奥氏气体分析仪

奥氏气体分析仪
奥氏气体分析仪

氧吸收液的配制方法:30%的KOH和25%的焦性没食子酸,各100ml 然后混合。封闭液是说水准瓶中的液体。

称取30克氢氧化钾或氢氧化钠于250毫升烧杯中,加160毫升蒸馏水溶解,取焦性没食子酸30克加入上述溶液中,搅拌溶解,加入吸收瓶中,如体积不够可加入适量蒸馏水。加数毫升液体石腊油成一封闭层,隔绝空气。

在250mL锥形瓶中加入25.2g焦性没食子酸[邻三苯酚C6H3(OH)3]再注入160mL 21%的氢氧化钾溶液(密度为1.44g/cm3),用塞子塞好后并振荡至固体完全溶解。焦性没食子酸的碱性溶液具有较强的还原能力,吸收氧气后生成(KO)3C6H2-C6H2(OK)3,吸收法中使用的焦性没食子酸钾溶液在气体分析器中处理样品过程中,有效浓度越来越小,当小到一定程度时,将不能完全吸收样品中的氧气,此时该吸收液失效。

国家规定的是铜氨法(氯化亚铜氨溶液)测定,但缺点就是污染比较厉害,而且铜离子有一定的毒性,操作不太方便,所以厂家多以焦性末食子酸(碱性保险粉溶液)吸收,乙炔分析管作取样,结果和铜氨一样。

分析氧气含量操作:直接将取样管所取的100ml氧气移入奥氏气体分析仪,在焦性没食子酸钾溶液吸收球里多次吸收,然后将未吸收的气体移出,读出刻度,100-读数,就是氧气浓度(V/V)%。

一)方法原理

在果蔬的气调贮藏中要随时了解密闭环境里的氧和二氧化碳含量,以便调节和控制果蔬适宜的气体成分和含量。目前国内外测定氧和二氧化碳的主要方法是使用奥氏气体分析仪。即使有较高级的测氧和二氧化碳仪器,也要用奥氏气体分析仪作较正,以便减少或消除仪器的误差。

操作方法

1.洗涤与调整:将仪器的所有玻璃部分洗净,磨口活塞涂上凡士林,并按图装配好。

在各吸气球管中注入吸收剂。管3注入浓度为30%的NaOH或KOH溶液(以KOH为好,因NaOH与CO2作用生成的沉淀Na2CO3多时会堵塞通道)作吸收CO2用。管4装入浓度为30%的焦性没食子酸和等量的(30%)NaOH或KOH的混合用,吸收剂要求达到球管口。在液瓶1中和保温套筒中装入蒸馏水。液作吸收O

2

最后将取样孔接上待测气样。

将所有的磨口活塞5、6、8关闭,使吸气球管与梳形管不相通。转动8呈“⊥”状并高举1,排出2中的空气,以后转动8呈“⊥”状,打开活塞5降下1,此时3中的吸收剂上升,升到管口顶部时立即关闭5,使液面停止在刻度线上。然后打开活塞6同样使吸收液面到达管口。

2.洗气

右手举起1用左手同时将8转至“├”状,尽量排除2内的空气,使水表面到达刻度100时为止。迅速转动呈“⊥”状,同时下1吸进气样,待水面降到2底部时立即转动8回到“├”状。再举起1,将吸进的气样再排出,如此操作2—3次。目的是用气样冲洗仪器内原有的空气。

3.取样

洗气后转动8呈“⊥”状并降低1。使液面准确达到零位并将1移近2,要求1与2两液面同在一水平线上并在刻度零处。然后将8转至“∧”状,封闭所有通道,再举起1观察2的液面,如果液面不断往上升表明有漏气,要检查各连接处及磨口大活塞,堵漏后重新取样。若液面在稍有上升后停在一定位置上不再上升,证明不漏气,即可开始测定。

4.测定

转动5接通3管,举起1把气样尽量压入3中,再降下1,重新将气样抽回到2中,这样上下举动1使气样与吸收剂充分接触,4—5次后降下1,待吸收剂上升到3的原来刻度线位置时,立即关闭5,把1移近2,在两液面平衡时读数,记录后,重新打开5来回举动1如上操作,再进行第二次读数,若两次读数相同即表明吸收完全。否则重新打开5再举动1直至读数相同为止。以上测定结果为CO2含量,再转动6接通4管,用上述方法测出O2的含量。

CO2和O2的含量可按下式计算:CO2或O2(%)=×100

由于量气简体积是100ml,故测定前后量气筒读数之差便是所测气体的百分含量,可以不必计算。

(四)操作方法

1.洗涤与调整将仪器的所有玻璃部分洗净,磨口活塞涂上凡士林,并按图装配好。

在各吸气球管中注入吸收剂。管3注入浓度为30%的NaOH或KOH溶液(以KOH为好,因NaOH与CO2作用生成的沉淀Na2CO3多时会堵塞通道)作吸收CO2用。管4装入浓度为30%的焦性没食子酸和等量的(30%)NaOH或KOH的混合液作吸收O2用,吸收剂要求达到球管口。在液瓶1中和保温套筒中装入蒸馏水。最后将取样孔接上待测气样。

将所有的磨口活塞5、6、8关闭,使吸气球管与梳形管不相通。转动8呈“⊥”状并高举1,排出2中的空气,以后转动8呈“⊥”状,打开活塞5降下1,此时3中的吸收剂上升,升到管口顶部时立即关闭5,使液面停止在刻度线上。然后打开活塞6同样使吸收液面到达管口。

2.洗气

右手举起1用左手同时将8转至“├”状,尽量排除2内的空气,使水表面到达刻度100时为止。迅速转动呈“⊥”状,同时下1吸进气样,待水面降到2底部时立即转动8回到“├”状。再举起1,将吸进的气样再排出,如此操作2—3次。目的是用气样冲洗仪器内原有的空气。

3.取样

洗气后转动8呈“⊥”状并降低1。使液面准确达到零位并将1移近2,要求1与2两液面同在一水平线上并在刻度零处。然后将8转至“∧”状,封闭所有通道,再举起1观察2的液面,如果液面不断往上升表明有漏气,要检查各连接处及磨口大活塞,堵漏后重新取样。若液面在稍有上升后停在一定位置上不再上升,证明不漏气,即可开始测定。

4.测定

转动5接通3管,举起1把气样尽量压入3中,再降下1,重新将气样抽回到2中,这样上下举动1使气样与吸收剂充分接触,4—5次后降下1,待吸收剂上升到3的原来刻度线位置时,立即关闭5,把1移近2,在两液面平衡时读数,记录后,重新打开5来回举动1如上操作,再进行第二次读数,若两次读数相同即表明吸收完全。否则重新打开5再举动1直至读数相同为止。以上测定结果为CO2含量,再转动6接通4管,用上述方法测出O2的含量。

