变频器的闭环速度控制功能

变频器的闭环速度控制功能
变频器的闭环速度控制功能

https://www.360docs.net/doc/3711832000.html,/m/b/1411607.html

丹佛斯VLT2800系列变频器的闭环速度控制功能

一、概述:

丹佛斯VLT2800系列变频用具有响应时间快、速度控制精度高等特点,通过内部的滑差补偿功能,可以在开环速度控制中将转速误差控制在+/-23rpm之内(4极电机,90~3600rpm)。假如对转速精度有更高的要求,可以采用速度闭环的方式:通过速度传感器反馈信号与给定信号的比较进行PID运算,控制电机的实际转速。通过速度闭环控制,VLT2800系列变频器可将转速误差控制在+/-7.5rpm之内(4极电机,30~3600rpm)。

二、实施方法:

将速度传感器安装于电机轴上,通过对实际转速信号的采集达到精确控制转速的目的。速度传感器一般采用旋转编码器,而旋转编码器根据工作原理、分辨率、电源类型和输出形式的不同又分为很多不同类型,如下表所列。

在此,我们选用增量型、24V电源供电、集电极开路(PNP)输出、分辩率为1024的旋转编码器,按下表方式接线:

一般使用旋转编码器需要判定电机转向和定位控制时需要使用A/B/Z三相信号。在此,我们仅需要A 相信号传感实际转速。

需重新设定的参数见下表(以四极电动机为例,由电位器给定转速信号):

基于S7-200 PLC USS协议通信的速度闭环定位控制系统设

时间:2013-11-20 来源:作者:

可以应用于多个自动化控制系统中,大大节约了项目的开发时间和成本,在实际应用中取得了良好的效果。

0 引言

随着电力电子技术以及控制技术的发展,交流变频调速在工业电机拖动领域得到了广泛应用;可编程控制器PLC作为替代继电器的新型控制装置,简单可靠,操作方便、通用灵活、体积小、使用寿命长且功能强大、容易使用、可靠性高,常常被用于现场数据采集和设备的控制;在此,本次设计就是基于S7-200PLC的USS通信方式的速度闭环定位控制。

将现在应用最广泛的PLC和变频器综合起来通过USS协议网络控制实现速度闭环定位控制。PLC根据输入端的控制信号及脉冲信号,经过程序运算后由通讯端口控制变频器运行设定的行程;电机运行到减速值后开始减速;电机运行到设定值后

停止运行并锁定。因此,该系统必须具备以下三个主体部分:控制运算部分、执行和反馈部分。控制运算主要由PLC和变频器来完成;执行元件为变频器和电机;反馈部分主要为速度反馈。

S7-200 PLC通过USS协议网络控制Micro-Master MM420变频器,控制电动机的启动、制动停和定位控制,并能够通过PLC读取变频器参数、设置变频器参数。

1.系统设计的总体思路

系统主要由三个部分构成,即可编程逻辑控制器件PLC、变频器和电机。首先通过设置给定输入给PLC,再通过PLC控制变频器,再经由变频器来控制电机,随后将电机的转速反馈给PLC,经比较后输出给变频器从而实现无静差调速。构成闭环系统就要把速度信息反馈给输入。速度的测量可以通过光电编码器和PLC来实现。

速度采集:S7-200具有高速脉冲采集功能,采集频率可以达到30KHz,共有6个高速计数器(HSC0~HSC5)工作模式有12种。在固定时间间隔内采集脉冲差值,通过计算既可以获得电动机的当前转速。

例如:设采样周期为100ms即是每隔100ms采集脉冲一次,光电开关每转发出8个脉冲,那么就可以得到速度为:

其中Δm为采样周期内接受到的脉冲数。

转速n的单位为r /min.

