线性代数习题 行列式

线性代数习题 行列式
线性代数习题 行列式

第一章 行列式

1.利用对角线法则计算下列三阶行列式:

(1)381141

102

---; (2)b a c

a c

b

c b a (3)2

2

2

1

11

c

b a

c b a

; (4)y

x

y

x x y x y

y x y x +++.

解 (1)=---3

8

1

141

1

02

811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??-

=416824-++- =4-

(2)=b

a

c

a c b

c

b a

ccc aaa bbb cba bac acb ---++ 3

3

3

3c b a abc ---=

(3)=2

2

2

1

11

c

b

a

c b a

2

2

2

2

2

2

cb ba ac ab ca bc ---++

))()((a c c b b a ---=

(4)

y

x

y

x x y x y y x y x

+++

yx y x y x yx y y x x )()()(+++++=3

3

3

)(x y x y -+--

3

3

3

2

2

3

33)(3x y x x y y x y y x xy ------+= )(23

3

y x +-=

2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ;

(6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0

(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为

2

)

1(-n n :

3 2 1个 5 2,5

4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n

)1(-n 个

(6)逆序数为)1(-n n

3 2 1个 5 2,5

4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n

)1(-n 个

4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个

3.写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为

4

3

2

1

4321)1(p p p p t

a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p

已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为

10100=+++或22000=+++

∴44322311a a a a -和42342311a a a a 为所求.

4.计算下列各行列式:

(1)??

??????????71

1

0251020214214; (2)?????????

???-26

0523211

2131412

; (3)????

??????---ef cf

bf

de cd bd

ae ac ab

; (4)?????

?????

??---d c b a 1

00110

011001 解

(1)

7

1

1

025102

0214214

343

27c c c c --0

1

1423102021

10214---

=3

4)

1(14310221

1014

+-?---

=14

3

10

221

1014

--3

2

1132c c c c +

+14

17

17

2001099-=0

(2)

2605

232112131

412

-24c c -2605

032122130412-

24r r -0

4

1

2

03212213

0412

-

1

4r r -0

032122130412-=0

(3)ef

cf

bf

de cd bd

ae ac ab

---=e

c

b

e c b

e c b

adf ---

=1

1

1

111

1

11---adfbce =abcdef 4

(4)

d

c b a

1

110011001---2

1ar r +d

c b a ab 1

110011010

---+

=1

2)

1)(1(+--d

c a ab

1

110

1--+ 2

3dc c +0

1

111-+-+cd c ad a ab

=2

3)

1)(1(+--cd

ad ab +-+11

1=1++++ad cd ab abcd

5.证明:

(1)1

1

1

222

2

b b a a

b

ab a

+=3

)(b a -; (2)bz

ay by

ax bx az by ax bx az bz

ay bx

az bz ay by ax +++++++++=y

x

z

x z y z y x b a )(3

3

+; (3)

0)

3()

2()

1()3()2()1()3()2()1()3()2()1(2

2

2

2

222222222222=++++++++++++d d d d

c c c c b b b b a a a a

;

(4)

4

4

4

4

22221111d

c

b

a

d c b a d c b a

))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?;

(5)1

2

2

1

10000010

0001a x a a a a x x x n n n

+-----

n n n n a x a x

a x ++++=--11

1 .

证明 (1)0

1

2222

22

2

1

312a b a b a a

b a ab a

c c c c ------=

左边 a

b a

b a

b a ab 22)

1(2

22

1

3-----=+

2

1

)

)((a b a a b a b +--=右边=-=3

)(b a

(2)bz

ay by

ax z by ax bx az y bx

az bz ay x a ++++++分开

按第一列左边

bz

ay by ax x

by ax bx az z bx az bz ay y

b +++++++ ++++++002

y by ax z

x bx az y z

bz ay x a

分别再分

bz

ay y

x

by ax x z bx az z y b +++ z

y

x y x z x z y

b y x z

x z y z y x a

3

3

+分别再分

右边=-+=2

3

3

)1(y x

z

x z y z

y x

b y

x z

x z y z y x a

(3) 2

2

2

2

222222222222)

3()

2()