CO2和O2的含量可按下式计算:CO2或O2(%)=×100

由于量气简体积是100ml,故测定前后量气筒读数之差便是所测气体的百分含量,可以不必计算。

(五)注意事项

1.举起1时2内液面不得超过刻度100处,否则蒸馏水会流入梳形管,甚至倒入吸气球管内,不但影响测定准确性,还会冲淡吸收剂造成误差。液面也不能过低,

应以3中吸收剂不超出5为准。否则吸收剂流入梳形管时要重新洗涤仪器。

2.举起l时动作不宜太快,以免气样因受压过大冲入吸收剂成气泡状自2管漏出,一旦发生这种现象,要重新测定。

3.先测二氧化碳然后测氧气。

4.焦性食子酸的碱性液在15—20℃时吸氧效能最大,吸收效果随温度下降而减弱,O℃时几乎完全丧失吸收能力。故液温不得低于15℃。

5.吸收剂的浓度按百分比浓度配制,多次举调节液瓶读数不相等时说明吸收剂的吸收性能减弱,需重新配制吸收剂。

(五)注意事项

1.举起1时2内液面不得超过刻度100处,否则蒸馏水会流入梳形管,甚至倒入吸气球管内,不但影响测定准确性,还会冲淡吸收剂造成误差。液面也不能过低,应以3中吸收剂不超出5为准。否则吸收剂流入梳形管时要重新洗涤仪器。

2.举起l时动作不宜太快,以免气样因受压过大冲入吸收剂成气泡状自2管漏出,一旦发生这种现象,要重新测定。

3.先测二氧化碳然后测氧气。

4.焦性食子酸的碱性液在15—20℃时吸氧效能最大,吸收效果随温度下降而减弱,O℃时几乎完全丧失吸收能力。故液温不得低于15℃。

5.吸收剂的浓度按百分比浓度配制,多次举调节液瓶读数不相等时说明吸收剂的吸收性能减弱,需重新配制吸收剂。

奥氏气体分析仪工作原理

利用不同的溶液来相继吸收气体试样中的不同组分,用40%的氢氧化钠吸收试样中的二氧化碳;用焦没食子酸钾溶液吸收试样中的氧气;用氨性氯化亚铜溶液来吸收试样中的一氧化碳。然后根据吸收前后试样体积的变化来计算各组分的含量。CH4和H2用爆炸燃烧法测定,剩余气体为N2。

奥氏气体分析仪的优点:结构简单、价格便宜、维修容易。

奥氏气体分析仪在实际应用中存在的不足主要有:

1)该方法是手动分析仪,操作较烦琐,精度低、速度慢,不能实现在线分析,适应不了生产发展的需要;

2)梳形管容积对分析结果有影响,尤其是对爆炸法的影响比较大;

3)奥氏仪进行动火分析测定时间长,场所存在一定局限性,而且还必须注意化学反应的完全程度,否则读数不准误导生产;

4)焦性食子酸的碱性液在15~20℃时吸氧效能最好,吸收效果随温度下降而减弱,0℃时几乎完全丧失吸收能力,故吸收液液温不得低于15℃。

奥氏气体分析仪缺点:

虽一次购置成本低但长期运行成本高,除去分析人员的成本,仅每年买试剂和玻璃器皿至少要1万多元,而且必须对气体进行人工取样,在实验室进行分析,其中分析人员的操作技能和“态度”对分析的精确度有很大影响。奥氏气体分析仪只能单一成份地逐个进行检测分析,不具备多重输入和信号处理功能,分析费时,操作烦琐,响应速度慢,效率低,难以实时地分析生产工况。

由于奥氏气体分析仪的的以上缺点,难以适应生产发展的需要,例如在化工、石油化工的生产过程中,为了控制化学反应和确保安全生产,一般都需要在线分析,并要求它连续、准确、经济、耐用。随着科学技术和全球经济的迅猛发展,

工业废气的排放成为大气污染的一大杀手。因此,工业废气连续监控系统(CEMS)的开发应用亦成为趋势。所以奥氏气体分析仪逐渐被全自动分析仪器替代,例如红外线气体分析仪。

奥氏气体分析仪及煤气分析

奥氏气体分析仪及煤气分析 优点: 结构简单,价格便宜,维修容易。 缺点: 虽然购置成本低,但运行成本高,除去人员工资,单每年买试剂和玻璃器皿一项就要一万多;因为是人工操作,分析人员的操作技能和态度,对分析的精确度有很大的影响,比起红外线分析仪等来,它分析费时,操作繁琐,响应速度慢,效率低,难以实时分析生产状况。 适用范围: 二氧化碳,氧,一氧化碳,氢气,甲烷,氮气的分析 任务和目的: 准确及时地控制煤气质量,为准确指导生产,降低消耗提供依据。 测定原理: 利用气体中各组分能被具有不同吸收能力的试剂,按顺序加以吸收,不被吸收的剩余气体组分,则可加入部分空气,使其爆炸,然后根据吸收和爆炸前后体积变化及生成物的体积量计算混合气体各组分含量。 工作原理:利用不同的溶液来相继吸收气体试样中的不同组分,用40﹪的KOH吸收试样中的二氧化碳;用焦性没食子酸钾溶液吸收试样中的氧气;用氨性氯化亚铜溶液来吸收试样中的一氧化碳。然后根据试样体积的变化来计算各组分的含量。甲烷和氢用爆炸燃烧法测定,剩余气体为氮气。 分析原理: 用KOH溶液吸收CO2,焦性没食子酸钾溶液吸收O2,氨性氯化亚铜溶液吸收CO,用爆炸法测定H2、CH4,余下的气体则为N2+Ar。根据吸收缩减体积和爆炸后缩减体积及爆炸后生成CO2的体积计算各组分的体积百分含量。 CO2+2KOH=K2CO3+H2O 2C6H3(OK)3+1/2O2=(OK)2C6H2-C6H2(OK)2+H2O Cu2Cl2+2CO+4NH3+2H2O=2NH4Cl+2Cu+(NH4)2C2O4 2H2+O2=2H2O CH4+2O2=CO2+2H2O CH4燃烧时1体积CH4和2体积的氧气反应生成1体积的CO2,因此气体体积的缩减等于2倍的CH4体积;H2爆炸时,有3体积的气体消失,其中2体积是氢气,即氢气占缩减体积的2/3,所以体积缩减的总量为3/2VH2。 试剂配制所需仪器器皿: 1托盘天平一架 2玻璃烧杯 3玻璃棒 4量筒 5角匙 6调温电炉