闭环控制就是将速度信号反馈给PLC,再通过与给定量比较,输出给PID控制部分,从而调节速度使其能达到设定要求。具体如图1所示。

2.系统硬件接线与变频器的参数设置

西门子S7-200和MicroMaster变频器之间采用通讯协议USS,用户可通过程序调用的方式实现通信,编程的工作量小,是一种费用低使用方便的通讯方式。S7-200 CPU的通信端口的规格是RS 485,因此将S7-200的通信端口与驱动装置的RS485端口连接,在RS485网络上实现USS通信无疑是最方便经济的。

系统硬件接线图如图2所示,将MM440的通信端子为P+(29)和N-(30)分别接至S7-200通信口的3号与8号针,以建立S7-200与MM420变频器的USS通信硬件连接。其中,I0.1为脉冲输入,I0.2为启动开关。

总线连成后,除在上位机进行编程外,还要在变频器上进行各参数设置,主要如表1:

3.软件设计

应用S7-200PLC和变频器通过USS协议网络控制实现速度闭环定位控制。要求PLC根据输入端的控制信号及脉冲信号,经过程序运算后由通讯端口控制变频器运行设定的行程;电机运行到减速值后开始减速;电机运行到设定值后停止运行并锁定。系统软件程序流程图设计如图3所示。

USS协议对硬件设备要求低,减少了设备之间布线的数量。无需重新布线就可以改变控制功能。可通过串行接口设置来修改变频器的参数。可连续对变频器的特性进行监测和控制。利用S7-200 CPU组成USS通信的控制网络具有较高的性价比。西门子S7-200和MicroMaster变频器之间采用通讯协议USS,用户可通过程序调用的方式实现通信,编程的工作量小,是一种费用低使用方便的通讯方式。本系统USS 协议通信部分程序梯形图如图4所示。

4.结语

本项目运行效果:PLC根据输入端的控制信号及脉冲信号,经过程序运算后由通讯端口控制变频器运行设定的行程;电机运行到减速值后开始减速;电机运行到设定值后停止运行并锁定,实现了速度的闭环定位自动控制。

实践证明:西门子变频器与PLC通过USS协议进行串行通讯,无须购置附件进行系统组态,直接对其组网监控,进行电机闭环调速,是一种低成本、高性能的好途径,这种设计方法具有较大的推广意义。

变频器的VF控制与矢量控制

变频器的V/F控制与矢量控制 U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。 V/F控制与矢量都是恒转矩控制。U/F相对转矩可能变化大一些。而矢量是根据需要的转矩来调节的,相对不好控制一些。对普通用途。两者一样。 1、矢量控制方式 矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制。 在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 2、V/F控制方式 V/F控制,就是变频器输出频率与输出电压的比值为恒定值或成比例。例如,50HZ时输出电压为380V的话,则25HZ时输出电压为190V。 变频器采用V/F控制方式时,对电机参数依赖不大,V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变

直流电机PID闭环数字控制器设计

广西大学实验报告纸 姓名: 指导老师: 成绩: 学院: 专业: 班级 实验内容:直流电机PID 闭环数字控制器设计 2014年 其他组员: 实验时间:2014年10月28号 实验方式:课外在MA TLAB 平台上完成实验。 实验目的: 1、掌握线性系统状态空间标准型、解及其模型转换。 实验设备与软件: 1、 MATLAB 数值分析软件 实验原理: 1、求矩阵特征值 [V J]=eig(A), cv= eig(A) 2、求运动的方法 (1)利用Laplace/Z 逆变换----适合于连续/离散线性系统; (2)用连续(离散)状态转移矩阵表示系统解析解----适合于线性定常系统; (3)状态方程的数值积分方法----适合于连续的线性和非线性系统; (4)利用Cotrol ToolBox 中的离散化求解函数----适合于LTI 系统; (5)利用Simulink 环境求取响应----适于所有系统求取响应。 1、PID 调节原理 比例调节作用:按比例反应系统的偏差产生调节作用。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统不稳定。 积分调节作用:消除稳态误差。积分作用的强弱取决与积分时间常数Ti ,Ti 越小,积分作用就越强;反之,Ti 大则积分作用弱 微分调节作用:微分作用反映系统偏差信号的变化率,产生超前的控制作用。在偏差还没有形成之前,已被微分调节作用消除,改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用不能单独使用。 按偏差的PID 是过程控制中应用最广泛的一种控制规则,该调解器是一种线性调节器,。PID 的控制原理表达式为: 图1 PID 控制原理图 2、PID 算法的数字实现 (1)标准PID 算法: p d 0i 1()()()()t de t u t K e t e t dt T T dt ?? =++ ?? ??