12()3()2()12()3()2()12()3()2()12(++++++++++++++++=

d d d d

d

c c c c c b b b b b a a a a a

左边

9

64

41

29644129644129644122

222

141312++++++++++++---d d d d c c c c b b b b a a a a

c c c c c c

964496449644964422

222++++++++d d d

d

c c c c b b b b a a a a

分成二项

按第二列9

64419644196441964412

222+++++++++d d d c c c b b b a a a

94

94949494642

2

2224232423d

d c c

b b a a

c c c c c c c c ----第二项

第一项

641

6416416412

222=+d

d

d

c c c b b b a a a

(4) 4

4

4

4

4

4

4

22222220001a

d

a

c a

b a

a d a c a

b a a d a

c a b a ---------=

左边

=

)()

()(2

2

2

2

22

2

2

2

22

2

2

22

a d d a c c a

b b a

d

a

c a

b a d a

c a b ---------

=)()

()

(111

)

)()((2

2

2

a d d a c c a

b b a d a

c a b a

d a c a b ++++++---

=?---))()((a d a c a b

)

()()

()()

(0012

2

2

2

2

a b b a d d a b b a c c a b b b

d b

c a b +-++-++--+

=?-----))()()()((b d b c a d a c a b

)

()()

()(1

1

2

2

2

2

b d a b bd d

b c a b bc c ++++++++

=))()()()((d b c b d a c a b a -----))((d c b a d c +++-

(5) 用数学归纳法证明

.,1,2212

1

2

2命题成立时当a x a x a x a x D n ++=+-=

=

假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D

:1列展开按第则n D

1

1

1

0010001

)

1(1

1----+=+-x

x a xD D n n n n

右边=+=-n n a xD 1

所以,对于n 阶行列式命题成立.

6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依 副对角线翻转,依次得

n

nn

n a a a a D 111

1

1

=

, 1

11

12n nn

n a a a a D

= ,11

1

13a a a a D n n

nn

=, 证明D D D D D n n =-==-32)

1(21,)1(. 证明 )det(ij a D =

n

nn n n n n

nn n a a a a a a a a a a D 221

1111

1

111

1

1)

1(

--==

=--=--n

nn n n

n

n n a a a a a a a a 331

1221111

2

1

)

1()

1( nn

n n n n a a a a

1

111

2

1

)1()

1()

1(---=-- D D n n n n 2

)

1()

1()2(21)

1()

1(--+-+++-=-=

同理可证nn

n

n n n a a a a D

11112

)

1(2)

1(--=D D

n n T

n n 2

)

1(2

)1()

1()

1(---=-=

D D D D D n n n n n n n n =-=--=-=----)

1(2

)

1(2

)

1(22

)

1(3)

1()

1()

1()1(

7.计算下列各行列式(阶行列式为k D k ):

(1)a

a

D n 1

1 =

,其中对角线上元素都是a ,未写出的元素都是0;

(2)x

a

a

a x a a a x D n

=

;

(3) 1

11

1)()

1()()1(1

111

n a a a n a a a n a a a

D n n n n

n

n

n ------=---+;

提示:利用范德蒙德行列式的结果.

(4) n

n

n

n

n d c d c b a b a D

000

01

1

112=; (5)j i a a D ij ij n -==其中),det(;

(6)n

n a a a D +++=

11

1

11111121

,021≠n a a a 其中.

(1) a

a a a a D n 0

1

000000000

000

1000

=

按最后一行展开

)

1()1(1

0000000010000)

1(-?-+-n n n a

a a

)

1)(1(2)

1(--?-+n n n

a

a

a

(再按第一行展开)

n n n n

n a a

a

+-?-=--+)

2)(2(1

)

1()

1(

2

--=n n a

a )1(2

2

-=-a a

n

(2)将第一行乘)1(-分别加到其余各行,得

a

x x

a a x x

a a x x a a a a x D n ------=0

0000

再将各列都加到第一列上,得

a

x a x a x a a a a

n x D n ----+=

000000

)1(

)

(])1([1

a x a n x n --+=-

(3)从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2

)

1(1)1(+=++-+n n n n 次行

交换,得

n

n

n

n n n n n n n a a a n a a a

n

a a a D )

()1()

()

1(1111

)

1(1112

)

1(1-------=---++

此行列式为范德蒙德行列式

∏≥>≥++++-

-+--=1

12

)

1(1)]1()1[()

1(j i n n n n j a i a D

∏∏≥>≥+++-++≥>≥++-

?

