of the bolometric luminosity of a galaxy is absorbed by interstellar dust and re-emitted in the thermal IR,at wavelengths of roughly10–300μm.The absorption cross section of the dust is strongly peaked in the ultraviolet,so in principle the FIR emission can be a sensitive tracer of the young stellar population and SFR.The IRAS survey provides FIR?uxes for over 30,000galaxies(Moshir et al1992),o?ering a rich reward to those who can calibrate an accurate SFR scale from the10–100μm FIR emission.

The e?cacy of the FIR luminosity as a SFR tracer depends on the contribution of young stars to heating of the dust,and on the optical depth of the dust in the star forming regions.The simplest physical situation is one in which young stars dominate the radiation?eld thoughout the UV–visible, and the dust opacity is high everywhere,in which case the FIR luminosity measures the bolometric luminosity of the starburst.In such a limiting case the FIR luminosity is the ultimate SFR tracer, providing what is essentially a calorimetric measure of the SFR.Such conditions roughly hold in the dense circumnuclear starbursts that power many IR-luminous galaxies.

The physical situation is more complex in the disks of normal galaxies,however(e.g.Lonsdale& Helou1987,Rowan-Robinson&Crawford1989,Cox&Mezger1989).The FIR spectra of galaxies contain both a“warm”component associated with dust around young star forming regions(ˉλ~60μm),and a cooler“infrared cirrus”component(ˉλ≥100μm)which is associated with more extended dust heated by the interstellar radiation?eld.In blue galaxies,both spectral components may be dominated by young stars,but in red galaxies,where the composite stellar continuum drops o?steeply in the blue,dust heating from the visible spectra of older stars may be very important. The relation of the global FIR emission of galaxies to the SFR has been a controversial subject. In late-type star forming galaxies,where dust heating from young stars is expected to dominate the40–120μm emission,the FIR luminosity correlates with other SFR tracers such as the UV continuum and Hαluminosities(e.g.Lonsdale&Helou1987,Sauvage&Thuan1992,Buat&Xu 1996).However,early-type(S0–Sab)galaxies often exhibit high FIR luminosities but much cooler, cirrus-dominated emission.This emission has usually been attributed to dust heating from the general stellar radiation?eld,including the visible radiation from older stars(Lonsdale&Helou 1987,Buat&Deharveng1988,Rowan-Robinson&Crawford1989,Sauvage&Thuan1992,1994, Walterbos&Greenawalt1996).This interpretation is supported by anomalously low UV and Hαemission(relative to the FIR luminosity)in these galaxies.However Devereux&Young(1990)and Devereux&Hameed(1997)have argued that young stars dominate the40–120μm emission in all of these galaxies,so that the FIR emission directly traces the SFR.They have provided convincing evidence that young stars are an important source of FIR luminosity in at least some early-type galaxies,including barred galaxies with strong nuclear starbursts and some unusually blue objects (Section4).On the other hand,many early-type galaxies show no independent evidence of high

10

SFRs,suggesting that the older stars or active galactic nuclei(AGNs)are responsible for much of the FIR emission.The Space Infrared Telescope Facility,scheduled for launch early in the next decade,should provide high-resolution FIR images of nearby galaxies and clarify the relationship between the SFR and IR emission in these galaxies.

The ambiguities discussed above a?ect the calibration of SFRs in terms of FIR luminosity,and there probably is no single calibration that applies to all galaxy types.However the FIR emission should provide an excellent measure of the SFR in dusty circumnuclear starbursts.The SFR vs L F IR conversion is derived using synthesis models as described earlier.In the optically thick limit, it is only necessary to model the bolometric luminosity of the stellar population.The greatest uncertainty in this case is the adoption of an appropriate age for the stellar population;this may be dictated by the timescale of the starburst itself or by the timescale for the dispersal of the dust (so theτ?1approximation no longer holds).Calibrations have been published by several authors under di?erent assumptions about the star formation timescale(e.g.Hunter et al1986,Lehnert& Heckman1996,Meurer et al1997,Kennicutt1998).Applying the models of Leitherer&Heckman (1995)for continuous bursts of age10–100Myr,and adopting the IMF in this paper yields the relation(Kennicutt1998):

SFR(M⊙yr?1)=4.5×10?44L F IR(ergs s?1)(starbursts),(4) where L F IR refers to the infrared luminosity integrated over the full mid and far-IR spectrum (8–1000μm),though for starbursts most of this emission will fall in the10–120μm region(readers should beware that the de?nition of L F IR varies in the literature).Most of the other published calibrations lie within±30%of Equation4.Strictly speaking,the relation given above applies only to starbursts with ages less than108years,where the approximations applied are valid.In more quiescent normal star forming galaxies,the relation will be more complicated;the contribution of dust heating from old stars will tend to lower the e?ective coe?cient in equation[4],whereas the lower optical depth of the dust will tend to increase the coe?cient.In such cases,it is probably better to rely on an empirical calibration of SFR/L F IR,based on other methods.For example, Buat&Xu(1996)derive a coe?cient of8+8?3×10?44,valid for galaxies of type Sb and later only, based on IRAS and UV?ux measurements of152disk galaxies.The FIR luminosities share the same IMF sensitivity as the other direct star formation tracers,and it is important to be consistent when comparing results from di?erent sources.

3DISK STAR FORMATION

The techniques described above have been used to measure SFRs in hundreds of nearby galaxies, and these have enabled us to delineate the main trends in SFRs and star formation histories along the Hubble sequence.Although it is customary to analyze the integrated SFRs of galaxies,taken as a whole,large-scale star formation takes place in two very distinct physical environments:one in the extended disks of spiral and irregular galaxies,the other in compact,dense gas disks in the centers of galaxies.Both regimes are signi?cant contributors to the total star formation in the local universe,but they are traced at di?erent wavelengths and follow completely di?erent patterns

11

along the Hubble sequence.Consequently I will discuss the disk and circumnuclear star formation properties of galaxies separately.

3.1Global SFRs Along the Hubble Sequence

Comprehensive analyses of the global SFRs of galaxies have been carried out using Hαsurveys (Kennicutt1983a,Gallagher et al1984,Caldwell et al1991,1994,Kennicutt et al1994,Young et al1996),UV continuum surveys(Donas et al1987,Deharveng et al1994),FIR data(Sauvage& Thuan1992,Walterbos&Greenawalt1996,Tomita et al1996,Devereux&Hameed1997),and multi-wavelength surveys(Gavazzi&Scodeggio1996,Gavazzi et al1996).The absolute SFRs in galaxies,expressed in terms of the total mass of stars formed per year,show an enormous range, from virtually zero in gas-poor elliptical,S0,and dwarf galaxies to~20M⊙yr?1in gas-rich spirals. Much larger global SFRs,up to~100M⊙yr?1,can be found in optically-selected starburst galaxies, and SFRs as high as1000M⊙yr?1may be reached in the most luminous IR starburst galaxies (Section4).The highest SFRs are associated almost uniquely with strong tidal interactions and mergers.

Part of the large dynamic range in absolute SFRs simply re?ects the enormous range in galaxy masses,so it is more illuminating to examine the range in relative SFRs,normalized per unit mass or luminosity.This is illustrated in Figure3,which shows the distribution of Hα+[NII]equivalent widths(EWs)in a sample of227nearby bright galaxies(B T<13),subdivided by Hubble type. The data were taken from the photometric surveys of Kennicutt&Kent(1983)and Romanishin (1990).The measurements include the Hαand the neighboring[NII]lines;corrections for[NII] contamination are applied when determining the SFRs.The EW is de?ned as the emission-line luminosity normalized to the adjacent continuum?ux,and hence it is a measure of the SFR per unit(red)luminosity.

Figure3shows a range of more than two orders of magnitude in the SFR per unit luminosity.The EWs show a strong dependence on Hubble type,increasing from zero in E/S0galaxies(within the observational errors)to20–150?A in late-type spiral and irregular galaxies.When expressed in terms of absolute SFRs,this corresponds to range of0–10M⊙yr?1for an L?galaxy(roughly comparable in luminosity to the Milky Way).The SFR measured in this way increases by approximately a factor of20between types Sa and Sc(Caldwell et al1991,Kennicutt et al1994).SFRs derived from the UV continuum and broadband visible colors show comparable behavior(https://www.360docs.net/doc/3f181784.html,rson& Tinsley1978,Donas et al1987,Buat et al1989,Deharveng et al1994).