奥氏气体检测使用规程

奥氏气体检测 一 气体中氧含量分析(焦性没食子酸吸收) 1、原理 焦性没食子酸与气体中氧发生化学反应生成氧化物 通过气体中氧含量的减少 计算气体氧 的含量。 2 分析仪器 奥式气体分析仪。 奥式气体仪中量取气体部份和盛装焦性没食子酸的吸收管 3 分析操作 用量气管准确量取100.0ml从待分析区采集来的球胆内试样,经焦性没食子酸反复吸收至氧被全部吸收完全。 4、计算 吸收氧的体积比总取样体积100ml即得到气体中氧的含量。 5 注意事项 5.1 量气管是从0至100ml全程刻度的。 5.2 氧含量在1%至21%间较准确,若氧含量太高,应改用铜氨液吸收法分析,分析有专用高含量铜氨吸收装置,也可用奥式中的铜氨液吸收管吸收。 二 气体中一氧化碳和氢含量的测定(燃烧法) 1 原理 1.1 可燃性气体CO和H2在800℃ 900℃温度下,有足够的氧存在时,与铂金丝接触燃烧,生成二氧化碳和水。生成的二氧化碳经氢氧化钾溶液吸收,根据燃烧前、后及吸收后气体试样体积之缩减量,计算一氧化碳和氢含量。化学反应方程式如下 2H2+O2=2H2O 2CO+O2=2CO2 CO2+2KOH=K2CO3+H2O 2 仪器 奥式气体分析仪

3 分析操作 3.1 用气体量管取100.0ml从动火区采集来的球胆内试样 分别用氢氧化钾溶液和焦性没食子酸钾溶液吸收后,计算二氧化碳含量(A%)和氧含量(B%)。 3.2 如果氧含量在15%以上,另取100.0ml试样直接抽入铂金丝燃烧瓶内燃烧后,循环数次冷却至室温。若其缩减体积C小于0.5%不必再吸收二氧化碳即可动火。 3.3 若缩减体积C大于或等于0.5%时,再将燃烧后之气体分别用氢氧化钾和焦性没食子酸钾溶液吸收后,计算二氧化碳含量(A1%)和氧含量(B1%)。据此,最后再计算出可燃性气体。如果可燃性气体含量大于或等于0.5% 则不准动火。 4 结果计算 4.1 燃烧后的缩减体积C大于或等于0.5%时,以体积百分数表示气体中的可燃性气体(CO+H2)含量,按下式计算: 4.2 可燃气体含量(CO+H2)% = C+(A1-A)- (B1-B) 5 注意事项 气体中可燃气体含量太小时、应采用专用分析仪器测定,不适合用奥式分析。

奥氏气体分析仪技术操作规程

奥氏气体分析仪操作规程 1、目的 指导操作员工对煤气成分进行化验分析 2、化验仪器 (1)接触式吸收管,氢氧化钾吸收液 (2)接触式吸收管,发烟硫酸吸收液 (3)接触式吸收管,碱性焦性没食子酸吸收液 (4)鼓泡式吸收管,氨性氯化亚铜吸收液 (5)接触式吸收管,稀硫酸 (6)爆炸管 (7)火花发生器 (8)天平: 3、化验试剂及其规格 3.1、化学试剂 氢氧化钾:分析纯,GB2306。 焦性没食子酸(即邻苯三酚):分析纯,HGB3369。 发烟硫酸:三氧化硫含量20-30%,分析纯。HGB3186(如SO3大于30%,还需用密度ρ=1.84g/mL的浓硫酸稀释)。 浓硫酸:分析纯,密度ρ=1.84g/mL,硫酸含量为95-98%,GB625。

氯化亚铜:分析纯,HG3-1287。 氯化铵:分析纯,GB658。 硫酸钠:化学纯,HG3-123;或氯化钠,化学纯,GB1266。 甲基橙指示剂:化学纯,HGB3089。 纯氧:含氧量大于99%(v/v),不含可燃组份。 液体石蜡:HG14-458 3.2、吸收液的配制和调换 吸收液的配制以100mL计算,而实际配制量按吸收瓶容积约250mL。 30%氢氧化钾溶液:取30g化学纯的氢氧化钾溶于70mL水中。 焦性没食子酸的碱性溶液:取10g焦性没食子酸,溶于100mL 30%氢氧化钾溶液中。焦性没食子酸的碱性吸收液在灌入吸收管后,通大气的液面上应加约5mm液体石蜡油使其隔离空气。 发烟硫酸液:三氧化硫含量为20-30%,发烟硫酸液灌入吸收管后,通大气口上应套橡皮袋以防三氧化硫外逸。 氨性氯化亚铜溶液:27g氯化亚铜和30g氯化铵,加入100mL蒸馏水中。搅拌成混浊液,灌入吸收管内,并加入紫铜丝,其后加入浓氨水(分析纯,密度ρ=0.88~0.99g/mL)至吸收液澄清,通大气的液面上应加液体石蜡油,使其隔离空气。氨性氯化亚铜吸收液为两只吸收管,分前后两只吸收一氧化碳组份。前只吸收管在使用一定次数后,须换成新配制液,后一只吸收管改为前一只吸收管。

奥氏气体分析

奥氏气体分析 Q/YH BZ 003—2009 本方法适用于烟道气及炼厂设备、容器残存CO2、O2、CO的气体分析。 1. 方法概要 用不同溶液相继地吸收气体中各个组分,按气体试样的各组分被吸收所减少的体积来计算各组分的百分含量。 1.1 二氧化碳测定是以40%KOH溶液为吸收剂,其反应式为: CO2+2KOH→K2CO3+H2O 1.2 氧气测定是以焦性没石子酸钾溶液为吸收剂,其反应式为: C6H5(OH)3+3KOH→C6H3(OK)3+3H2O 2C6H3(OK)3+1/2O2→(KO)3 C6H2-C6H2(OK)3+H2O 1.3一氧化碳测定是以氨性氯化亚铜溶液为吸收剂,其反应式为: Cu2CL2+2CO→Cu2CL2·2CO Cu2CL2·2CO+4NH3+2H2O→NH4COO-Cu-Cu-COONH4+2NH4CL 2. 仪器与试剂: 2.1奥氏气体分析仪全套 2.2 40%KOH溶液:取180gKOH溶于270mL蒸馏水中。 2.3焦性没石子酸钾溶液:取40%KOH溶液320mL倾注入吸收器内,再取28g焦性没石子酸溶于50mL热蒸馏水中,再倾注入吸收器内。 2.4氨性氯化亚铜溶液:取75g氯化铵溶于225mL热蒸馏水中,再加60g氯化亚铜至溶液中溶解后,加入25%的氨水110mL(可加入少许紫铜丝或铜屑以增加使用时间)。 2.5 10%H2SO4溶液:取35mL98%的硫酸慢慢加入315mL蒸馏水中,待冷却后倾注入吸收瓶内。 2.6 饱和食盐水 注:各溶液配制后,待冷却至室温,应及时倾注吸收瓶内,并对焦性没石子酸及氨性氯化亚铜溶液立即加液体石蜡封闭液面。水准瓶装有数滴硫酸及甲基橙的饱和食盐水溶液。