-?-=-

--=1

12

1

)1(2

)

1(1

12

)

1()][()

1()

1()]([)1(j i n n n n n j i n n n j i j i

∏≥>≥+-

=

1

1)(j i n j i

(4) n

n

n

n

n d c d c b a b a D 00

1

1

112

=

n

n n n n n

d d c d c b a b a a 0

00

00

111

1

111

1

----

展开

按第一行

00

)

1(1

1

1

1

111

1

1

2c d c d c b a b a b n

n n n n n

n ----+-+

2222---n n n n n n D c b D d a 都按最后一行展开

由此得递推公式:

222)(--=n n n n n n D c b d a D

即 ∏=-=n

i i i i i

n D c b d a

D 2

22)(

而 11111

1

112c b d a d c b a D -==

得 ∏=-=n

i i i i

i

n c b d

a D 1

2)(

(5)j i a ij -=

4

3

2

1

401233101222101

13210)det(

--------=

=n n n n n n n n a D ij n

,3221r r r r --0

4321

11111111111

1111

11111 --------------n n n n

,,141312c c c c c c +++

1

524

2321

02221002210002100001---------------n n n n n =212)1()1(----n n n

(6)n

n a a a D +++=

11

1

11111121

,,433

221c c c c c c ---

n

n

n n a a a a a a a a a a +-------10

100010000100010001000011

43

3221

展开(由下往上)

按最后一列

))(1(121-+n n a a a a n

n n a a a a a a a a a ------

--0

0000000000000

0000

0000022

433221

n n n a a a a a a a a ----+

--000

0000000000000011

33221 +

+

n

n n a a a a a a a a -------0

000000000000011

4332

2

n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---

)11)((1

21∑

+==n

i i

n a a a a

8.用克莱姆法则解下列方程组:

?????

??=+++-=----=+-+=+++;

01123,2532,242,5)1(4321

432143214321x x x x x x x x x x x x x x x x ???

?

???

??=+=++=++=++=+.15,

065,065,065,165)2(545434323212

1x x x x x x x x x x x x x 解 (1)11

2

1

3

513241211111

----=

D 8

1

2

735032101111------=

145008130032101111---=142142000

5410032101111-=---=

11210513241221115

1------=

D 11210513290501115

----=

1121023313090509151------=2331309050112109151

------=

1202300461000112109151-----=142000

38100112109151

----=

142

-=

11

2

35122412111512-----=

D 8

1

15

073120327

01151-------=

3139

0011230023

10115

1-=284284

01910023101151-=----= 42611

1

3

5232422115113-=----=

D

1420

2

1

3

2132212151114=-----=

D

1

,

3,

2,

144332211-==

==

==

==

D

D x D

D x D

D x D

D x

(2)5

1

6510006510

00651

00065=D 展开

按最后一行

6

1

0510********

5-

'D D D ''-'=65

D D D ''-'''-''=6)65(5D D '''-''=3019

D D ''''-'''=1146566551141965=?-?=

(,11的余子式中为行列式a D D ',11

的余子式中为a D D ''''类推D D ''''''',) 5

1

1

6510006510

00650000611=D 展开

按第一列6

5

1

065100650006

+

'D

4

6+'=D 4

60319+''''-'''=D 1507=

5

1

0106510006500

00601000152=D 展开

按第二列51

651006500061-6

5

1

065000610005-

3

655

1

6510

65?-=1145108065-=--=

51

1006500006010

00051001653=D 展开

按第三列51

6500061000516

5

061000510065+

6

1

051065

65

1

6500

61+=703114619=?+= 5100

6010000510

00651010654=D 展开

按第四列6

1

05100651006550

610005100651-

-

5

1

651

65

65--=395-= 1100

00510006510

00651100655=D 展开

按最后一列

D '+1

510065100651

2122111=+=

665

212;

665

395;

665

703;

665

1145;

665

150744321=

-=

=

-

==∴

x x x x x .

9.齐次线性方程组

取何值时问,,μλ?

??