High-resolution imaging of individual galaxies reveals that the changes in the disk SFR along the Hubble sequence are produced in roughly equal parts by an increase in the total number of star forming regions per unit mass or area,and an increase in the characteristic masses of individual regions(Kennicutt et al1989a,Caldwell et al1991,Bresolin&Kennicutt1997).These trends are seen both in the Hαluminosities of the HII regions as well as in the continuum luminosity functions of the embedded OB associations(Bresolin&Kennicutt1997).A typical OB star in an Sa galaxy forms in a cluster containing only a few massive stars,whereas an average massive star in a large Sc or Irr galaxy forms in a giant HII/OB association containing hundreds or thousands

12

Figure3:Distribution of integrated Hα+[NII]emission-line equivalent widths for a large sample of nearby spiral galaxies,subdivided by Hubble type and bar morphology.The right axis scale shows corresponding values of the stellar birthrate parameter b,which is the ratio of the present SFR to that averaged over the past,as described in Section5.1.

of OB stars.These di?erences in clustering properties of the massive stars may strongly in?uence the structure and dynamics of the interstellar medium(ISM)along the Hubble sequence(Norman &Ikeuchi1989,Heiles1990).

Although there is a strong trend in the average SFRs with Hubble type,a dispersion of a factor of ten is present in SFRs among galaxies of the same type.The scatter is much larger than would be expected from observational errors or extinction e?ects,so most of it must re?ect real variations in the SFR.Several factors contribute to the SFR variations,including variations in gas content, nuclear emission,interactions,and possibly short-term variations in the SFR within individual objects.Although the absolute SFR varies considerably among spirals(types Sa and later),some level of massive star formation is always observed in deep Hαimages(Caldwell et al1991).However many of the earliest disk galaxies(S0–S0/a)show no detectable star formation at all.Caldwell et al(1994)obtained deep Fabry-Perot Hαimaging of8S0–S0/a galaxies,and detected HII regions in only3objects.The total SFRs in the latter galaxies are very low,<0.01M⊙yr?1,and the

13

upper limits on the other4galaxies rule out HII regions fainter than those of the Orion nebula. On the other hand,Hαsurveys of HI-rich S0galaxies by Pogge&Eskridge(1987,1993)reveal a higher fraction of disk and/or circumnuclear star forming regions,emphasizing the heterogeneous star formation properties of these galaxies.Thronson et al(1989)reached similar conclusions based on an analysis of IRAS observations of S0galaxies.

The relative SFRs can also be parametrized in terms of the mean SFR per unit disk area.This has the advantage of avoiding any e?ect of bulge contamination on total luminosities(which biases the EW distributions).Analyses of the SFR surface density distributions have been published by Deharveng et al(1994),based on UV continuum observations,and by Ryder(1993),Ryder &Dopita(1994),and Young et al(1996),based on Hαobservations.The average SFR surface densities show a similar increase with Hubble type,but the magnitude of the change is noticeably weaker than is seen in SFRs per unit luminosity(e.g.Figure3),and the dispersion among galaxies of the same type is larger(see below).The stronger type dependence in the HαEWs(see Figure

3)is partly due to the e?ects of bulge contamination,which exaggerate the change in disk EWs by

a factor of two between types Sa–Sc(Kennicutt et al1994),but the change in disk EWs with type is still nearly twice as large as the comparable trend in SFR per unit area(Young et al1996).The di?erence re?ects the tendency for the late-type spirals to have somewhat more extended(i.e.lower surface brightness)star forming disks than the early-type spirals,at least in these samples.This comparison demonstrates the danger in applying the term SFR too loosely when characterizing the systematic behavior of star formation across the Hubble sequence,because the quantitative trends are dependent on the manner in which the SFR is de?ned.Generally speaking,a parameter that scales with the SFR per unit mass(e.g.the Hαequivalent width)is most relevant to interpreting the evolutionary properties of disks,whereas the SFR per unit area is more relevant to parametrizing the dependence of the SFR on gas density in disks.

Similar comparisons can be made for the FIR properties of disk galaxies,and these show consid-erably weaker trends with Hubble type(Devereux&Young1991,Tomita et al1996,Devereux& Hameed1997).This is illustrated in Figure4,which shows the distributions of L F IR/L H from a sample of nearby galaxies studied by Devereux&Hameed(1997).Since the near-IR H-band lu-minosity is a good indicator of the total stellar mass,the L F IR/L H ratio provides an approximate measure of the FIR emission normalized to the mass of the parent galaxy.Figure4shows the expected trend toward stronger FIR emission with later Hubble type,but the trend is considerably weaker,in the sense that early-type galaxies show much higher FIR luminosities than would be expected given their UV-visible https://www.360docs.net/doc/3f181784.html,parisons of L F IR/L B distributions show almost no dependence on Hubble type at all(Isobe&Feigelson1992,Tomita et al1996,Devereux&Hameed 1997),but this is misleading because the B-band luminosity itself correlates with the SFR(see Figure2).

The inconsistencies between the FIR and UV–visible properties of spiral galaxies appear to be due to a combination of e?ects(as mentioned above in Section2.5).In at least some early-type spirals,the strong FIR emission is produced by luminous,dusty star forming regions,usually concentrated in the central regions of barred spiral galaxies(Devereux1987,Devereux&Hameed 1997).This exposes an important bias in the visible and UV-based studies of SFRs in galaxies,in that they often do not take into account the substantial star formation in the dusty nuclear regions,

14

Figure4:Distributions of40-to120-μm infrared luminosity for nearby galaxies,normalized to near-infrared H luminosity,as a function of Hubble type.Adapted from Devereux&Hameed(1997), with elliptical and irregular galaxies excluded.

which can dominate the global SFR in an early-type galaxy.Devereux&Hameed emphasize the importance of observing a su?ciently large and diverse sample of early-type galaxies,in order to fully characterize the range of star formation properties.However it is also likely that much of the excess FIR emission in early-type spirals is unrelated to star formation,re?ecting instead the e?ects of dust heating from evolved stellar populations(Section2.5).Radiative transfer modelling by Walterbos&Greenawalt(1996)demonstrates that this e?ect can readily account for the trends seen in Figure4.

The interpretation in the remainder of this review is based on the SFR trends revealed by the Hα, UV continuum,broadband colors,and integrated spectra,which are consistent with a common evolutionary picture of the Hubble sequence.However it is important to bear in mind that this picture applies only to the extended,extranuclear star formation in spiral and irregular disks.The circumnuclear star formation follows quite di?erent patterns,as discussed in Section4.2.

15

3.2Dependence of SFRs on Gas Content

The strong trends in disk SFRs that characterize the Hubble sequence presumably arise from more fundamental relationships between the global SFR and other physical properties of galaxies,such as their gas contents or dynamical structure.The physical regulation of the SFR is a mature subject in its own right,and a full discussion is beyond the scope of this review.However it is very instructive to examine the global relationships between the disk-averaged SFRs and gas densities of galaxies,because they reveal important insights into the physical nature of the star formation sequence,and they serve to quantify the range of physical conditions and evolutionary properties of disks.

Comparisons of the large-scale SFRs and gas contents of galaxies have been carried out by several authors,most recently Buat et al(1989),Kennicutt(1989),Buat(1992),Boselli(1994),Deharveng et al(1994),Boselli et al(1995)and Kennicutt(1998).Figure5shows the relationship between the disk-averaged SFR surface densityΣSF R and average total(atomic plus molecular)gas density Σgas,for a sample of61normal spiral galaxies with Hα,HI,and CO observations(Kennicutt1998). The SFRs were derived from extinction-corrected Hα?uxes,using the SFR calibration in Equation 2.The surface densities were averaged within the corrected optical radius R0,as taken from the Second Reference Catalog of Bright Galaxies(de Vaucouleurs et al1976).

Figure5shows that disks possess large ranges in both the mean gas density(factor of20–30)and mean SFR surface density(factor of100).The data points are coded by galaxy type,and they show that both the gas and SFR densities are correlated with Hubble type on average,but with large variations among galaxies of a given type.In addition,there is an underlying correlation between SFR and gas density that is largely independent of galaxy type.This shows that much of the scatter in SFRs among galaxies of the same type can be attributed to an underlying dispersion in gas contents.The data can be?tted to a Schmidt(1959)law of the formΣSF R=AΣN gas.The best?tting slope N ranges from1.4for a conventional least squares?t(minimizing errors in SFRs only)to N=2.4for a bivariate regression,as shown by the solid lines in Figure5.Values of N in the range0.9–1.7have been derived by previous workers,based on SFRs derived from Hα,UV,and FIR data(Buat et al1989,Kennicutt1989,Buat1992,Deharveng et al1994).The scatter in SFRs at a given gas density is large,and most of this dispersion is probably introduced by averaging the SFRs and gas densities over a large dynamic range of local densities within the individual disks (Kennicutt1989,1998).

Figure5also contains information on the typical global e?ciencies of star formation and gas consumption time scales in disks.The dashed and dotted lines indicate constant,disk-averaged e?ciencies of1%,10%,and100%per108years.The average value for these galaxies is4.8%, meaning that the average disk converts4.8%of its gas(within the radius of the optical disk)every 108years.Since the typical gas mass fraction in these disk is about20%,this implies that stellar mass of the disk grows by about1%per108years,i.e.the time scale for building the disk(at the present rate)is comparable to the Hubble time.The e?ciencies can also be expressed in terms of the average gas depletion timescale,which for this sample is2.1Gyr.Recycling of interstellar gas from stars extends the actual time scale for gas depletion by factors of2–3(Ostriker&Thuan 1975,Kennicutt et al1994).