LGA-4000激光气体分析仪

二、LGA-4000激光气体分析仪 (一)、简介 1、概要 LGA-4000激光气体分析仪能够在各种高温、高粉尘、高腐蚀等恶劣的环境下进行现场在线的气体浓度测量。 2、测量原理 LGA-4000激光气体分析仪是基于半导体激光吸收光谱(DLAS)气体分析测量技术的革新,能有效解决传统的气体分析技术中存在的诸多问题。 半导体激光吸收光谱(DLAS)技术利用激光能量被气体分子“选频”吸收形成吸收光谱的原理来测量气体浓度。由半导体激光器发射出特定波长的激光束(仅能被被测气体吸收),穿过被测气体时,激光强度的衰减与被测气体的浓度成一定的函数关系,因此,通过测量激光强度衰减信息就可以分析获得被测气体的浓度。 3、系统组成 LGA-4000激光气体分析仪由激光发射、光电传感和分析模块等构成,如图 1.2所示。由激光发射模块发出的激光束穿过被测烟道(或管道),被安装在直径相对方向上的光电传感模块中的探测器接收,分析控制模块对获得的测量信号进行数据采集和分析,得到被测气体浓度。在扫描激光波长时,由光电传感模块探测到的激光透过率将发生变化,且此变化仅仅是来自于激光器与光电传感模块之间光通道内被测气体分子对激光强度的衰减。光强度的衰减与探测光程之间的被测气体含量成正比。因此,通过测量激光强度衰减可以分析获得被测气体的浓度。

图4、 ●●●●5 L 激光发射光电传感 控制模块

表1.1 LGA-4000激光气体分析仪规格和技术参数表 图2.1. LGA-4000激光气体分析仪示意图 LGA-4000激光气体分析仪采用了集成化、模块化的设计方式,系统主要功能模块是由发射单元和接收单元构成(见图2.1)。发射单元驱动半导体激光器,将探测激光发射,并穿过被测环境,由接收单元进行光电转换,将传感信号送回发射单元,由发射单元的中央处理模块对光谱数据进行分析,获得测量结果。

奥氏气体分析仪安全操作规程正式样本

文件编号:TP-AR-L4413 There Are Certain Management Mechanisms And Methods In The Management Of Organizations, And The Provisions Are Binding On The Personnel Within The Jurisdiction, Which Should Be Observed By Each Party. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 奥氏气体分析仪安全操作规程正式样本

奥氏气体分析仪安全操作规程正式 样本 使用注意:该操作规程资料可用在组织/机构/单位管理上,形成一定的管理机制和管理原则、管理方法以及管理机构设置的规范,条款对管辖范围内人员具有约束力需各自遵守。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 奥氏气体分析仪工作原理: 利用不同的溶液来相继吸收气体试样中的不同组 分,用40%的氢氧化钠吸收试样中的二氧化碳;用 焦没食子酸钾溶液吸收试样中的氧气;用氨性氯化亚 铜溶液来吸收试样中的一氧化碳。然后根据吸收前后 试样体积的变化来计算各组分的含量。CH4和H2用 爆炸燃烧法测定,剩余气体为N2。 分析步骤: (1)首先检查分析仪器的密封情况。关闭所有 旋塞观察三分钟,如果液面没有变化说明不漏气。

(2)将样气送入量气管然后全部排出,置换三次,确保仪器内没有空气。准确量取样气100ml为V1。读数时保持封闭液瓶内液面与量气管内液面水平。 (3)第一个吸收瓶的作用是吸收二氧化碳。因为氢氧化钾溶液可以吸收CO2及少量H2S等酸性气体,而其他组分对之不干扰,故排在第一。将样气送入二氧化碳吸收瓶,往返吸收最少8次,然后将样气送入量气管读数,再往返吸收两次后重新读数,如果两次度数一致说明气体完全吸收,吸收至读数不变记为V2。 (4)第二个吸收瓶的作用是吸收不饱和烃。不饱和烃在硫酸银的催化下,能和浓硫酸起加成反应而被吸收。将样气送入不饱和烃吸收瓶,往返吸收最少12次,然后将样气送入量气管读数,再往返吸收两

1904奥式气体分析仪操作

1904奥式气体分析仪操作规程 1、分析步骤 (1)首先检查分析仪器的密封情况。关闭所有旋塞观察三分钟,如果液面没有变化说明不漏气。 (2)将样气送入量气管然后全部排出,置换三次,确保仪器内没有空气。准确量取样气100ml为V1。读数时保持封闭液瓶内液面与量气管内液面水平。(3)第一个吸收瓶的作用是吸收二氧化碳。因为氢氧化钾溶液可以吸收CO2及少量H2S等酸性气体,而其他组分对之不干扰,故排在第一。 将样气送入二氧化碳吸收瓶,往返吸收最少8次,然后将样气送入量气管读数,再往返吸收两次后重新读数,如果两次度数一致说明气体完全吸收,吸收至读数不变记为V2。 (4)第二个吸收瓶的作用是吸收不饱和烃。不饱和烃在硫酸银的催化下,能和浓硫酸起加成反应而被吸收。 将样气送入不饱和烃吸收瓶,往返吸收最少18次,然后将样气送入量气管读数,再往返吸收两次后重新读数,吸收至读数不变记为V3。 (5)第三个吸收瓶的作用是吸收氧气。焦性没食子酸碱性溶液能吸收O2,同时也能吸收酸性气体如CO2,所以应该把CO2等酸性气体排除后再吸收O2。 将样气送入氧气吸收瓶,往返吸收最少8次,然后将样气送入量气管读数,再往返吸收两次后重新读数,吸收至读数不变记为V4。 (6)第四,五,六个吸收瓶作用是吸收一氧化碳。氯化亚铜氨溶液能吸收CO,但此溶液与二氧化碳,不饱和烃,氧气都能作用,因此应放在最后。吸收过程中,氯化亚铜氨溶液中NH3会逸出,所以CO被吸收完毕后,需用5%的硫酸溶液除去残气中的NH3,因为煤气中CO含量高,应使用两个CO吸收瓶。 将样气送入第一个CO吸收瓶往返吸收最少18次,再用第二个CO吸收瓶往返吸收最少8次,再送入硫酸吸收瓶往返吸收最少8次,然后将样气送入量气管读数,再往返吸收两次后重新读数,吸收至读数不变为V5。 (7)将样气送入第六个吸收瓶,取剩余样气的1/3送入量气管,在中心三通旋塞处加氧气,将中心三通旋塞按顺时针旋转180°,将氧气送入量气管,混合后量气管读数为100ml,将中心三通旋塞按顺时针旋转45o,把量气管内气体分四次使用高频火花器点火进行爆炸,第一次爆炸体积为10ml左右,第二次爆炸体积为20ml左右,第三次爆炸体积为30ml左右,第四次将剩余气体全部爆炸。冷却后将全部气体送入量气管中,记下量气管读数V6。 (8)将剩余气体送入二氧化碳吸收瓶,往返吸收最少8次,然后将样气送入量气管读数,再往返吸收两次后重新读数,吸收至读数不变记为V7。 (9)通过上述的吸收及燃烧法测定后,剩余的气体体积为N2。 (10)公式计算 CO2% =V1-V2 CmHn% =V2-V3 O2% =V3-V4 CO% =V4-V5 CH4%=(V6-V7)×3×100/V1 H2%=[2×3(100-2(V6-V7)]×100/(3×V1)