??=++=++=++0

200

321321321x x x x x x x x x μμλ有非零解? 解 μλμμ

μ

λ-==1

21

11

1

13D ,

齐次线性方程组有非零解,则03=D 即 0=-μλμ 得 10==λμ或

不难验证,当,10时或==λμ该齐次线性方程组确有非零解.

10.齐次线性方程组

取何值时问,λ?

??

??=-++=+-+=+--0

)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解? 解

λ

λλ----=

11

1

132421D λ

λλλ--+--=

10

1

112431

)3)(1(2)1(4)3()1(3

λλλλλ-------+-= 3)1(2)1(2

3

-+-+-=λλλ

齐次线性方程组有非零解,则0=D 得 32,0===λλλ或

不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

考研数学线性代数行列式的计算方法

考研数学线性代数行列式的计算方法考研数学线性代数行列式的计算方法 一、基本内容及历年大纲要求。 本章内容包括行列式的定义、性质及展开定理。从整体上来看,历年大纲要求了解行列式的概念,掌握行列式的性质,会应用行列 式的性质及展开定理计算行列式。不过要想达到大纲中的要求还需 要考生理解排列、逆序、余子式、代数余子式的概念,以及性质中 的相关推论是如何得到的。 二、行列式在线性代数中的地位。 行列式是线性代数中最基本的运算之一,也是考生复习考研线性 代数必须掌握的基本技能之一(另一项基本技能是求解线性方程组),另外,行列式还是解决后续章节问题的一个重要工具,不论是后续 章节中出现的重要概念还是重要定理、解题方法等都与行列式有着 密切的联系。 三、行列式的计算。 由于行列式的计算贯穿整个学科,这就导致了它不仅计算方法灵活,而且出题方式也比较多变,这也是广大考生在复习线性代数时 面临的第一道关卡。虽然行列式的计算考查形式多变,但是从本质 上来讲可以分为两类:一是数值型行列式的计算;二是抽象型行列式 的计算。 1.数值型行列式的计算 主要方法有: (1)利用行列式的定义来求,这一方法适用任何数值型行列式的 计算,但是它计算量大,而且容易出错;

(2)利用公式,主要适用二阶、三阶行列式的计算; (3)利用展开定理,主要适用出现零元较多的行列式计算; (4)利用范德蒙行列式,主要适用于与它具有类似结构或形式的行列式计算; (5)利用三角化的思想,主要适用于高阶行列式的计算,其主要思想是找1,化0,展开。 2.抽象型行列式的计算 主要计算方法有: (1)利用行列式的性质,主要适用于矩阵或者行列式是以列向量的形式给出的; (2)利用矩阵的运算,主要适用于能分解成两个矩阵相乘的'行列式的计算; (3)利用矩阵的特征值,主要适用于已知或可以间接求出矩阵特征值的行列式的计算; (4)利用相关公式,主要适用于两个矩阵相乘或者是可以转化为两个矩阵相乘的行列式计算; (5)利用单位阵进行变形,主要适用于既不能不能利用行列式的性质又不能进行合并两个矩阵加和的行列式计算。 我们究竟该做多少年的真题? 建议大家在刚开始复习的时候,不要去做真题,因为以你刚开始复习的程度还不足以支撑起真题的难度和深度。我们做真题的时间是在我们的强化阶段结束之后,也就是提高阶段和冲刺模考去做真题。 应该怎么样去做真题? 第一:练习重质不重量

考研线性代数知识点全面汇总

考研线性代数知识点全面汇总

————————————————————————————————作者:————————————————————————————————日期: 2

《线性代数》复习提纲 第一章、行列式 1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。 (1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法 定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; ?行列式值为0的几种情况: Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。 3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。 奇排列变为标准排列的对换次数为基数,偶排列为偶数。 n 阶行列式也可定义:n q q q n a a a ?=∑21t 2 1 1-D )(,t 为n q q q ?21的逆序数 4.行列式性质: 1、行列式与其转置行列式相等。 2、互换行列式两行或两列,行列式变号。若有两行(列)相等或成比例,则为行列式0。 3、行列式某行(列)乘数k,等于k 乘此行列式。行列式某行(列)的公因子可提到外面。 4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。 5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。 6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。(按行、列展开法则) 7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0. 5.克拉默法则:

2020年考研线性代数重点内容和典型题型总结

XX年考研线性代数重点内容和典型题型总结线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学 们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题 为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必 然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算 行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进 行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数 的行列式的计算.关于每个重要题型的具体方法以及例题见《xx年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴

随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数

#线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 0010020010000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式 n ij D a =的元素满足 ,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j i a a =-知i i i i a a =-,即 0,1,2, ,ii a i n ==

故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。 因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a = 解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,

线性代数-特殊行列式及行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 111121 12,1221222,11,21,1 1,1 12 ,1 (1)2 12,1 1 000000000000000 00 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------= ==- 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????==? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????==-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式;

3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降 阶进行计算——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法) 【常见的化简行列式的方法】 1. 利用行列式定义直接计算特殊行列式 例1 (2001年考研题) 0001000200019990002000000 002001 D = 分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。 解法一:定义法 (1,2,...,2,1,)012...19990(1)2001!(1)2001!2001!n n n D τ--+++++=-=-= 解法二:行列式性质法 利用行列式性质2把最后一行依次与第n -1,n -2,…,2,1行交换(这里n =2001),即进行2000次换行以后,变成副对角行列式。 2001(20011) 20011 20011 2 000020010 001000200(1) (1) (1)2001!2001!019990002000 00 D ?---=- =--=

考研线性代数知识点归纳

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

2020年考研数学一大纲:线性代数

2020年考研数学一大纲:线性代数 出国留学考研网为大家提供2018年考研数学一大纲:线性代数,更多考研资讯请关注我们网站的更新! 2018年考研数学一大纲:线性代数 线性代数 一、行列式考试内容 行列式的概念和基本性质行列式按行(列)展开定理 考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵考试内容 矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩 阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵 的方法.

5.了解分块矩阵及其运算. 三、向量 考试内容 向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与 矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和 坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规 范正交基正交矩阵及其性质 考试要求 1.理解n维向量、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系. 5.了解n维向量空间、子空间、基底、维数、坐标等概念. 6.了解基变换和坐标变换公式,会求过渡矩阵. 7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法. 8.了解规范正交基、正交矩阵的概念以及它们的性质. 四、线性方程组 考试内容 线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的

2020考研 线性代数_常用公式

考研数学线性代数常用公式 数学考研考前必背常考公式集锦。希望对考生在暑期的复习中有所帮助。本文内容为线性代数的常考公式汇总。 1、行列式的展开定理 行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之 和,即 C 的 3、设A 为n 阶方阵,*A 为它的伴随矩阵则有**==AA A A A E . 设A 为n 阶方阵,那么当AB =E 或BA =E 时,有1-B =A 4、 对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种: 第一种:交换单位矩阵的第i 行和第j 行得到的初等矩阵记作ij E ,该矩阵也

可以看做交换单位矩阵的第i 列和第j 列得到的.如1,3001010100?? ?= ? ?? ?E . 第二种:将一个非零数k 乘到单位矩阵的第i 行得到的初等矩阵记作()i k E ;该矩阵也可以看做将单位矩阵第i 列乘以非零数k 得到的.如 2100(5)050001?? ?-=- ? ?? ?E . 第三种:将单位矩阵的第i 行的k 倍加到第j 行上得到的初等矩阵记作()ij k E ;该矩阵也可以看做将单位矩阵的第j 列的k 倍加到第i 列上得到的.如 3,2100(2)012001?? ?-=- ? ??? E . 注: 1)初等矩阵都只能是单位矩阵一次初等变换之后得到的. 2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵()ij k E 看做列变换是将单位矩阵第j 列的k 倍加到第i 列,这一点考生比较容易犯错. 5、矩阵A 最高阶非零子式的阶数称之为矩阵A 的秩,记为()r A . 1)()()(),0r r r k k ==≠T A A A ; 2)()1r ≠?≥A O A ; 3)()1r =?≠A A O 且A 各行元素成比例; 4)设A 为n 阶矩阵,则()0r n =?≠A A . 6、线性表出 设12,,...,m ααα是m 个n 维向量,12,,...m k k k 是m 个常数,则称1122...m m k k k ααα+++为向量组12,,...,m ααα的一个线性组合. 设12,,...,m ααα是m 个n 维向量,β是一个n 维向量,如果β为向量组