变频器矢量控制与VF控制区别

变频器矢量控制与VF控制区别 一、V/F控制方式 变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。由于我们采用矢量化的V/F控制方式,故做电机参数静止自整定还是有必要的。不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。 一般有如下百分比数据:5.5kW~15 kW,空载电流P9.05的值为30%~50%的电机额定电流;3.7 kW及以下的,空载电流P9.05的值为50%左右的电机额定电流;特殊情况时,0.4 kW、0.75 kW、1.5 kW,空载电流P9.05的值为70%~80%的电机额定电流;有的0.75 kW功率段,参数自整定后空载电流为电机额定电流的90%。空载电流很大,励磁也越大。 何为矢量化的V/F控制方式,就是在V/F控制时也将输入电流量进行解耦控制,使控制更加精确。 变频器输出电流包括两个值:空载电流和力矩电流,输出电流I的值为空栽电流Im和力矩电流It平方和后开2次方。故空载电流是影响变频器输出电流的主要因素之一。 V/F控制时输出电压与运行频率之比为一定值:即U/F=K(K为常数),P0.12=最大输出电压U,P0.15=基频F。三菱变频器资讯 上图中有个公式,描述转矩、转速、功率之间的关系。变频器在基频以下运行时,随着速度增快,可以输出恒定的转矩,速度增大不会影响转矩的输出;变频器在基频以上运行时,只能保证输出额定的功率,随着转速增大,变频器不能很好的输出足够大的力;有时候变频器速度更快,高速运行时,处于弱磁区,我们必须设置相应的参数,以便让变频器适应弱磁环境。 速度与出力,高速或者低速时,两者不可兼得,这里有个数据概念:调速范围,指满足额定转矩出力的最低频率与最高频率的比值。以前一般的VF控制方式调试范围为1:20~1:40,我司产品V/F控制调速范围可以达到1:100,能够满足更多范围的行业应用。在开环矢量时可以达到1:200,闭环矢量时达到1:1000,接近伺服的性能。 变频器V/F控制系统运行时,有两种方式进行转矩的提升: 1、自动转矩提升: 必须在P0.16=0且P4.00=0时,自动转矩提升才有效。其作用为:变频器V/F控制低频运行时,提高输出电压,抵消定子压降以产生足够的转矩,保证电机正常运行。自动转矩提升与变频器设置“空载电流”和静止学习的“定子电阻”有关系,变频器必须作电机参数静止自整定,才能更好的控制电机运行。变频器作自动转矩提升控制电机时,见上图所示输出电压和频率的线性关系,运行中因为负载变化对电压输出作适当的增减,由于响应时间的快慢,所以会出现出力不稳定因素。 2、手动转矩提升 设置P0.16为某一数值时,或者设置P4.00为非零时,手动转矩提升才有效。手动转矩提升只与变频器设置“空载电流”有关系,受电机其他参数设置影响较小。如下图所示,为手动转矩提升曲线图。变频器输出作手动转矩提升,其转矩出力在原来基础上成线性增加,所以出力稳定,不受负载变化的影响,出力稳定。但是转矩提升不益太大,转矩提升的幅度应根据负载情况适当设定,提升过多,在启动过程中将产生较大的电流冲击。 自动转矩提升只能满足一拖一的输出情况,当涉及一台变频器拖动多台电机时,V/F控制时必须采用手动转矩提升,即设置P0.16为非0值。 V/F控制时的有关性能参数调试: PA.02为V/F控制转差补偿增益,设置此参数时,可以参考电机额定转速P9.02来设定参数。该功能有助于变频器在负载波动及重载情况下保持电机转速恒定,即补偿由于负载波动而导致的电机转速增减,但是由于补偿本身的响应时间问题,导致系统出现不稳定因素增多,在系统波动较大的情况下,此功能码设置为0有一定效果。

数字控制PWM双闭环直流调速系统课程设计

山东理工大学 毕 业 设 计 课题:数字控制PWM的直流电机调速系统的课程设计姓名:嵇长发 学号:1011042088 班级:自动化1003班 院校:电气与电子工程学院