几种氧分析仪原理及应用

1、电化学氧分析仪: 相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧化或者还原。利用这些反应,可以分辨气体成份、检测气体浓度。电化学气体传感器分很多子类: (1)原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫、氯气等。 (2)恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析的传感器。这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。 (3)浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。 (4)极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。 目前这种传感器的主要供应商遍布全世界,主要在德国、日本、美国,最近新加入几个欧洲供应商:英国、瑞士等。 2、顺磁式氧分析仪: 顺磁式氧分析仪:根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。顺磁式氧分析仪,也可叫做磁效应式氧分析仪、或磁式氧分析仪,我们通常通称为磁氧分析仪。它一般分为热磁对流式、压力机械式和磁压力式氧分析仪三种。 物质的磁特性:任何物质在外界磁场的作用下都会被磁化,呈现出一定的磁特性。物质在外加磁场中被磁化,其本身就会产生一个附加磁场,附加磁场与外磁场方向相同时,该物质就被外磁场吸引;附加磁场与外磁场方向相反时,则被外磁场排斥。因此,我们通常会将被外磁场吸引的物质称为顺磁性物质,或者说该物质具有顺磁性;而把被磁场排斥的物质称为逆磁性物质,或者说该物质具有逆磁性。气体介质处于磁场中也会被磁化,我们根据气体组分对磁场的吸引和排斥的不同,也将气体分为顺磁性和逆磁性。顺磁性气体有:O2、NO、NO2等;逆磁性气体有:H2、N2、CO2、CH4等。 磁性氧气传感器是磁性氧气分析仪的核心,但是目前也已经实现了“传感器化”进程。这种传感器只能用于氧气的检测,选择性极好。大气环境中只有氮氧化物能够产生微小的影响,但是由于这些干扰气体的含量往往很少,所以,磁氧分析技术的选择性几乎是唯一的! 当然磁氧根据传感器类型,又分为磁力机械式,热磁式氧分析仪,热磁式市场售价略低,

奥氏气体分析仪安全操作规程(新版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 奥氏气体分析仪安全操作规程 (新版)

奥氏气体分析仪安全操作规程(新版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 奥氏气体分析仪工作原理: 利用不同的溶液来相继吸收气体试样中的不同组分,用40%的氢氧化钠吸收试样中的二氧化碳;用焦没食子酸钾溶液吸收试样中的氧气;用氨性氯化亚铜溶液来吸收试样中的一氧化碳。然后根据吸收前后试样体积的变化来计算各组分的含量。CH4和H2用爆炸燃烧法测定,剩余气体为N2。 分析步骤: (1)首先检查分析仪器的密封情况。关闭所有旋塞观察三分钟,如果液面没有变化说明不漏气。 (2)将样气送入量气管然后全部排出,置换三次,确保仪器内没有空气。准确量取样气100ml为V1。读数时保持封闭液瓶内液面与量气管内液面水平。 (3)第一个吸收瓶的作用是吸收二氧化碳。因为氢氧化钾溶液可以吸收CO2及少量H2S等酸性气体,而其他组分对之不干扰,故排在

第一。将样气送入二氧化碳吸收瓶,往返吸收最少8次,然后将样气送入量气管读数,再往返吸收两次后重新读数,如果两次度数一致说明气体完全吸收,吸收至读数不变记为V2。 (4)第二个吸收瓶的作用是吸收不饱和烃。不饱和烃在硫酸银的催化下,能和浓硫酸起加成反应而被吸收。将样气送入不饱和烃吸收瓶,往返吸收最少12次,然后将样气送入量气管读数,再往返吸收两次后重新读数,吸收至读数不变记为V3。 (5)第三个吸收瓶的作用是吸收氧气。焦性没食子酸碱性溶液能吸收O2,同时也能吸收酸性气体如CO2,所以应该把CO2等酸性气体排除后再吸收O2。将样气送入氧气吸收瓶,往返吸收最少8次,然后将样气送入量气管读数,再往返吸收两次后重新读数,吸收至读数不变记为V4。 (6)第四,五,六个吸收瓶作用是吸收一氧化碳。氯化亚铜氨溶液能吸收CO,但此溶液与二氧化碳,不饱和烃,氧气都能作用,因此放在最后。吸收过程中,氯化亚铜氨溶液中NH3会逸出,所以CO被吸收完毕后,需用5%的硫酸溶液除去残气中的NH3,因为煤气中CO含量高,应使用两个CO吸收瓶。将样气送入第一个CO吸收瓶往返吸收最少18次,再用第二个CO吸收瓶往返吸收最少8次,再送入硫酸吸收

奥氏气体分析仪

半水煤气全分析(1904型奥式气体分析仪) 1、范围 本方法适用于半水煤气中CO2、O2、CO、H2、CH4及N2+Ar含量的联合测定。 2、原理 用KOH溶液吸收CO2,焦性没食子酸钾溶液吸收O2,氨性氯化亚铜溶液吸收CO,用爆炸法测定H2、CH4,余下的气体则为N2+Ar。根据吸收缩减体积和爆炸后缩减体积及爆炸后生成CO2的体积计算各组分的体积百分含量。 CO2+2KOH=K2CO3+H2O 2C6H3(OK)3+1/2O2=(OK)2C6H2-C6H2(OK)2+H2O Cu2Cl2+2CO+4NH3+2H2O=2NH4Cl+2Cu+(NH4)2C2O4 2H2+O2=2H2O CH4+2O2=CO2+2H2O CH4燃烧时1体积CH4和2体积的氧气反应生成1体积的CO2,因此气体体积的缩减等于2倍的CH4体积;H2爆炸时,有3体积的气体消失,其中2体积是氢气,即氢气占缩减体积的2/3,所以体积缩减的总量为3/2VH2。 3、试剂 3.1 KOH溶液:300g/L 3.2 NaOH溶液:300g/L 3.3 焦性没食子酸钾溶液:250g/L 称取250g焦性没食子酸,溶液于750mL热水中,摇匀。使用时将此溶液与氢氧化钾(3.2)溶液按1+1比例混合,即为焦性没食子酸钾溶液。本吸收剂性能为1mL溶液可吸收15mL 氧气。 3.4 硫酸溶液:1+9 3.5 硫酸溶液;1+19 3.6 氨性氯化亚铜溶液 称取50gNH4Cl溶于480mL水,加入200g氯化亚铜,用520mL氨水(P=0.91g/ml)溶解。 4、仪器 4.1 改良奥氏气体分析仪 4.2 取样球胆 5、操作程序 5.1 仪器安装 将奥氏仪的全部玻璃部分洗涤干净,旋塞涂好真空脂。按如图所示的各部件中加入相应的溶液:“3”中加入1+19硫酸溶液;“4”中加入300g/L NaOH(或KOH)溶液;“5”中加入焦性没食子酸钾溶液;“6”和“7”中加入氨性氯化亚铜溶液;“8”中加入1+9硫酸溶液;“9”中加入1+19硫酸溶液。并在“5”、“6”、“7”的承受部内加5mL液体石蜡油使吸收液与空气隔绝。 按图示安装好仪器。