线性代数习题-[第一章]行列式

习题1—1 全排列及行列式的定义 1. 计算三阶行列式123 4 56789 。 2. 写出4阶行列式中含有因子1324a a 并带正号的项。 3. 利用行列式的定义计算下列行列式: ⑴0 004003002001 0004 D

⑵0 0000000052 51 42413231 2524232221 151********a a a a a a a a a a a a a a a a D = ⑶0 001 0000 200 0010 n n D n -= 4. 利用行列式的定义计算210111()0211 1 1 x x x f x x x -= 中34 , x x 的系数。

习题1—2 行列式的性质 1. 计算下列各行列式的值: ⑴ 2141 012112025 62 - ⑵ef cf bf de cd bd ae ac ab --- ⑶ 2 2 2 2 2 2 2 2 22222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a

2. 在n 阶行列式nn n n n n a a a a a a a a a D 2 1 222 2111211 = 中,已知),,2,1,(n j i a a ji ij =-=, 证明:当n 是奇数时,D=0. 3. 计算下列n 阶行列式的值: ⑴x a a a x a a a x D n = ⑵n n a a a D +++= 11 1 1 1111121 ()120n a a a ≠

线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100 20010000 n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---= . 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算

例2 一个n 阶行列式n ij D a =的元素满足 ,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j a a =-知i i i a a =-,即 0,1,2,,ii a i n == 故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A ' = 1213112 23213 2331230000n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)00 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

线性代数公式大全

线性代数公式大全——最新修订 1、行列式 1. n 行列式共有2n 个元素..,展开后有!n 项.,可分解为2n 行列式... ; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解(即有无穷多个解); ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =只有有零解; ?n b R ?∈,Ax b =总有唯一解;

考研线性代数大总结

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、 A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵);

2020考研农学门类联考数学大纲:线性代数

2020考研农学门类联考数学大纲:线性代数 出国留学考研网为大家提供2017考研农学门类联考数学大纲:线性代数,更多考研资讯请关注我们网站的更新! 2017考研农学门类联考数学大纲:线性代数 一、行列式 考试内容 行列式的概念和基本性质行列式按行(列)展开定理 考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价 考试要求 1.理解矩阵的概念,了解单位矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵.

4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法. 三、向量 考试内容 向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系 考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则. 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系. 四、线性方程组 考试内容 线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组的解之间的关系非齐次线性方程组的通解 考试要求 1.会用克拉默法则解线性方程组. 2.掌握非齐次线性方程组有解和无解的判定方法. 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.

考研线性代数公式

考研线性代数公式

————————————————————————————————作者:————————————————————————————————日期: ?

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解;

考研线性代数知识点全面总结

考研线性代数知识点全面总结

《线性代数》复习提纲 第一章、行列式 1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。 (1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法 定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; ?行列式值为0的几种情况: Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。 3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。 奇排列变为标准排列的对换次数为基数,偶排列为偶数。 n 阶行列式也可定义:n q q q n a a a ?=∑21t 2 1 1-D )(,t 为n q q q ?21的逆序数 4.行列式性质: 1、行列式与其转置行列式相等。 2、互换行列式两行或两列,行列式变号。若有两行(列)相等或成比例,则为行列式0。 3、行列式某行(列)乘数k,等于k 乘此行列式。行列式某行(列)的公因子可提到外面。 4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。 5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。 6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。(按行、列展开法则) 7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0. 5.克拉默法则: :若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解D D D D x D D n =?== n 2211x ,x ,,。

线性代数之行列式的性质及计算讲解学习

线性代数之行列式的性质及计算

第二节 行列式的性质与计算 §2.1 行列式的性质 考虑11 1212122212n n n n nn a a a a a a D a a a = L L L L L L L 将它的行依次变为相应的列,得 11 21112 222 12n n T n n nn a a a a a a D a a a = L L L L L L L 称T D 为D 的转置行列式 . 性质1 行列式与它的转置行列式相等.(T D D =) 事实上,若记111212122212n n T n n nn b b b b b b D b b b = L L L L L L L L L L 则(,1,2,,)ij ji b a i j n ==L 1212() 12(1)n n p p p T p p np D b b b τ∴=-∑L L 1212()12(1).n n p p p p p p n a a a D τ=-=∑L L 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立. 性质2 互换行列式的两行(i j r r ?)或两列(i j c c ?),行列式变号. 例如 123 123086351.351 086 =- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =. 性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即