16

Figure5:Correlation between disk-averaged SFR per unit area and average gas surface density, for61normal disk galaxies.Symbols are coded by Hubble type:Sa–Sab(open triangles);Sb–Sbc (open circles);Sc–Sd(solid points);Irr(cross).The dashed and dotted lines show lines of constant global star formation e?ciency.The error bars indicate the typical uncertainties for a given galaxy, including systematic errors.

3.3Other Global In?uences on the SFR

What other global properties of a galaxy in?uence its SFR?One might plausibly expect the mass, bar structure,spiral arm structure,or environment to be important,and empirical information on all of these are available.

3.3.1LUMINOSITY AND MASS Gavazzi&Scodeggio(1996)and Gavazzi et al(1996)have compiled UV,visible,and near-IR photometry for over900nearby galaxies,and they found an anti-correlation between the SFR per unit mass and the galaxy luminosity,as indicated by broadband colors and HαEWs.At least part of this trend seems to re?ect the same dependence of SFR on Hubble type discussed above,but a mass dependence is also observed among galaxies of the same Hubble type.It is interesting that there is considerable overlap between the color-luminosity relations of di?erent spiral types,which suggests that part of the trends that are attributed to

17

morphological type may be more fundamentally related to total mass.A strong correlation between B–H color and galaxy luminosity or linewidth has been discussed previously by Tully et al(1982) and Wyse(1983).The trends seem to be especially strong for redder colors,which are more closely tied to the star formation history and mean metallicity than the current SFR.More data are needed to fully disentangle the e?ects of galaxy type and mass,both for the SFR and the star formation history.

3.3.2BARS Stellar bars can strongly perturb the gas?ows in disks,and trigger nuclear star formation(see next section),but they do not appear to signi?cantly a?ect the total disk SFRs. Figure3plots the HαEW distributions separately for normal(SA and SAB)and barred(SB) spirals,as classi?ed in the Second Reference Catalog of Bright Galaxies.There is no signi?cant di?erence in the EW distributions(except possibly for the Sa/SBa galaxies),which suggests that the global e?ect of a bar on the disk SFR is unimportant.Ryder&Dopita(1994)reached the same conclusion based on Hαobservations of24southern galaxies.

Tomita et al(1996)have carried out a similar comparison of FIR emission,based on IRAS data and broadband photometry for139normal spirals and260barred Sa–Sc galaxies.They compared the distributions of L F IR/L B ratios for Sa/SBa,Sb/SBb,and Sc/SBc galaxies,and concluded that there is no signi?cant correlation with bar structure,consistent with the Hαresults.There is evidence for a slight excess in FIR emission in SBa galaxies,which could re?ect bar-triggered circumnuclear star formation in some of the galaxies,though the statistical signi?cance of the result is marginal(Tomita et al1996).

Recent work by Martinet&Friedli(1997)suggests that in?uence of bars on the global SFR may not be as simple as suggested above.They analyzed Hαand FIR-based SFRs for a sample of32 late-type barred galaxies,and found a correlation between SFR and the strength and length of the bar.This suggests that large samples are needed to study the e?ects of bars on the large-scale SFR, and that the structural properties of the bars themselves need to be incorporated in the analysis.

3.3.3SPIRAL ARM STRUCTURE Similar tests have been carried out to explore whether

a strong grand-design spiral structure enhances the global SFR.Elmegreen&Elmegreen(1986) compared UV and visible broadband colors and HαEWs for galaxies they classi?ed as grand-design(strong two-armed spiral patterns)and?occulent(ill-de?ned,patchy spiral arms),and they found no signi?cant di?erence in SFRs.McCall&Schmidt(1986)compared the supernova rates in grand-design and?occulent spirals,and drew similar conclusions.Grand-design spiral galaxies show strong local enhancements of star formation in their spiral arms(e.g.Cepa&Beckman1990, Knapen et al1992),so the absence of a corresponding excess in their total SFRs suggests that the primary e?ect of the spiral density wave is to concentrate star formation in the arms,but not to increase the global e?ciency of star formation.

3.3.4GALAXY-GALAXY INTERACTIONS Given the modest e?ects of internal disk structure on global SFRs,it is perhaps somewhat surprising that external environmental in?uences can have much stronger e?ects on the SFR.The most important in?uences by far are tidal interactions. Numerous studies of the global Hαand FIR emission of interacting and merging galaxies have shown strong excess star formation(e.g.Bushouse1987,Kennicutt et al1987,Bushouse et al 1988,Telesco et al1988,Xu&Sulentic1991,Liu&Kennicutt1995).The degree of the SFR

18

enhancement is highly variable,ranging from zero in gas-poor galaxies to on the order of10–100 times in extreme case.The average enhancement in SFR over large samples is a factor of2–3. Much larger enhancements are often seen in the circumnuclear regions of strongly interacting and merging systems(see next section).This subject is reviewed in depth in Kennicutt et al(1998).

3.3.5CLUSTER ENVIRONMENT There is evidence that cluster environment systematically alters the star formation properties of galaxies,independently of the well-known density-morphology relation(Dressler1984).Many spiral galaxies located in rich clusters exhibit signi?cant atomic gas de?ciencies(Haynes et al1984,Warmels1988,Cayatte et al1994),which presumably are the result of ram pressure stripping from the intercluster medium,combined with tidal stripping from interactions with other galaxies and the cluster potential.In extreme cases one would expect the gas removal to a?ect the SFRs as well.Kennicutt(1983b)compared HαEWs of26late-type spirals in the Virgo cluster core with the?eld sample of Kennicutt&Kent(1983)and found evidence for a50%lower SFR in Virgo,comparable to the level of HI de?ciency.The UV observations of the cluster Abell1367by Donas et al(1990)also show evidence for lower SFRs.However subsequent studies of the Coma,Cancer,and A1367clusters by Kennicutt et al(1984)and Gavazzi et al(1991) showed no reduction in the average SFRs,and if anything a higher number of strong emission-line galaxies.

A comprehensive Hαsurvey of8Abell clusters by Moss&Whittle(1993)suggests that the e?ects of cluster environoment on global star formation activity are quite complex.They found a37–46% lower Hαdetection rate among Sb,Sc,and irregular galaxies in the clusters,but a50%higher detection rate among Sa–Sab galaxies.They argue that these results arise from a combination of competing e?ects,including reduced star formation from gas stripping as well as enhanced star formation triggered by tidal interactions.Ram-pressure induced star formation may also be taking place in a few objects(Gavazzi&Ja?e1985).

4CIRCUMNUCLEAR STAR FORMATION

AND STARBURSTS

It has been known from the early photographic work of Morgan(1958)and S′e rsic&Pastoriza (1967)that the circumnuclear regions of many spiral galaxies harbor luminous star forming regions, with properties that are largely decoupled from those of the more extended star forming disks. Subsequent spectroscopic surveys revealed numerous examples of bright emission-line nuclei with spectra resembling those of HII regions(e.g.Heckman et al1980,Stau?er1982,Balzano1983, Keel1983).The most luminous of these were dubbed“starbursts”by Weedman et al(1981). The opening of the mid-IR and FIR regions fully revealed the distinctive nature of the nuclear star formation(e.g.Rieke&Low1972,Harper&Low1973,Rieke&Lebofsky1978,Telesco& Harper1980).The IRAS survey led to the discovery of large numbers of ultraluminous star forming galaxies(Soifer et al1987).This subject has grown into a major sub?eld of its own,which has been thoroughly reviewed elsewhere in this series(Soifer et al1987,Telesco1988,Sanders&Mirabel 1996).The discussion here focusses on the range of star formation properties of the nuclear regions, and the patterns in these properties along the Hubble sequence.

19

4.1SFRs and Physical Properties

Comprehensive surveys of the star formation properties of galactic nuclei have been carried out using emission-line spectroscopy in the visible(Stau?er1982,Keel1983,Kennicutt et al1989b, Ho et al1997a,b)and mid-IR photometry(Rieke&Lebofsky1978,Scoville et al1983,Devereux et al1987,Devereux1987,Giuricin et al1994).Nuclear emission spectra with HII region-like line ratios are found in42%of bright spirals(B T<12.5),with the fraction increasing from8%in S0galaxies(and virtually zero in elliptical galaxies)to80%in Sc–Im galaxies(Ho et al1997a). These fractions are lower limits,especially in early-type spirals,because the star formation often is masked by a LINER or Seyfert nucleus.Similar detection fractions are found in10μm surveys of optically-selected spiral galaxies,but with a stronger weighting toward early Hubble types.The nuclear SFRs implied by the Hαand IR?uxes span a large range,from a lower detection limit of ~10?4M⊙yr?1to well over100M⊙yr?1in the most luminous IR galaxies.