奥氏气体分析仪安全操作规程正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.奥氏气体分析仪安全操作 规程正式版

奥氏气体分析仪安全操作规程正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 奥氏气体分析仪工作原理: 利用不同的溶液来相继吸收气体试样中的不同组分,用40%的氢氧化钠吸收试样中的二氧化碳;用焦没食子酸钾溶液吸收试样中的氧气;用氨性氯化亚铜溶液来吸收试样中的一氧化碳。然后根据吸收前后试样体积的变化来计算各组分的含量。CH4和H2用爆炸燃烧法测定,剩余气体为N2。 分析步骤: (1)首先检查分析仪器的密封情况。关闭所有旋塞观察三分钟,如果液面

没有变化说明不漏气。 (2)将样气送入量气管然后全部排出,置换三次,确保仪器内没有空气。准确量取样气100ml为V1。读数时保持封闭液瓶内液面与量气管内液面水平。 (3)第一个吸收瓶的作用是吸收二氧化碳。因为氢氧化钾溶液可以吸收CO2及少量H2S等酸性气体,而其他组分对之不干扰,故排在第一。将样气送入二氧化碳吸收瓶,往返吸收最少8次,然后将样气送入量气管读数,再往返吸收两次后重新读数,如果两次度数一致说明气体完全吸收,吸收至读数不变记为V2。 (4)第二个吸收瓶的作用是吸收不饱和烃。不饱和烃在硫酸银的催化下,能

奥氏气体分析仪

氧吸收液的配制方法:30%的KOH和25%的焦性没食子酸,各100ml 然后混合。封闭液是说水准瓶中的液体。 称取30克氢氧化钾或氢氧化钠于250毫升烧杯中,加160毫升蒸馏水溶解,取焦性没食子酸30克加入上述溶液中,搅拌溶解,加入吸收瓶中,如体积不够可加入适量蒸馏水。加数毫升液体石腊油成一封闭层,隔绝空气。 在250mL锥形瓶中加入25.2g焦性没食子酸[邻三苯酚C6H3(OH)3]再注入160mL 21%的氢氧化钾溶液(密度为1.44g/cm3),用塞子塞好后并振荡至固体完全溶解。焦性没食子酸的碱性溶液具有较强的还原能力,吸收氧气后生成(KO)3C6H2-C6H2(OK)3,吸收法中使用的焦性没食子酸钾溶液在气体分析器中处理样品过程中,有效浓度越来越小,当小到一定程度时,将不能完全吸收样品中的氧气,此时该吸收液失效。 国家规定的是铜氨法(氯化亚铜氨溶液)测定,但缺点就是污染比较厉害,而且铜离子有一定的毒性,操作不太方便,所以厂家多以焦性末食子酸(碱性保险粉溶液)吸收,乙炔分析管作取样,结果和铜氨一样。 分析氧气含量操作:直接将取样管所取的100ml氧气移入奥氏气体分析仪,在焦性没食子酸钾溶液吸收球里多次吸收,然后将未吸收的气体移出,读出刻度,100-读数,就是氧气浓度(V/V)%。

一)方法原理 在果蔬的气调贮藏中要随时了解密闭环境里的氧和二氧化碳含量,以便调节和控制果蔬适宜的气体成分和含量。目前国内外测定氧和二氧化碳的主要方法是使用奥氏气体分析仪。即使有较高级的测氧和二氧化碳仪器,也要用奥氏气体分析仪作较正,以便减少或消除仪器的误差。 操作方法 1.洗涤与调整:将仪器的所有玻璃部分洗净,磨口活塞涂上凡士林,并按图装配好。 在各吸气球管中注入吸收剂。管3注入浓度为30%的NaOH或KOH溶液(以KOH为好,因NaOH与CO2作用生成的沉淀Na2CO3多时会堵塞通道)作吸收CO2用。管4装入浓度为30%的焦性没食子酸和等量的(30%)NaOH或KOH的混合用,吸收剂要求达到球管口。在液瓶1中和保温套筒中装入蒸馏水。液作吸收O 2 最后将取样孔接上待测气样。 将所有的磨口活塞5、6、8关闭,使吸气球管与梳形管不相通。转动8呈“⊥”状并高举1,排出2中的空气,以后转动8呈“⊥”状,打开活塞5降下1,此时3中的吸收剂上升,升到管口顶部时立即关闭5,使液面停止在刻度线上。然后打开活塞6同样使吸收液面到达管口。 2.洗气 右手举起1用左手同时将8转至“├”状,尽量排除2内的空气,使水表面到达刻度100时为止。迅速转动呈“⊥”状,同时下1吸进气样,待水面降到2底部时立即转动8回到“├”状。再举起1,将吸进的气样再排出,如此操作2—3次。目的是用气样冲洗仪器内原有的空气。 3.取样 洗气后转动8呈“⊥”状并降低1。使液面准确达到零位并将1移近2,要求1与2两液面同在一水平线上并在刻度零处。然后将8转至“∧”状,封闭所有通道,再举起1观察2的液面,如果液面不断往上升表明有漏气,要检查各连接处及磨口大活塞,堵漏后重新取样。若液面在稍有上升后停在一定位置上不再上升,证明不漏气,即可开始测定。 4.测定 转动5接通3管,举起1把气样尽量压入3中,再降下1,重新将气样抽回到2中,这样上下举动1使气样与吸收剂充分接触,4—5次后降下1,待吸收剂上升到3的原来刻度线位置时,立即关闭5,把1移近2,在两液面平衡时读数,记录后,重新打开5来回举动1如上操作,再进行第二次读数,若两次读数相同即表明吸收完全。否则重新打开5再举动1直至读数相同为止。以上测定结果为CO2含量,再转动6接通4管,用上述方法测出O2的含量。