111211112112121212 n n i i in i i in n n nn n n nn a a a a a a ka ka ka k a a a a a a a a a =L L L L L L L L L L L L L L L L L L L L L L 推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面; (2) D 中某一行(列)所有元素为零,则0D =; 性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零. 性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即 11121112212 n i i i i in in n n nn a a a a b a b a b a a a +++=L L L L L L L L L L L 1112112 12 n i i in n n nn a a a a a a a a a +L L L L L L L L L L L 111211212 n i i in n n nn a a a b b b a a a L L L L L L L L L L L . 证: 由行列式定义 1212()12(1)()n i i n p p p p p ip ip np D a a a b a τ=-+∑L L L 12121212()()1212(1)(1).n n i n i n p p p p p p p p ip np p p ip np a a a a a a b a ττ=-+-∑∑L L L L L L 性质6 行列式D 的某一行(列)的各元素都乘以同一数k 加到另一行(列)的相应元素上,行列式的值不变()i j r kr D D +=,即 111211212 i j n r kr i i in n n nn a a a a a a a a a +=L L L L L L L L L L L 11121112212 n i j i j in jn n n nn a a a a ka a ka a ka a a a +++L L L L L L L L L L L 计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值.

考研线性代数大纲

线性代数 一、行列式 考试内容 行列式的概念和基本性质行列式按行(列)展开定理 考试要求: 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算 考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算. 三、向量 考试内容 向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质 考试要求 1.理解维向量、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系. 5.了解维向量空间、子空间、基底、维数、坐标等概念. 6.了解基变换和坐标变换公式,会求过渡矩阵. 7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

2016考研数学行列式与矩阵

2016考研数学行列式与矩阵 导读:2016考研初试在即,考生们一定需要更有针对性的复习资料来进行最后三天的冲刺备考。针对2016考研数学,小编总结了系列较难知识点,今天我们来研究线代复习重点解析之行列式与矩阵。 一、行列式 行列式是线性代数中的基本运算。该部分单独出题情况不多,很多时候,考试将其与其它知识点(矩阵、线性方程组、特征值与特征向量等)结合起来考查。行列式的重点是计算,包括数值型行列式、抽象型行列式和含参数行列式的计算。 结合考试分析,建议考生从行列式自身知识、与其它知识的联系这两方面来把握该部分内容。具体如下: 1. 行列式自身知识 考生应在理解定义、掌握性质及展开定理的基础上,熟练掌握各种形式的行列式的计算。行列式计算的基本思路是利用性质化简,利用展开定理降阶。常见的计算方法有:“三角化”法,直接利用展开定理,利用范德蒙行列式结论,逆向运用展开定理。 2. 行列式与其它知识的联系

行列式与其它知识(线性方程组的克拉默法则、由伴随矩阵求逆矩阵、证明矩阵可逆、判定n个n维向量线性相关(无关)、计算矩阵特征值、判断二次型的正定性)有较多联系。考生应准确把握这些联系,并灵活运用。 二、矩阵 矩阵是线性代数的核心,也是考研数学的重点考查内容。考试单独考查本部分以小题为主,平均每年1至2题。但是矩阵是线性代数的“活动基地”,线性代数的考题绝大部分是以矩阵为载体出题的,因此矩阵复习的成败基本决定了整个线性代数复习的成败。 该部分的常考题型有:矩阵的运算,逆矩阵,初等变换,矩阵方程,矩阵的秩,矩阵的分块。其中逆矩阵考得最多。 结合考试分析,建议考生从以下方面把握该部分内容: 矩阵运算中矩阵乘法是核心,要特别注意乘法不满足交换律和消去律。逆矩阵需注意三方面——定义、与伴随矩阵的关系、利用初等变换求逆矩阵。伴随矩阵是难点,需熟记最基本的公式 ,并灵活运用。对于矩阵的秩,着重理解其定义,及其与行列式及矩阵可逆性的关系。

相关文档
最新文档