The physical character of the nuclear star forming regions changes dramatically over this spectrum of SFRs.The nuclear SFRs in most galaxies are quite modest,averaging~0.1M⊙yr?1(median 0.02M⊙yr?1)in the Hαsample of Ho et al(1997a),and~0.2M⊙yr?1in the(optically selected) 10μm samples of Scoville et al(1983)and Devereux et al(1987).Given the di?erent selection criteria and completeness levels in these surveys,the SFRs are reasonably consistent with each other,and this suggests that the nuclear star formation at the low end of the SFR spectrum typically occurs in moderately obscured regions(A Hα~0–3mag)that are not physically dissimilar from normal disk HII regions(Kennicutt et al1989b,Ho et al1997a).

However the IR observations also reveal a population of more luminous regions,with L F IR~1010–1013L⊙,and corresponding SFRs of order1–1000M⊙yr?1(Rieke&Low1972,Scoville et al 1983,Joseph&Wright1985,Devereux1987).Such high SFRs are not seen in optically-selected samples,mainly because the luminous starbursts are uniquely associated with dense molecular gas disks(Young&Scoville1991and references therein),and for normal gas-to-dust ratios,one expects visible extinctions of several magnitudes or higher.The remainder of this section will focus on these luminous nuclear starbursts,because they represent a star formation regime that is distinct from the more extended star formation in disks,and because these bursts often dominate the total SFRs in their parent galaxies.

The IRAS all-sky survey provided the?rst comprehensive picture of this upper extreme in the SFR spectrum.Figure6shows a comparison of the total8–1000μm luminosities(as derived from IRAS) and total molecular gas masses for87IR-luminous galaxies,taken from the surveys of Tinney et al (1990)and Sanders et al(1991).Tinney et al’s sample(open circles)includes many luminous but otherwise normal star forming galaxies,while Sanders et al’s brighter sample(solid points)mainly comprises starburst galaxies and a few AGNs.Strictly speaking these measurements cannot be applied to infer the nuclear SFRs of the galaxies,because they are low-resolution measurements and the samples are heterogeneous.However circumnuclear star formation su?ciently dominates the properties of the luminous infrared galaxies(e.g.Veilleux et al1995,Lutz et al1996)that Figure 6(solid points)provides a representative indication of the range of SFRs in these IRAS-selected samples.

20

多功能6位电子钟说明书

多功能6位电子钟说明书 一、原理说明: 1、显示原理: 显示部分主要器件为2位共阳红色数码管,驱动采用PNP型三极管驱动,各端口配有限流电阻,驱动方式为扫描,占用P1.0~P1.6端口。冒号部分采用4个Φ3.0的红色发光,驱动方式为独立端口驱动,占用P1.7端口。 2、键盘原理: 按键S1~S3采用复用的方式与显示部分的P3.5、P3.4、P3.2口复用。其工作方式为,在相应端口输出高电平时读取按键的状态并由单片机支除抖动并赋予相应的键值。 3、迅响电路及输入、输出电路原理: 迅响电路由有源蜂鸣器和PNP型三极管组成。其工作原理是当PNP型三极管导通后有源蜂鸣器立即发出定频声响。驱动方式为独立端口驱动,占用P3.7端口。 输出电路是与迅响电路复合作用的,其电路结构为有源蜂鸣器,4.7K定值电阻R16,排针J3并联。当有源蜂鸣器无迅响时J3输出低电平,当有源蜂鸣器发出声响时J3输出高电平,J3可接入数字电路等各种需要。驱动方式为迅响复合输出,不占端口。 输入电路是与迅响电路复合作用的,其电路结构是在迅响电路的PNP型三极管的基极电路中接入排针J2。引脚排针可改变单片机I/O口的电平状态,从而达到输入的目的。驱动方式为复合端口驱动,占用P3.7端口。 4、单片机系统: 本产品采用AT89C2051为核心器件(AT89C2051烧写程序必须借助专用编程器,我们提供的单片机已经写入程序),并配合所有的必须的电路,只具有上电复位的功能,无手动复位功能。 二、使用说明: 1、功能按键说明: S1为功能选择按键,S2为功能扩展按键,S3为数值加一按键。 2、功能及操作说明:操作时,连续短时间(小于1秒)按动S1,即可在以上的6个功能中连

star法撰写成就故事范例

1. 由于是浙江选考生,在高中第一次选考中化学只取得了91分的成绩,只剩下一次选考机会,成绩说好不算好,说坏不算坏的情况下,提升有些困难。不知道该放弃还是继续参加考试。如果不能达到97或100的成绩,可能会被目标大学相同的同学在高考上拉开差距。晚上也睡不好觉,经过一段时间的调整心态,说服自己还是奋力一搏。于是到选考前我每天利用下课时间翻看化学书和整理笔记,努力记住容易混淆的基础知识点,每天晚自习刷一张化学模拟卷,自批订正纠错,找到了自己很多弱点和盲点,并针对的做专题练习。终于在四月选考中达到了97的目标。虽然很累,但是为了实现离考上理想大学的目标更进一步,还是值得的。 专业知识技能——基础化学知识 可迁移技能——记忆、纠错(找到自己的弱点)、反省、整理、权衡利弊 自我管理技能——自我控制、抗压、调整心态、坚持不懈 2. 上个学期选专业时想要进入生物科学专业,但是看到报名的人数有点多,招收人数与报名人数之比大约是1/2,要经过面试淘汰一部分人。而且在看到身边的同学都非常优秀的情况下,竞争压力有些大,我心中也有些底气不足。但我还是迫使自己鼓起勇气报了名。报名之后,我上网了解记住了一些生物科学的知识,回忆了我高中时期学习生物的一些知识和经历,找到一些我可能在面试中能够用到的素材。并在脑海中模拟了几个面试中可能会提到的问题,并想了想如何回答。此外也找到我们寝室作为生命科学学院教授的新生之友询问了一些情况。到了面试那天,我准备的其中一些素材和回答派上了用场,顺利地应对面试教授提出的问题,通过了面试,成功进入生物科学专业,提升了我的信心。 专业知识技能——生物科学部分知识 可迁移技能——记忆、模拟(假想)、询问求助、面试交流、做好充分准备 自我管理技能——鼓起勇气(自我调节心态)、有信心的、自我控制 3. 小时候老师说我钢笔字写的挺好的,在小学的钢笔字比赛中获了奖,我可能

STAR法成就故事复习过程

S T A R法成就故事

1、由于家里比较贫穷,因此大学以前就没有接触过电脑,第一节上计算机文化基础时,一点也不明白,年轻人难免有好胜之心,因此我认真学习课本,遇到不懂的问题及时向同学及老师请教,由于考试考word等办公软件,因此我上网浏览资料,下载了office教程,一有时间就去机房实践,不明白就请教机房老师,经过许多次的练习,我终于掌握了计算机基础知识,通过了考试。 这个故事中,琢磨、实践是可迁移技能,word等软件知识是专业知识技能,认真是自我管理技能。 2、大一的时候,我没有拿到奖学金,看到有的同学拿到奖学金后的兴奋,我心里暗暗下定决心要在大二拿到奖学金。为了实现这个目标,我付出了许多。上课时认真听讲,做好课堂笔记,课下认真做好老师布置的作业,有不懂的问题及时向老师和同学请教,考前做好复习。经过一年的努力,获得了染整专业知识,并且在大二成功获得了奖学金。 这个故事中,认真是自我管理技能,请教、获得是可迁移技能,染整知识是专业技能。 3、大学寒假春节我在超市当售货员。我主要销售零食。一方面加强了有关销售零食知识的学习,虚心向其他店员请教。一方面了解实际情况,在短时期适应下来。及时上岗工作走上正轨,负起了超市店员的职责。工作几周后对商品的规划与陈列有了了解,感受到市场的学问与超市零售的知识是如此的深广。在期间发生过意外但通过冷静的自省,认识自己的不足,整体上因参与营运时间较短,操作不够自如外,这是由于经验少。经过超市员工的共同的努力,我们