激光气体分析仪的发展现状及其应用

激光气体分析仪的发展现状及其应用 叶 晟 (武汉晟诺仪器科技有限公司 湖北 武汉 430074) 摘 要:本文介绍了可调谐半导体激光吸收光谱(T unable D iode L aser A bsorption S pectroscopy)的基本原理及其在气体传感方面的应用及发展过程。针对TDLAS在不同行业的应用案例,例如工业过程分析、环境监测、安全检测、医疗应用以及科学研究等,具体阐述了激光气体分析仪的结构和应用特点。并对激光气体分析仪的发展趋势做了初步探讨。 关键词:TDLAS 可调谐半导体激光器 激光气体分析 1 前言 近年来红外光谱分析技术的快速发展使其气体分析应用得到了普遍推广,同时伴随半导体激光器技术的不断进步,激光器所具有的高转换效率、快速调谐性和高光谱分辨率等优点得以凸显,促成了以近红外半导体激光器为基础的光谱分析方法和仪器成为当前研究和应用的热点。激光气体分析仪也从传统的单光路结构,向多光路、长光程等技术方向不断拓展,使得TDLAS技术在诸多领域得以推广和应用,并取得了良好的市场经济效益。 2 激光气体分析仪的原理 激光气体分析仪大多采用了半导体激光器作为光源,利用气体在近红外和中红外的吸收光谱特性,对气体类型或浓度进行分析和测量。 2.1可调谐半导体激光吸收光谱原理 可调谐半导体激光吸收光谱(T unable D iode L aser A bsorption S pectroscopy),简称TDLAS,是利用半导体激光器的波长可调谐特性,获得待测气体的吸收线或吸收光谱,从而对待测气体进行定性或定量分析。待测气体可吸收特定对应波长的激光信号,造成接收光强的变化,该信号的变化符合朗伯-比尔定律,表达式如下: I v I v exp σ v cL (1) 其中 I为接收光强,I 为激光器原始光强,v为光源频率,σ为吸收面积,c为气体浓度,L为吸收光程。 根据公式(1)可知,当确定激光器频率和吸收截面时,光强的变化与气体浓度和吸收光程成正比。 与传统光源相比较,半导体激光器的光谱宽度要小于气体吸收谱线的展宽,可得到单线吸收光谱,实际应用中可有效地避免背景气体的交叉干扰影响,因此TDLAS技术是一种高分辨率吸收光谱技术。 图1 单线光谱测量原理 TDLAS技术在应用中通过快速调制激光频率,可使光谱扫过被测气体吸收谱线的一定频率范围,然后利用锁相放大和检测技术测量被气体吸收谱线吸收后 的透射激光光强中的谐波分量,以此来分析气体的吸

奥氏气体分析仪安全操作规程通用版

操作规程编号:YTO-FS-PD627 奥氏气体分析仪安全操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

奥氏气体分析仪安全操作规程通用 版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 奥氏气体分析仪工作原理: 利用不同的溶液来相继吸收气体试样中的不同组分,用40%的氢氧化钠吸收试样中的二氧化碳;用焦没食子酸钾溶液吸收试样中的氧气;用氨性氯化亚铜溶液来吸收试样中的一氧化碳。然后根据吸收前后试样体积的变化来计算各组分的含量。CH4和H2用爆炸燃烧法测定,剩余气体为N2。 分析步骤: (1)首先检查分析仪器的密封情况。关闭所有旋塞观察三分钟,如果液面没有变化说明不漏气。 (2)将样气送入量气管然后全部排出,置换三次,确保仪器内没有空气。准确量取样气100ml为V1。读数时保持封闭液瓶内液面与量气管内液面水平。 (3)第一个吸收瓶的作用是吸收二氧化碳。因为氢氧化钾溶液可以吸收CO2及少量H2S等酸性气体,而其他组分对之不干扰,故排在第一。将样气送入二氧化碳吸

奥氏气体分析仪的装置及各部分的用途

奥氏气体分析仪的装置及各部分的用途 奥氏气体分析仪是由一个带有多个磨口活塞的梳形管与一个有刻度的量气筒和几个吸气球管相连接而成,并固定在木架上。 1、梳形管:是带有几个磨口活塞的梳形连通管,其右端与量气筒②连接,左端为取气孔⑦,套上胶管即与欲测气样相连。磨口活塞⑤⑥各连接一个吸气球管,它控制着气样进吸气球管。活塞⑧起调节进气或排气关闭的作用,梳形管在仪器中起着连接枢纽的作用。 2、吸气球管③④分甲乙两部分,两者底部由一小的U形玻璃连通,甲管内装有许多小玻璃管,以增大吸收剂与气样的接触面,甲管顶端与梳形管上的磨口活塞相连。 吸收球管内装有吸收剂,为吸收测定气样用。 3、量气筒②为有一刻度的圆管,底口通过胶管与调节液瓶①相连,用来测量气样体积。刻度管固定在一圆形套筒内,套筒上下应密封并装满水,以保证量气筒的温度稳定。 4、调节液瓶①是一个下口玻璃瓶,开口处用胶管与量气筒底部相连,瓶内装蒸馏水,由于它的提高与降低,造成瓶中的水位变动而形成不同的水压,使气样被吸入或排出或被压进吸气球管使气样与吸收剂反应。 5、三通活塞:它是一个带有丁字形通孔的磨口三通活塞,转动活塞⑧改变丁字形通孔的位置呈┴状,┣状,┫状,起着取气、排气或关闭的作用。活塞⑤⑥的通气孔一般呈┴状,它切断气体与吸气球管的接触。改变活塞⑤⑥通孔呈┣状,使气先后进出吸气球管洗涤O2和CO2

气体。 三、操作步骤 1、清洗与调整 将仪器内所有玻璃部分洗净,磨口活塞涂凡士林,并按图2装配好。在各吸气球客中注入吸收剂。管③注入浓度为30%NaOH或KOH溶液(以KOH为好,因NaOH与CO2作用生成的沉淀多时会堵塞通道)作吸收CO2用。管④装入浓度为30%的焦性没食子酸和等量的30%NaOH 或KOH混合液,作吸收O2用。吸收剂要求达到球管口。在液瓶①和保温

各类气体分析仪基本原理及特点

各类气体分析仪基本原理及特点 1、质谱仪的基本原理 质谱仪又称质谱计,是分离和检测不同同位素的仪器。它根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。 具体工作过程为:质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按荷质比q/m(q为电荷,m为质量)大小分离的装置,原理公式:q/m=2U/B2r2(U为电压,B为磁感应强度,r为半径)。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。 优点:测量气体种类多,测试速度快,灵敏度高,结果精确,稳定性和重复性 也较高。 缺点:是价格偏高;仪器机构复杂,需要专业人员维护;要求环境高。 2、气相色谱仪的基本原理

检测混合物由载气(载气特性为惰性气体,不应与样品和溶剂反应。一般可选用且常用的载气有氢气,氮气,氦气。氦气有最好的分离柱效果,氦气用于热导式测量组件,氢气用于当氦气不能使用的场合,另一为氦气和氢气的混合气可得到较快的响应)带入,检测混合物通过色谱柱(通常为填充柱和毛细管柱)与色谱柱内固定相(我们把色谱柱内不移动,起分离作用的填料称为固定相)相互作用,这种相互作用大小的差异使各混合物各组分按先后次序从流出,并且依次导入检测器,从而得到各组分的检测信号。按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。 主要特点 气相色谱仪因为检测器的不同而具有不同的优缺点。 2、氢火焰检测器气相色谱仪。氢火焰检测器(FID, flame ionization detector)是利用氢火焰作电离源,使被测物质 电离,产生微电流的检测器。它是破坏性的、典型的质量型 检测器。 优点: 对几乎所有的有机物均有响应,特别是对烃类化合物灵敏度高,而且响应值与碳原子数成正比;对 H2O、CO2和 CS2等无机物不敏感;对气体流速、压力和温度变化不敏感。它的线性范围宽,结构简单、操作方便,死体积几乎为零。因此,作为实验室仪器, FID