数字控制PWM的直流电机调速系统的课程设计 一、课程设计的目的 运用计算机控制技术对直流电机正反转运行进行控制,了解计算机控制的过程。对计算机的原理和内部结构有一定的认识和了解,设计的过程包括系统设计方案的设计,硬件的选择和设计,控制软件的设计。以便使我们对大学中所学的课程有一个更深的学习,使所有的课程综合在一起。 二、系统总体方案设计 1数字控制双闭环直流PWM调速系统的原理 采用转速、电流双闭环控制结构,在系统中设置两个调节器,分别调节转速和电流,二者之间实行串级连接,即以转速调节器的输出作为电流调节器的输入,再用电流调节器的输出作为PWM的控制电压。检测部分中,采用了霍尔片式电流检测装置(TA)对电流环进行检测,转速环则是采用了光电码盘进行检测。 (直流调速系统课本P122原理图两者结合码盘测速) 2数字控制直流PWM调速系统的硬件结构

数字控制双闭环直流PWM调速系统硬件结构图 (直流调速系统陈伯时编著课本P101) 双闭环系统结构,采用微机控制;全数字电路,实现脉冲触发、转速给定和检测;采用数字PI算法。由软件实现转速、电流调节系统由主电路、控制电路、给定电路、显示电路组成 主电路:三相交流电源经不可控整流器变换为电压恒定的直流电源,再经过直流PWM变换器得到可调的直流电压,给直流电动机供电. 主电路采用由达林顿管组成的H型PWM电路。用单片机控制达林顿管使之工作在占空比可调的开关状态,精确调整电动机转速。这种电路由于工作在管子的饱和截止模式下,效率非常高;H型电路保证了可以简单地实现转速和方向的控制;电子开关的速度很快,稳定性也极佳,是一种广泛采用的PWM调速技术。 主电路 三、硬件选择 1.单片机选择 选择89S52单片机 以下是引脚图,以及引脚功能介绍

变频器通过编码器实现闭环控制的原理

变频器通过编码器实现闭环控制的原理 变频器带编码器的闭环控制: 变频控制闭环,主要是指速度闭环。 变频电机有需要速度反馈的,在电机启动、加速和减速停止的变速过程中,电机的驱动电流需要与实际转速下电机因发电机效应产生的反电动势相匹配,如果电机驱动电流与反电动势阻抗不匹配,电机驱动力不够转速达不到输出要求,或者因电机负载过大电机没有达到输出速度值,反电动势因与转速成比例而偏弱,这样会引起电机电流徒增,容易烧毁电机线圈或驱动器。速度反馈及时反馈的信息可以计算实际转速并导算反电动势与驱动电流的匹配,从而保护电机和驱动器。 变频频电机的速度闭环反馈,大约有三种模式: 1,霍尔传感器,在电机转径上大部分是三个霍尔传感器,反馈三相位置变化。由于传感器对电机一周的提供信息有限,速度精度低,在低速时很难分辨。 2,所谓无传感器的技术----利用线圈转起来,自感应反电动势。但是在启动到低速过程中反电动势较弱,如果感应电路本底阻抗在,这种微弱的感应被吃掉,低速时实际获得反馈很不稳定。 3,旋转编码器,较高的分辨率(例如每圈1024个脉冲),可获得较高的速度精度,尤其是在启动到低速时精度高。 根据上述描述,可见变频器(尤其是矢量变频)带编码器主要是在低速启动时的效果,可以精细化计算驱动电流,防止电流过小驱动力不够(没有转速),或者因为堵转电机失速,反电动势不够而驱动电流过流,容易烧毁器件或电机。 上述情况在起重启升类电机尤为重要,防止变频器为保护电机失速而溜钩,所以起重启升类变频器必须加装编码器。 注意一下矢量变频的手册内容,一般有编码器反馈的,低速可做到很低。 另外,变频器有的加装了PG卡的位置闭环模式,编码器反馈给具有位置控制功能的变频器(PG卡)做位置闭环控制,或者编码器信号给PLC,PLC给指令变频器减速和制动做位置闭环控制,这时我建议需要用值编码器。

变频器常用的几种控制方式

变频器常用的几种控制方 式 Prepared on 22 November 2020

变频器常用的几种控制方式 变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。 1、变频器简介 变频器的基本结构 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 2、变频器中常用的控制方式 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。 V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。 (3) 矢量控制 矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。 基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差