的销售有了明显的增长。而我在严格要求的基础之上,发现问题,消减漏洞,作一名称职的超市店员。 这个故事中,严格、虚心是自我管理技能,适应、发现、请教是可迁移技能,销售零食知识是专业技能。 4、我学会了使用CAD软件。这学期我们学习了AUTO CAD 课程,我真切地体 会到了这种绘图系统的实用性。首先熟悉用户界面,学习新建图形、绘制简单图形的操作。掌握坐标及数据的输入方法,绘出下面所示图形,打开工具栏的方法,打开“对象捕捉”工具栏。同时学会利用栅格绘制图形。设定CAD图形界限的方法,掌握绘制CAD图形的基本绘图命令熟练运用对象捕捉定点工具,精确绘制图形熟悉圆、圆弧、椭圆、点等画法掌握CAD各种图形编辑命令,如镜像、偏移、阵列等的用法和功能了解选择图形对象的多种方法掌握设定图层的方法养成按照图层绘制不同属性对象的画图习惯。在今后的学习工作中,好好利用CAD,再接再厉,更加努力的学习,希望在以后的学习中能够熟练掌握这门技术。 这个故事中,熟悉、学会、利用是可迁移技能,CAD知识是专业知识技能,努力、熟练是自我管理技能。 5、上大学以来,一直就想找个机会锻炼一下自己,在大二暑假我去了浙江向胜体育器材厂做社会实践。在工作中,我对机械的自动化有了更深的了解,对工作中出现的问题,我也及时地向老师傅请教,很快就学会了机器的操作方法,由于车间条件恶劣,养成了吃苦耐劳的精神,看着生产线上我做的零件,我感觉特别有成就感。 这个故事中,请教是可迁移技能,吃苦耐劳是自我管理技能,机器操作方法是专业知识技能。

七彩闹钟说明书

七彩时钟使用说明书 本产品融合了万年历之时间、日期、星期、温度的显示,特别适合居家办公使用。 一、功能简介 ★正常时间功能:显示时间、日期(从2000年至2099年)、星期、温度,并可实现12/24小时制的转换。 ★闹钟和贪睡功能:每日闹铃,闹铃音乐有8首可选,同时可开启贪睡功能。 ★环境温度显示功能:温度测量00C-500C或320F-1220F并可进行摄氏/华氏温度转换。★七彩灯功能:可发出七种颜色的光,循环变色。 二、功能操作 ⑴.时间日期设置 ★上电后显示正常状态.按SET键进入时间、日期的设置,并以下列顺序分别设置小时分钟、年、月、日、星期等,通过UP/DOWN键配合来完成设置。 时→分→年→月→日→正常显示 ★设置范围:时为1-12或0-23,分为0-59,年为2000-2099.月为1-12.日为1-31;在日期设置的同时,星期由MON 3=. SUN相应的自动改变。 ★在设置状态,也可按AL键或无按键1分钟退出设置,并显示当前所设置的时间。 ★在正常状态,按UP键进行12和24小时转换。 ⑵、闹钟和贪睡设置 ★在正常状态,按AL键一次进入闹钟模式。 ★在闹钟状态,按SET键进入闹铃设定状态,以下列顺序分别设置小时、分钟、贪睡、音乐,通过UP/DOWN键配合来完成其设置。 时→分→贪睡→音乐→退出 ★在设置状态,如果无按键1分钟或按MODE键退出设置,并显示当前所设置的时间。 ★在闹钟状态,通过UP键开启闹铃的标志,按第二次UP键开启贪睡功能。 闹铃→Zz贪睡→OFF ★当闹钟到达设定时间,响闹1分钟;当贪睡时间到达响闹,按SET键取消响闹或按任意键停止响闹。 ★贪睡的间隔延续时间范围设定:1-60分钟。 ★当闹铃及贪睡的标志未开启时,即闹铃和贪睡同时关闭,只有在闹铃标志开启时,重按UP,贪睡功能才有效。 ⑶、温度转换 在正常状态,按DOWN键可以进行摄氏l华氏温度间的相互转换。 ⑷、按TAP可开启夜灯,5秒钟自动熄灭。 ⑸、把开关置ON或DEMO位置开启七彩灯。 ⑹、可使用外接直流电源:4.5V 100MA的变压器。 三、注意事项: 1、避免猛烈冲击、跌落。 2、勿置阳光直射、高温、潮湿的地方。 3、避免使用带有腐蚀性化学成份的液体和硬布来抹擦本产品表面。 4、当屏幕显示混乱时,拔出钮扣电池,重新装上恢复原始状态,使显示恢复正常。 5、切勿新旧电池混在一起使用,在屏幕显示不清楚时请及时更换新电池。 6、如长时间不使用时钟时,请将电池取出,以免电池漏液损坏本机。 7、请勿随意拆开产品调整内部元件参数。

STAR简历法则

STAR法则,即为Situation Task Action Result的缩写,具体含义是: Situation: 事情是在什么情况下发生 Task: 你是如何明确你的任务的 Action: 针对这样的情况分析,你采用了什么行动方式 Result: 结果怎样,在这样的情况下你学习到了什么 简而言之,STAR法则,就是一种讲述自己故事的方式,或者说,是一个清晰、条理的作文模板。不管是什么,合理熟练运用此法则,可以轻松的对面试官描述事物的逻辑方式,表现出自己分析阐述问题的清晰性、条理性和逻辑性。 详细释义 STAR法则,500强面试题回答时的技巧法则,备受面试者成功者和500强HR的推崇(宝洁HR培训资料有专门的讲座讨论如何用此法则检验面试者过往事迹从而判断其能力)。 如果对面试技巧和人力资源招聘理论有所了解的同学应该听说过,没听说也无所谓,现在知道也不迟。由于这个法则被广泛应用于面试问题的回答,尽管我们还在写简历阶段,但是,写简历时能把面试的问题就想好,会使自己更加主动和自信,做到简历,面试关联性,逻辑性强,不至于在一个月后去面试,却把简历里的东西都忘掉了(更何况有些朋友会稍微夸大简历内容) 在我们写简历时,每个人都要写上自己的工作经历,活动经历,想必每一个同学,都会起码花上半天甚至更长的时间去搜寻脑海里所有有关的经历,争取找出最好的东西写在简历上。 但是此时,我们要注意了,简历上的任何一个信息点都有可能成为日后面试时的重点提问对象,所以说,不能只管写上让自己感觉最牛的经历就完事了,要想到今后,在面试中,你所写的经历万一被面试官问到,你真的能回答得流利,顺畅,且能通过这段经历,证明自己正是适合这个职位的人吗? 编辑本段 示例 写简历时就要准备好面试时的个人故事,以便应付各种千奇百怪的开放性问题。 为了使大家轻松应对这一切,我向大家推荐“个人事件模块”的方法,以使自己迅速完成这看似庞大的工程。 一,头脑风暴+STAR法则——〉个人事件模块 1.1,头脑风暴。 在脑海里仔细想出从大一到大四自己参与过所有活动(尤其是能突出你某些能力的活动),包括: 1,社团活动职务时间所做事情 2,在公司实习的经历职务时间所做过的事情 3,与他人一起合作的经历(课题调研,帮助朋友办事) (回忆要尽量的详细,按时间倒序写在纸上,如大一上学期发生。。。。。。大一下学期发生。。。。。。。如此类推) 我相信这一步,很多朋友都已经做了,但是仅仅这样就满足了,就直接写在简历上当完事了,那是不行的,想提高竞争力,还得继续。。 1.2,STAR法则应用 将每件事用S T A R 四点写出,将重要的事情做成表格 例大一辩论比赛获得冠军 S 系里共有5支队伍参赛,实力。。。,我们小组。。。。。

电子闹钟说明书

本电子闹钟的设计是以单片机技术为核心,采用了小规模集成度的单片机制作的功能相对完善的电子闹钟。硬件设计应用了成熟的数字钟电路的基本设计方法,并详细介绍了系统的工作原理。硬件电路中除了使用AT89C51外,另外还有晶振、电阻、电容、发光二极管、开关、喇叭等元件。在硬件电路的基础上,软件设计按照系统设计功能的要求,运用所学的汇编语言,实现的功能包括‘时时-分分-秒秒’显示,设定和修改定时时间的小时和分钟、校正时钟时间的小时、分钟和秒、定时时间到能发出一分钟的报警声。 一芯片介绍 AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C51是一种带2K字节闪存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C51是它的一种精简版本。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案,外形及引脚排列如图1-1所示。 图1-1 AT89C51引脚图 74LS573 的八个锁存器都是透明的D 型锁存器,当使能(G)为高时,

Q 输出将随数据(D)输入而变。当使能为低时,输出将锁存在已建立的数据电平上。输出控制不影响锁存器的内部工作,即老数据可以保持,甚至当输出被关闭时,新的数据也可以置入。这种电路可以驱动大电容或低阻抗负载,可以直接与系统总线接口并驱动总线,而不需要外接口。特别适用于缓冲寄存器,I/O 通道,双向总线驱动器和工作寄存器。外形及引脚排列如图1-2所示。 图1-2 74LS573引脚图

智慧树大学生就业与创业指导章节标准答案

第一章单元测试 ?名称大学生就业与创业指导 ?对应章节第一章 ?成绩类型分数制 ?截止时间 2017-12-01 23:59 ?题目数5 ?总分数 100 ?说明: ?评语: ?提示:选择题选项顺序为随机排列,若要核对答案,请以选项内容为准100 ?第1部分 ?总题数:5 ? 1 【多选题】(20分) 关于职业发展模型,以下描述正确的是:() A. 职业选择或定位时,自我方面主要考虑能力与需求,职业方面要了解要求与回馈。 B. 当个人的能力符合职业的要求时,组织对个人较满意。 C. 当职业的回馈满足个人的需求时,个人对组织较满意。 D. 任何职业选择要同时考虑组织满意度与职业满意度两个维度。 正确 查看答案解析 ? ?本题总得分:20分 2 【多选题】(20分)