奥氏气体分析仪操作规程

奥氏气体分析仪操作规程 奥氏气体分析仪操作方法 1.洗涤与调整:将仪器的所有玻璃部分洗净,磨口活塞涂上凡士林,并按图装配好。 在各吸气球管中注入吸收剂。管3注入浓度为30%的NaOH或KOH溶液(以 KOH为好,因NaOH与CO 2作用生成的沉淀Na 2 CO 3 多时会堵塞通道)作吸收CO 2 用。 管4装入浓度为30%的焦性没食子酸和等量的(30%)NaOH或KOH的混合液作吸 收O 2 用,吸收剂要求达到球管口。 在液瓶1中和保温套筒中装入蒸 馏水。最后将取样孔接上待测气 样。 将所有的磨口活塞5、6、8 关闭,使吸气球管与梳形管不相 通。转动8呈“⊥”状并高举1, 排出2中的空气,以后转动8呈 “⊥”状,打开活塞5降下1,此 时3中的吸收剂上升,升到管口 顶部时立即关闭5,使液面停止在 刻度线上。然后打开活塞6同样 使吸收液面到达管口。 2.洗气 右手举起1用左手同时将8转至“├”状,尽量排除2内的空气,使水表面到达刻度100时为止。迅速转动呈“⊥”状,同时下1吸进气样,待水面降到2底部时立即转动8回到“├”状。再举起1,将吸进的气样再排出,如此操作2—3次。目的是用气样冲洗仪器内原有的空气。 3.取样

洗气后转动8呈“⊥”状并降低1。使液面准确达到零位并将1移近2,要求1与2两液面同在一水平线上并在刻度零处。然后将8转至“∧”状,封闭所有通道,再举起1观察2的液面,如果液面不断往上升表明有漏气,要检查各连接处及磨口大活塞,堵漏后重新取样。若液面在稍有上升后停在一定位置上不再上升,证明不漏气,即可开始测定。 4.测定 转动5接通3管,举起1把气样尽量压入3中,再降下1,重新将气样抽回到2中,这样上下举动1使气样与吸收剂充分接触,4—5次后降下1,待吸收剂上升到3的原来刻度线位置时,立即关闭5,把1移近2,在两液面平衡时读数,记录后,重新打开5来回举动1如上操作,再进行第二次读数,若两次读数相同即表明吸收完全。否则重新打开5再举动1直至读数相同为止。以上测定结果为 CO 2含量,再转动6接通4管,用上述方法测出O 2 的含量。 CO 2和O 2 的含量可按下式计算: CO 2 或O 2 (%)=×100 由于量气简体积是100ml,故测定前后量气筒读数之差便是所测气体的百分含量,可以不必计算。 5.注意事项 1.举起1时2内液面不得超过刻度100处,否则蒸馏水会流入梳形管,甚至倒入吸气球管内,不但影响测定准确性,还会冲淡吸收剂造成误差。液面也不能过低,应以3中吸收剂不超出5为准。否则吸收剂流入梳形管时要重新洗涤仪器。 2.举起l时动作不宜太快,以免气样因受压过大冲入吸收剂成气泡状自2管漏出,一旦发生这种现象,要重新测定。 3.先测二氧化碳然后测氧气。 4.焦性食子酸的碱性液在15—20℃时吸氧效能最大,吸收效果随温度下降而减弱,O℃时几乎完全丧失吸收能力。故液温不得低于15℃。 5.吸收剂的浓度按百分比浓度配制,多次举调节液瓶读数不相等时说明吸收剂的吸收性能减弱,需重新配制吸收剂。

QF1904型奥氏气体分析仪调试方法

QF1904型奥氏气体分析仪调试方法 目录 1调试目的 (1) 2编制依据 (1) 3调试前应具备的条件 (1) 4仪器主要部件简介 (1) 5调试的内容、方法和步骤 (2) 6注意事项 (6)

1调试目的 1.1确定用爆炸法测定H2、CH4时,残气与空气的混合比,使可燃气体充分燃烧,提高化验数据的准确度。 1.2比较平行样的测试结果,判断仪器的精密度。 2编制依据 2.1 GB12205—1990《人工燃气主组分的化学分析方法》 2.2《黑色冶金工业标准汇编》(1992年版)中国标准出版社 2.3《化验员读本》(2004年版)化学工业出版社 2.4《1904型气体分析仪使用说明书》 3调试前应具备的条件 3.1实验室土建工作已完成,地面及水泥化验台干净整洁。 3.2实验室专用水龙头、水池已安装完毕,并且上、下水畅通。 3.3实验时所用电源开关、插座、插板已安装完毕,现场照明充足。 3.4通风橱安装完毕,并且能正常运行。 3.5调试所用的各种药品,配制试剂需要的蒸馏水或去离子水已到位;盛装试剂的试剂瓶,配制试剂所需的量筒、烧杯、玻璃棒等各种玻璃器具到位。 3.6称量试剂的天平到位。

3.7安装仪器时所需的医用乳胶管、剪刀、镊子、脱脂棉、吸耳球等工器具到位。 3.8操作规程已审核,操作人员已经过理论培训,熟知仪器的操作方法与步骤,并经考试合格。 4仪器主要部件简介 4.1气体吸收瓶 QF1904型气体分析仪的吸收瓶采用套入式(即作用部分套入承受部分)。套入式采用聚乙烯塑料套联接具有不易碎,结构轻等特点。 4.2量气管 QF1904型气体分析仪为了适合多种用途具有多种量气管。 4.2.1直形量气管 容积=100ml,0—100ml最小分度0.2 ml,共分500小格。 4.2.2双球量气管 容积=100ml, 0—25ml及25ml—60ml不分度,60—100ml最小分度0.1 ml共分400小格。 4.3爆炸瓶及点火装置 QF1904型气体分析仪的爆炸瓶也是采用套入式,点火装置采用火花发生器进行点火,点火率达100%。 4.4每套仪器包括的部件 直形量气管(1只);双球量气管(1只);量气管外套(1只);250ml水准瓶(1只);左梳形分配管(1只);右梳形分配管(1只);接触式吸收瓶(2只);鼓泡式吸收瓶(3只);爆炸瓶(1只);洗气瓶(1只);火花发生器(1只);吸收瓶底座托架(6副);量气管底座托架(1副);配套木架(1副)。 5调试的内容、方法和步骤 5.1化学试剂的配制 5.1.1 30%的KOH溶液:称取300g的化学纯NaOH溶于70ml H2O中。 5.1.2焦性没食子酸的碱性溶液:称取25gC6H3(OH)3溶于250 ml,30%的KOH溶液中。 5.1.3氨性氯化亚铜溶液: 称取250gNH4Cl与320gCuCl溶于900 ml浓NH3.H2O中,加入500ml的蒸馏水中,搅拌成混浊液罐入吸收瓶中,并加入紫铜丝。通大气的液面上应加入液体石蜡油,使其隔绝空气。 5.1.4 10%的H2SO4溶液: 在100ml水中加入5.5~ 6.0ml浓H2SO4,滴加1~2滴甲基橙指示剂显红色。

相关文档
最新文档