直流电机PID闭环数字控制器设计

广西大学实验报告纸 :指导老师:成绩: 学院:专业:班级 实验容:直流电机PID闭环数字控制器设计2014年其他组员: 实验时间:2014年10月28号 实验方式:课外在MATLAB平台上完成实验。 实验目的: 1、掌握线性系统状态空间标准型、解及其模型转换。 实验设备与软件: 1、MATLAB数值分析软件 实验原理: 1、求矩阵特征值 [V J]=eig(A), cv= eig(A) 2、求运动的方法 (1)利用Laplace/Z逆变换----适合于连续/离散线性系统; (2)用连续(离散)状态转移矩阵表示系统解析解----适合于线性定常系统; (3)状态方程的数值积分方法----适合于连续的线性和非线性系统; (4)利用Cotrol ToolBox中的离散化求解函数----适合于LTI系统; (5)利用Simulink环境求取响应----适于所有系统求取响应。 1、PID调节原理

比例调节作用:按比例反应系统的偏差产生调节作用。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统不稳定。 积分调节作用:消除稳态误差。积分作用的强弱取决与积分时间常数Ti ,Ti 越小,积分作用就越强;反之,Ti 大则积分作用弱 微分调节作用:微分作用反映系统偏差信号的变化率,产生超前的控制作用。在偏差还没有形成之前,已被微分调节作用消除,改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用不能单独使用。 按偏差的PID 是过程控制中应用最广泛的一种控制规则,该调解器是一种线性调节器,。PID 的控制原理表达式为: 图1 PID 控制原理图 2、PID 算法的数字实现 (1)标准PID 算法: 在输出不振荡时,增大比例增益,减小积分时间常数,增大微分时间常数。因本实验采用的是一种离散时间的离散控制系统,因此为了用计算机实现PID 控制必须将其离散化,故可用数字形式的差分方程来代替 p d i 1 ()()()()t de t u t K e t e t dt T T dt ?? =+ + ?? ? ?() p i d 0()()()()(1)n j u n K e n K e j K e n e n ==++--∑

基于51单片机单闭环数字控制课程设计

运动控制课程设计 题目:基于AT89C52单片机单闭环PWM直流数字控制系统专业班级:1002 姓名:秦凯新 学号:201046820427 指导教师:张智强

目录 1.引言 (1) 2.设计方案 (1) 2.1 系统总方案论证与选择 (1) 2.2 PID控制算法的设计 (2) 2.3 单片机的选型: (5) 2.4 测速装置的选型: (5) 2.4.1霍尔传感器测速 (5) 2.4.2编码盘测速 (6) 3 硬件部分 (6) 3.1单片机最小系统 (6) 3 .2 PWM控制直流电机正反转模块设计 (7) 3.4检测回路模块设计 (8) 3.6按键模块设计 (9) 3.7显示模块设计 (9) 4 软件部分 (10) 3.1 PID控制程序设计 (10) 3.1.1位置式电机PID控制程序设计 (10) 3.1.2增量式电机PID控制程序设计 (12) 3.2经测速装置由PID运算后PWM波形的产生程序设计 (14) 3.2.1直流电机调速原理 (14) 3.2.2 PWM基本原理及实现方法 (14) 3.2.3 PWM在直流调速中的应用 (15) 3.2.3PWM产生软件设计思路 (15) 3.3显示模块程序设计 (18) 附录: (21) [参考文献] (22)

1.引言 由于直流电动机具有良好的起动、制动性能,适宜在大范围内平滑调速,因此在许多需要调速或快速正反向的电力拖动系统中得到了广泛的应用。而且,从控制的角度来看,直流调速还是交流调速,都用到拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,由运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难, 触发精度易受电网电压波动的影响,触发脉冲不对称度较大,调节器中的运算放大器,因网压和温度变化引起的漂移会产生运算误差,模拟器件老化也会引起运算误差,甚至使已经整定好的系统性能变差,这些都阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使许多控制功能及算法可以采用软件技术来完成,不但为直流电动机的控制提供了更大的灵活性,而且使系统能达到了更高的性能。 2.设计方案 2.1 系统总方案论证与选择 对直流电机转速的控制有一般有两种方式,一种是开环控制,一种是闭环控制。开环控制的优点是简单、稳定、可靠。若组成系统的元件特性和参数值比较稳定,且外界干扰较小,开环控制能够保持一定的精度。缺点是精度通常较低,无自动纠偏能力;闭环控制的优点是控制的精度可以达到很高,而且对外界的干扰和系统的参数变化有很好的抑制作用,且可以通过输出反馈控制系统的控制过程。缺点是存在稳定性,振荡,超调等一系列问题,对系统的性能分析和设计远比开环控制麻烦。所以采用但闭环直流调速系统设计方案。