职业对技能的要求通常可分为三种类别,分别是:( ) A. 知识技能 B. 可迁移技能 C. 管理技能 D. 自我管理技能 正确 查看答案解析 ? ?本题总得分:20分 3 【多选题】(20分) STAR成就故事深度分析法,是有效分析个人能力的方式。对“STAR”原则描述正确的是:() A. Situation情境——当时面对什么困难? B. Target目标——你的目标是什么? C. Action行动——你做了什么? D. Result结果——效果如何?你有什么收获? 正确 查看答案解析 ? ?本题总得分:20分 4 【多选题】(20分)

参加大型招聘会时,应注意:() A. 最好提前通过招聘会网络发布的信息了解企业和岗位 B. 带一个版本的简历即可,看到中意的企业就投递 C. 要有针对性地投递简历,主动提问交流 D. 及时记录投递简历情况、公司名称、应聘岗位、联系人等。 正确 查看答案解析 ? ?本题总得分:20分 5 【多选题】(20分) 获取就业信息的渠道有:() A. 网络 B. 招聘会 C. 实习实践 D. 人际资源 E. 直接与用人单位联系 正确 第二章单元测试 ?名称大学生就业与创业指导

小型数字系统-定时闹钟说明书

XX 学院 课程设计说明书(20XX / 20XX学年第一学期) 课程名称:嵌入式系统设计 题目:定时时钟 专业班级:XXXXXXXXXXXX 学生姓名:XXX 学号:XXXXXXXX 指导教师:XXXXXX 设计周数:2周 设计成绩: 二OXX年X 月XX 日

定时时钟设计说明书 1.选题意义及背景介绍 电子钟在生活中应用非常广泛,而一种简单方便的数字电子钟则更能受到人们的欢迎。所以设计一个简易数字电子钟很有必要。本电子钟采用AT89C52单片机为核心,使用12MHz 晶振与单片机AT89C52 相连接,通过软件编程的方法实现以24小时为一个周期,同时8位7段LED数码管显示时间的小时、分钟和秒,并在计时过程中具有整点报时、定时闹钟功能。时钟设有起始状态,时钟显示,设置时钟时,设置时钟分,设置闹钟时和设置闹钟分共六个状态。电子钟设有四个操作按钮:KEY1(MODE)、KEY2(PLUS)、KEY3(MINUS)、KEY4(RESET),对电子钟进行模式切换和设置等操作。 2.1.1方案设计 2.1.2系统流程框图 AT89C52 按钮 数码管显示 开启电源 初始显示d.1004-22 循环检测按键状态 闹铃 KEY1是否按下模式切换KEY2是否按下 数字加 KEY3是否按下 数字减

2.1.3电路设计 (整体电路图)

(已封装的SUB1 内部图) 2.1.4主要代码 1)通过循环实现程序的延时 void delay(uint z) { uint x, y; for (x = 0; x=second1 && second

C++电子闹钟设计说明书

电子闹钟设计说明书 一、实现的功能 一个简单的电子闹钟设计程序,和一般的闹钟的功能差不多。首先此程序能够同步电脑上的显示时间,保证时间的准确性;24小时制,可以根据自己喜欢的铃声设置闹钟提示音,还能自己设置提示语句,如“时间到了该起床了”,“大懒虫,天亮了,该起床了”等等,所以这是一个集实用和趣味于一体的小程序。 二、设计步骤 1、打开Microsoft Visual C++ 6.0,在文件中点击新建,在弹出框内选择MFC AppWizard[exe]工程,输入工程名张卢锐的闹钟及其所在位置,点击确定,如图所示。 2、将弹出MFC AppWizard-step 1对话框,选择基本对话框,点击完成,如图所示。

然后一直点下一步,最后点完成,就建立了一个基于对话窗口的程序框架,如图所示。 3、下面是计算器的界面设计 在控件的“编辑框”按钮上单击鼠标左键,在对话框编辑窗口上合适的位置按下鼠标左键并拖动鼠标画出一个大小合适的编辑框。在编辑框上单击鼠标右键,在弹出的快捷莱单中选择属性选项,此时弹出Edit属性对话框,以显示小时的窗口为例,如图所示,在该对话框中输入ID属性。

在控件的“Button”按钮上单击鼠标左键,在对话框上的合适的位置上按下鼠标左键并拖动鼠标画出一个大小合适的下压式按钮。在按钮上单击鼠标右键,在弹出的快捷菜单中选择属性选项,此时也弹出Push Button属性对话框,以数字按钮打开为例,如图所示,在该对话框中输入控件的ID值和标题属性。 按照上面的操作过程编辑其他按钮对象的属性。 表1 各按钮和编辑框等对象的属性 对象ID 标题或说明 编辑框IDC_HOUR 输入定时的整点时间 编辑框IDC_MINUTE 输入定时的分钟数 编辑框IDC_FILE 链接提示应所在地址 编辑框IDC_WARING 自己编辑显示文本 按钮IDC_OPEN 打开 按钮IDC_IDOK 闹钟开始 按钮IDC_CHANGE 重新输入 静态文本IDC_STATIC 界面上的静态文本,如时,分,备注完成后界面如图所示。

star法则成就故事例文

star法则成就故事例文 【--党风廉政建设】 在求职的时候我们会遇到各种各样的面试官,如何在面对不同面试官时都能从容的应对是很多人思考的问题,除了做好充分的准备之外,还需要了解star法则,因为它同基本企业管理中的十大定律一样是面试官常用的,而今天我们就来介绍几个star法则成就故事例文。本站为大家整理的相关的star法则成就故事例文,供大家参考选择。 star法则成就故事例文 什么叫star法则 首先我们需要先了解star法则的意思。所谓star法则是指情境、任务、行动、结果四个词的缩写,其中情境是指事情是在什么情况下发生的;任务是指你是如何明确任务的;行动是指针对这样的情况分析后采取了什么样的行动方式;结果是指最后取得什么样的结果并且学习到了什么。 如果将四项连接起来,star法则可以理解为:案例在什么情况下发生发生之后当事人如何明确案例中给到自己的任务对任务进行分析然后采取对应的行动最后取得什么样的结果并且从中学习到什么,简单的来说它就是一种让面试者讲述自己故事的方式,可以看出面试者阐述问题时的条理性和逻辑性等等。 star法则成就故事例文 用STAR法来撰写成就故事 请写下生活中令你有成就感的具体事件然后对其进行分析,看看你在其中使用了那些技能(尤其是可迁移技能)。 这些成就故事不一定是在工作或学习上的,也可以是课外活动或家庭生活中发生的,比如同学聚会,一次美好而难忘的旅游等等,他们不必是惊天动地的大事,只要符合两条标准就可以被视为成就 (1)你喜欢做这件事时体验到的感受 (2)你为完成他所带来的结果感到自豪。 如果你同时还获得了他人的认可和表扬那就更好了,不过这并不重要。 在撰写成就故事时,每一个故事都应当包含一下要素: 当时的情况(Situation)

STAR法则详解

STAR法则详解 一.什么是STAR法则? The STAR (Situation, Task, Action, Result) format is a job interview technique used by interviewers to gather all the relevant information about a specific capability that the job requires. This interview format is said to have a higher degree of predictability of future on-the-job performance than the traditional interview. STAR法则是情境(situation)、任务(task)、行动(action)、结果(result)四项的缩写。STAR法则是一种常常被官使用的工具,用来收集面试者与工作相关的具体信息和能力。STAR法则比起传统的面试手法来说,可以更精确地预测面试者未来的工作表现。

Situation: The interviewer wants you to present a recent challenge and situation in which you found yourself. 情境:面试官希望你能描述一个最近遇到的挑战或情况。 T ask: What did you have to achieve? The interviewer will be looking to see what you were trying to achieve from the situation. 任务:你必须要完成什么任务?面试者想要知道的是你在上述情境下如何去明确自己的任务。 Action: What did you do? The interviewer will be looking for information on what you did, why you did it and what were the alternatives.

C电子闹钟设计说明书

C电子闹钟设计说 明书

电子闹钟设计说明书 一、实现的功能 一个简单的电子闹钟设计程序,和一般的闹钟的功能差不多。首先此程序能够同步电脑上的显示时间,保证时间的准确性;24小时制,能够根据自己喜欢的铃声设置闹钟提示音,还能自己设置提示语句,如“时间到了该起床了”,“大懒虫,天亮了,该起床了”等等,因此这是一个集实用和趣味于一体的小程序。 二、设计步骤 1、打开Microsoft Visual C++ 6.0,在文件中点击新建,在弹出框内选择MFC AppWizard[exe]工程,输入工程名张卢锐的闹钟及其所在位置,点击确定,如图所示。 2、将弹出MFC AppWizard-step 1对话框,选择基本对话框,点

击完成,如图所示。 然后一直点下一步,最后点完成,就建立了一个基于对话窗口的程序框架,如图所示。 3、下面是计算器的界面设计 在控件的“编辑框”按钮上单击鼠标左键,在对话框编辑窗口上合适的位置按下鼠标左键并拖动鼠标画出一个大小合适的编辑框。在编辑框上单击鼠标右键,在弹出的快捷莱单中选择属性选

项,此时弹出Edit属性对话框,以显示小时的窗口为例,如图所示,在该对话框中输入ID属性。 在控件的“Button”按钮上单击鼠标左键,在对话框上的合适的位置上按下鼠标左键并拖动鼠标画出一个大小合适的下压式按钮。在按钮上单击鼠标右键,在弹出的快捷菜单中选择属性选项,此时也弹出Push Button属性对话框,以数字按钮打开为例,如图所示,在该对话框中输入控件的ID值和标题属性。 按照上面的操作过程编辑其它按钮对象的属性。 表1 各按钮和编辑框等对象的属性

三个成就故事

指导 预习课本第三章,根据课本P61页的小练习为例, 用STARL法来编写三个成就故事: 1)S:Situation(情境,背景)“在什么情景下发生的?” 2)T:Task(任务)“当时你的任务和目标是什么?” 3)A:Action(行动)“你采取了哪些行动?” 4)R:Result(结果)“最后结果怎么样?” 5)L:Learning(学习):“我从中学到了…” 内容包括:专业技能;可迁移技能;自我管理技能三种。 (请直接打字或粘贴,不要用附件形式) 成就故事一: 这个是我第一次从商的故事,发生在我上高一时的寒假。当时马上就要过新年了,也正是那时苹果最好卖,每年都是那时家里的苹果拉到省城批发,可是那一年父亲在忙着准备过年的物资,没法出去卖苹果。于是,我爸就叫我去,当时我是不愿意去的,心里也害怕,但是我爸说他像我这个年纪的时候就快成家了,把我训了一顿。因此,有了我第一次外出卖苹果的经历。由于我是第一次出去,就只拉了2000斤苹果,让我自己看着卖,就这样自己跟随货车到了省城。在水果批发市场我第一次感受到了挣钱不容易,好多商贩看我年纪小过来坑我,好在我出来时,对价格有了大概的了解,没被唬住。在闲时,我就向别人请教,问问他们怎么卖的怎

么对付商贩的胡搅蛮缠。渐渐地,我也有了自己的方法,那就是说话要硬气,有底气,去唬他们,让商贩跟着自己的节奏走。在那呆了三天,我就把家里的苹果批发完了,当时心里可激动了。在以后,放假回家,就由我代替父亲去省城卖水果。当时我就体会到了父亲的用意,男孩子就需要磨练,只有迈出第一步,才会有第二步......自己才有勇气独立面对以后的生活。 我认识到,在生活中,要大胆尝试,自己不去做,永远不知道自己有多优秀。从这,我就开始慢慢脱离学生时代的幼稚天真,慢慢接触社会。从我开口与商贩周旋的时候我就体会到做人要有自信,有底气,只有这样,别人才不会小瞧你,有时,会有不错的效果,当你的自信占了上风,你离成功就不远了。 成就故事二: 我的第二个成就故事是大一暑假自己出去打工。当时,学校放假早,我不打算早早回家,于是瞒着父母自己找工作,开始的时候打算跟着同学一起去山东青岛,后来人家招满了人,就没去成。我在学校留了两天,听说富士康招人就打算去看看,在体检的时候我改变了主意,决定离开。我经过多方打听知道,那年电子市场不景气厂里没有多少活做,老工人都没多少活做,更何况我们这些学生工。因此我再次回到

闹钟功能说明文档

一、功能描述 本工程包括矩阵键盘和数码管显示模块,共同实现一个带有闹钟功能、可以设置时间的数字时钟。具体功能如下: 1.数码管可以显示时十位、时个位、分十位、分个位、秒十位、秒个位。 2.上电后,数码管显示000000,并开始每秒计时。 3.按下按键0进入时间设置状态。再按下按键0退出时间设置状态,继续 计时。 4.在时间设置状态,通过按键1来选择设置的时间位,在0~5之间循环选 择。 5.在时间设置状态,通过按键2来对当前选择的时间位进行加1。 6.在计时状态下,按下按键14,进入闹钟时间点设置状态。再按下按健 15,退出闹钟设置状态。 7.在闹钟设置状态,按下按键13选择设置的时间位,此时可以按下所需要 的按键序号设置对应闹钟时间。 8.当前时间与所设置的时间点匹配上了,蜂鸣器响应5秒。 二、平台效果图

三、实现过程 首先根据所需要的功能,列出工程顶层的输入输出信号列表。

我们把工程分成四个模块,分别是数码管显示模块,矩阵键盘扫描模块,时钟计数模块,闹钟设定模块。 1.数码管显示模块 本模块实现了将时钟数据或者闹钟数据显示到七段译码器上的功能。 七段译码器引脚图: 根据七段译码器的型号共阴极或者共阳极,给予信号0或1点亮对应的led灯,一个八段数码管称为一位,多个数码管并列在一起可构成多位数码管,它们的段选(a,b,c,d,e,f,g,dp)连在一起,而各自的公共端称为位选线。显示时,都从段选线送入字符编码,而选中哪个位选线,那个数码管便会被点亮。数码管的8段,对应一个字节的8位,a对应最低位,dp 对应最高位。所以如果想让数码管显示数字0,那么共阴数码管的字符编码为00111111,即;共阳数码管的字符编码为11000000。 在轮流显示过程中,每位数码管的点亮时间为1~2ms,由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感,动态显示的效果和静态显示是一样的,能够节省大量的I/O端口,而且功耗更低。 本模块采用6个七段译码器显示闹钟小时分钟秒位,使用一个计数器不停计数0-5,每个数字代表一个七段译码器,在对应的七段译码器给予对应的字符编码,以此达到扫描数码管显示数据的功能。 信号列表如下:

木头闹钟说明书

木头闹钟说明书 产品功能 ●同屏显示年、月、日、时、分、星期功能: ●闹钟及贪睡功能:贪睡功能开启后,闹钟可以6次闹响,每次闹响间隔5分钟。没有开启贪睡功能,闹响 1分钟后,闹钟功能自动关闭; ●时间记忆功能:不使用AC / DC适配器时,LED屏不显示,但时钟内部会继续正常计时,当连接上适配器时,时钟会自动显示当前正常的时间,无需重新设置; ● 1/4小时制转换功能; ●省电模式:每天下午6点至第二天早上7点,LED显示亮度会自动降低,使人的视觉感到舒适。 使用方法 走时及闹铃设置 ●将AC / DC适配器插上电源,把6V直流电压插头接入时钟6V接口,LED数字屏即发亮显示; ●按住SET键3秒进入设定模式,再按动SET键,每按动一次,年、月、日、时、分将依次闪烁。要设置年、月、日、时、分,只要改变在闪烁的数字即可,按动UP和DOWN 键均可调节,设置结束按SET键,时 钟回到正常的走时状态。星期的设定是全自动的, 它会随着时间的设置而自动改变。●设置闹铃时间,

按动DOWN键显示屏出现AL:- -或AL:on ,每按动DOWN键一次即会转换一次。按住DOWN键3秒,时的数字在闪烁时,即可通过UP 和DOWN键进行调节,要调节分的数字,先按动SET键切换到分的闪烁,同样用UP和DOWN键进行调 节,设置结束按SET键,时钟回到正常的走时状态。闹铃闹响时,按下SET或UP键,闹铃闹响停止,并 且关闭闹钟功能,如果闹铃闹响时,按下DOWN 键闹响停止,则贪睡功能自动开启,闹铃会每隔5分钟 闹响一次,可连续6次。若贪睡闹响未达到第6次,在任何一次闹响时,按下SET或UP键,不但闹响停止,同时自动关闭贪睡功能,如果是按下DOWN键,每隔分钟会再闹响一次,直至达到6次闹响为止; ●在设定模式下,15秒内不按任何键,时钟将恢复时间显示。 12/24小时制设置 正常时间显示下,每按一次UP键,可以实现1/4小时制的转换。在12小时制式下,数字走到12,这 时在时钟的左上角将会出现亮点,表示这时已是下午时间。 电源供电 AC / DC适配器输入电压:220-230V 0HZ ,输出电压:6V /00mA。功率是:6V*0.2=1.2W将适配器6V直

写好经历简历的STAR法则

STAR法则,500强面试题回答时的技巧法则,备受面试者成功者和500强HR的推崇(宝洁HR培训资料有专门的讲座讨论如何用此法则检验面试者过往事迹从而判断其能力)。 如果对面试技巧和人力资源招聘理论有所了解的同学应该听说过,没听说也无所谓,现在知道也不迟。由于这个法则被广泛应用于面试问题的回答,尽管我们还在写简历阶段,但是,写简历时能把面试的问题就想好,会使自己更加主动和自信,做到简历,面试关联性,逻辑性强,不至于在一个月后去面试,却把简历里的东西都忘掉了(更何况有些朋友会稍微夸大简历内容) 废话少说,开讲。 在我们写简历时,每个人都要写上自己的工作经历,活动经历,想必每一个同学,都会起码花上半天甚至更长的时间去搜寻脑海里所有有关的经历,争取找出最好的东西写在简历上。 但是此时,我们要注意了,简历上的任何一个信息点都有可能成为日后面试时的重点提问对象,所以说,不能只管写上让自己感觉最牛的经历就完事了,要想到今后,在面试中,你所写的经历万一被面试官问到,你真的能回答得流利,顺畅,且能通过这段经历,证明自己正是适合这个职位的人吗? 所以,写简历时就要准备好面试时的个人故事,以便应付各种千奇百怪的开放性问题。 为了使大家轻松应对这一切,我向大家推荐“个人事件模块”的方法,以使自己迅速完成这看似庞大的工程。 一,头脑风暴+STAR法则——〉个人事件模块 1.1,头脑风暴。 在脑海里仔细想出从大一到大四自己参与过所有活动(尤其是能突出你某些能力的活动),包括: 社团活动职务时间所做事情 在公司实习的经历职务时间所做过的事情 与他人一起合作的经历(课题调研,帮助朋友办事) (回忆要尽量的详细,按时间倒序写在纸上,如大一上学期发生。。。。。。大一下学期发生。。。。。。。如此类推) 我相信这一步,很多朋友都已经做了,但是仅仅这样就满足了,就直接写在简历上当完事了,那是不行的,想提高竞争力,还得继续。。 1.2,STAR法则应用

木头闹钟说明书

精品文档 木头闹钟说明书 产品功能 ●同屏显示年、月、日、时、分、星期功能: ●闹钟及贪睡功能:贪睡功能开启后,闹钟可以6次闹响,每次闹响间隔5分钟。没有开启贪睡功能,闹响 1分钟后,闹钟功能自动关闭; ●时间记忆功能:不使用AC / DC适配器时,LED屏不显示,但时钟内部会继续正常计时,当连接上适配器时,时钟会自动显示当前正常的时间,无需重新设置; ● 1/4小时制转换功能; ●省电模式:每天下午6点至第二天早上7点,LED显示亮度会自动降低,使人的视觉感到舒适。 使用方法 走时及闹铃设置 ●将AC / DC适配器插上电源,把6V直流电压插头接入时钟6V接口,LED数字屏即发亮显示; ●按住SET键3秒进入设定模式,再按动SET键,每按动一次,年、月、日、时、分将依次闪烁。要设置年、月、日、时、分,只要改变在闪烁的数字即可,按动UP和DOWN 键均可调节,设置结束按SET键,时

钟回到正常的走时状态。星期的设定是全自动的, 它会随着时间的设置而自动改变。●设置闹铃时间,2016全新精品资料-全新公文范文-全程指导写作–独家原创 11/ 1. 精品文档 按动DOWN键显示屏出现AL:- -或AL:on ,每按动DOWN键一次即会转换一次。按住DOWN键3秒,时的数字在闪烁时,即可通过UP 和DOWN键进行调节,要调节分的数字,先按动SET键切换到分的闪烁,同样用UP和DOWN键进行调 节,设置结束按SET键,时钟回到正常的走时状态。闹铃闹响时,按下SET或UP键,闹铃闹响停止,并且关闭闹钟功能,如果闹铃闹响时,按下DOWN 键闹响停止,则贪睡功能自动开启,闹铃会每隔5分钟 闹响一次,可连续6次。若贪睡闹响未达到第6次,在任何一次闹响时,按下SET或UP键,不但闹响停止,同时自动关闭贪睡功能,如果是按下DOWN键,每隔分钟会再闹响一次,直至达到6次闹响为止; ●在设定模式下,15秒内不按任何键,时钟将恢复时间显示。 12/24小时制设置 正常时间显示下,每按一次UP键,可以实现1/4小时制的转换。在12小时制式下,数字走到12,这

STAR法则

STAR法则 沪江小编:网传500强HR面试的逻辑框架就是STAR法则,通过该法则,面试官可以基本了解一个人的做事风格以及这个人的潜质。因此,STAR法则被越来越多地运用在了简历写作和面试回答中。沪江小编就为还不熟悉STAR法则的你,详解这个面试助推剂。 一.什么是STAR法则? The STAR (Situation, Task, Action, Result) format is a job interview technique used by interviewers to gather all the relevant information about a specific capability that the job requires. This interview format is said to have a higher degree of predictability of future on-the-job performance than the traditional interview. STAR法则是情境(situation)、任务(task)、行动(action)、结果(result)四项的缩写。STAR法则是一种常常被面试官使用的工具,用来收集面试者与工作相关的具体信息和能力。STAR法则比起传统的面试手法来说,可以更精确地预测面试者未来的工作表现。Situation: The interviewer wants you to present a recent challenge and situation in which you found yourself. 情境:面试官希望你能描述一个最近遇到的挑战或情况。 Task: What did you have to achieve? The interviewer will be looking to see what you were trying to achieve from the situation. 任务:你必须要完成什么任务?面试者想要知道的是你在上述情境下如何去明确自己的任务。 Action: What did you do? The interviewer will be looking for information on what you did, why you did it and what were the alternatives. 行动:你做了什么?面试官想要了解的是你做了什么?为什么做?有没有替代方案? Results: What was the outcome of your actions? What did you achieve through your actions and did you meet your objectives. What did you learn from this experience and have you used this learning since?

桌面闹钟概要设计说明书

在线招聘系统 概 要 设 计 说 明 书 《桌面闹钟应用程序》项目组日期:2011 年 09 月 18日

1引言 (3) 1.1编写目的 (3) 1.2背景 (3) 1.3定义 (3) 1.4参考资料 (3) 2总体设计 (4) 2.1需求规定 (4) 2.2运行环境 (4) 2.3基本设计概念和处理流程 (4) 2.4结构 (5) 2.5功能器求与程序的关系 (6) 2.6人工处理过程 (6) 2.7尚未问决的问题 (6) 3接口设计 (6) 3.1用户接口 (6) 3.2外部接口 (6) 3.3内部接口 (6) 4运行设计 (7) 4.1运行模块组合 (7) 4.2运行控制 (7) 4.3运行时间 (7) 5系统数据结构设计 (7) 5.1逻辑结构设计要点 (7) 5.2物理结构设计要点 (8) 5.3数据结构与程序的关系 (8) 6系统出错处理设计 (8) 6.1出错信息 (8) 6.2补救措施 (8) 6.3系统维护设计 (9)

概要设计说明书 1引言 1.1编写目的 本文档为“桌面闹钟应用程序概要设计说明书”,主要用于为实现桌面闹钟的概要说明,描述桌面应用程序的结构框架、数据流图及数据流说明字典,以对以后程序的建设起到指导和约束作用。 1.2背景 a.软件系统的名称:桌面闹钟应用程序 b.任务提出者:乐山师范学院计算机科学与信息技术学院 开发者:陈巧林 1.3定义 与已有的桌面闹钟应用程序的繁杂、操作麻烦等特点相比,该桌面闹钟应用程序的简单易操作等特点使得其用起来更方便。 1.4参考资料 [1] 谢炎桦.《数据库管理系统构建实例》.清华大学出版社 [2] 萨师煊,王珊.<<数据库系统概论>>.北京高等教育出版社:2003.6 [3] Jeffrey P.Monanus、赵年锁译.《数据访问技术》.机械工业出版社:1999.7 [4]朱元三.《软件工程技术概论[M] 》.北京科学出版社:2002.7.1~320 [5]陈汶滨,朱小梅,任冬梅.<<软件测试技术基础>>(21世纪高等学校计算机教育实用 规划教材).清华大学出版社出版时间:2008.07.1~96 [6] 朱成立.《数据结构》.清华大学出版社:2005.12 [7]王克宏著.Java技术教程(基础篇).北京:高等教育出版社,2002.04 [8]Bruce Eckel 著.Java编程思想.北京:机械工业出版社,2004.01 [9]孙燕主编.Java2入门与实例教程.北京:中国铁道出版社,2003.01 [10]叶核亚,陈立著.Java2程序设计实用教程.北京:电子工业出版社,2003.5 [11]柯温钊著.JA V A例解教程.北京:中国铁道出版社,2001.03

相关文档
最新文档