变频器的闭环速度控制功能

https://www.360docs.net/doc/3711832000.html,/m/b/1411607.html 丹佛斯VLT2800系列变频器的闭环速度控制功能 一、概述: 丹佛斯VLT2800系列变频用具有响应时间快、速度控制精度高等特点,通过内部的滑差补偿功能,可以在开环速度控制中将转速误差控制在+/-23rpm之内(4极电机,90~3600rpm)。假如对转速精度有更高的要求,可以采用速度闭环的方式:通过速度传感器反馈信号与给定信号的比较进行PID运算,控制电机的实际转速。通过速度闭环控制,VLT2800系列变频器可将转速误差控制在+/-7.5rpm之内(4极电机,30~3600rpm)。 二、实施方法: 将速度传感器安装于电机轴上,通过对实际转速信号的采集达到精确控制转速的目的。速度传感器一般采用旋转编码器,而旋转编码器根据工作原理、分辨率、电源类型和输出形式的不同又分为很多不同类型,如下表所列。 在此,我们选用增量型、24V电源供电、集电极开路(PNP)输出、分辩率为1024的旋转编码器,按下表方式接线:

一般使用旋转编码器需要判定电机转向和定位控制时需要使用A/B/Z三相信号。在此,我们仅需要A 相信号传感实际转速。 需重新设定的参数见下表(以四极电动机为例,由电位器给定转速信号):

基于S7-200 PLC USS协议通信的速度闭环定位控制系统设 计 时间:2013-11-20 来源:作者: 可以应用于多个自动化控制系统中,大大节约了项目的开发时间和成本,在实际应用中取得了良好的效果。 0 引言 随着电力电子技术以及控制技术的发展,交流变频调速在工业电机拖动领域得到了广泛应用;可编程控制器PLC作为替代继电器的新型控制装置,简单可靠,操作方便、通用灵活、体积小、使用寿命长且功能强大、容易使用、可靠性高,常常被用于现场数据采集和设备的控制;在此,本次设计就是基于S7-200PLC的USS通信方式的速度闭环定位控制。 将现在应用最广泛的PLC和变频器综合起来通过USS协议网络控制实现速度闭环定位控制。PLC根据输入端的控制信号及脉冲信号,经过程序运算后由通讯端口控制变频器运行设定的行程;电机运行到减速值后开始减速;电机运行到设定值后 停止运行并锁定。因此,该系统必须具备以下三个主体部分:控制运算部分、执行和反馈部分。控制运算主要由PLC和变频器来完成;执行元件为变频器和电机;反馈部分主要为速度反馈。 S7-200 PLC通过USS协议网络控制Micro-Master MM420变频器,控制电动机的启动、制动停和定位控制,并能够通过PLC读取变频器参数、设置变频器参数。 1.系统设计的总体思路 系统主要由三个部分构成,即可编程逻辑控制器件PLC、变频器和电机。首先通过设置给定输入给PLC,再通过PLC控制变频器,再经由变频器来控制电机,随后将电机的转速反馈给PLC,经比较后输出给变频器从而实现无静差调速。构成闭环系统就要把速度信息反馈给输入。速度的测量可以通过光电编码器和PLC来实现。 速度采集:S7-200具有高速脉冲采集功能,采集频率可以达到30KHz,共有6个高速计数器(HSC0~HSC5)工作模式有12种。在固定时间间隔内采集脉冲差值,通过计算既可以获得电动机的当前转速。 例如:设采样周期为100ms即是每隔100ms采集脉冲一次,光电开关每转发出8个脉冲,那么就可以得到速度为:

何垠泉-ATV71的闭环矢量控制的设置与要点

ATV71的闭环矢量控制的设置与要点 目前变频器在我国的应用已经达到了一个前所未有的程度,人们对采用变频器的好处已经有了深刻的认识,基本上只要有调速电机的场合都会选取变频器作为驱动装置,但调速电机传动的机械装置控制的对象是多种多样的,如速度、压力、位置、温度、流量、张力等,对于每一种对象其产生的机械特性和性能要求都是不一样的。因此要求针对不同的对象、不同机械特性和性能要求选取恰当的变频器及其恰当的控制方式。 对于风机、泵类负载(主要针对变转矩类风机)由于在低速时需要的转矩小,对速度精度要求低,因此一般选用ATV31、ATV61等变频器。对于那些需要恒转矩特性,但在转速精度及动态性能方面要求不高的负载,可选用ATV31、ATV71;对于低速时要求有较硬的机械特性,并要求有一定的调速精度,但在动态性能方面无较高要求的负载,可选用ATV71开环控制;对于某些对调速精度和动态性能方面都有较高要求,以及要求高精度同步运行的负载,可选用ATV71闭环控制。 对于究竟在什么时候选取ATV71闭环控制,可以依据下表中的数据对比用户的性能要求;当然对一些已经成熟的闭环控制应用现在开环就可以满足要求的就依据客户的态度了。 表一ATV71性能 ATV71作为一款高性能的通用变频器,其内置了多种电机控制模式,可以为不同的用户提供灵活多变的选择以满足用户的要求。见表二

下面我就根据ATV71说说闭环矢量控制的设置步骤和设置要点。 首先必须根据用户电机上选配的编码器的类型选取恰当的ATV71编码器接口板卡,目前ATV71提供有三大类7种编码器接口板,它们是: RS422 差分输入的增量型编码器

直流电机pid闭环数字控制设计

广西大学实验报告纸 实验题目:直流电机PID闭环数字控制设计 序号学号姓名贡献排名成绩 1(组长): 1 2(组员): 2 3(组员): 学院:电气工程学院报告形成日期 指导老师:胡立坤2015.10.20 【实验任务安排以及各组员贡献说明】 一起对实验原理和目的进行探讨和分析,并在matlab的simulink中搭建模拟进行仿真;董永昌编写PID程序和实验预习的撰写;一起对实验现象进行分析探讨得出实验结论,由苏建福完成最终实验报告的撰写。 【实验时间】2015年10月17日 【实验地点】综合楼实验室。 【实验目的】 1、巩固闭环控制系统的概念; 2、了解闭环控制系统中反馈量的引入方法; 3、掌握PID算法数字化的方法和编程及不同PID算法的优缺点。 【实验设备与软件】 1、labACT实验台 2、labACT软件 3、MA TLAB/Simulink仿真软件 【实验原理】 1、PID控制原理 按偏差的比例积分微分控制是过程控制中应用最广泛的一种控制规则。由PID控制规则构成PID调节器是一种线性调节器 式中u(t)——调节器的输出信号;e (t)——调节器的偏差信号; Kp——调节×器的比例系数; Ti——调节器的积分时间常数; Td——调节器的微分时间常数。

图一 PID控制原理框图 比例调节作用:按比例反应系统的偏差产生调节作用。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统不稳定。 积分调节作用:消除稳态误差。积分作用的强弱取决与积分时间常数iT,iT越小,积分作用就越强。 微分调节作用:微分作用反映系统偏差信号的变化率,产生超前的控制作用。在偏差还没有形成之前,已被微分调节作用消除,改善系统的动态性能。 2、PID算法的数字实现与经验整定 在输出不振荡时,增大比例增益,减小积分时间常数,增大微分时间常数 标准PID算法:由于本次试验采用的计算机控制系统是一种时间离散控制系统。因此,为了用计算机实现PID控制必须将其离散化,用数字形式的差分方程来代替连续系统的微分方程 令积分系数,微分系数,则PID位置控制算式表达 容易将上式转化成增量算式 3.直流电机的闭环调速原理 图2 直流电机闭环调速系统原理图

变频器矢量控制原理

变频器矢量控制原理知识 矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。 基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。 无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。它的基本控制思想是根据输入的电动机的铭牌参数,按照一定的关系式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。 采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器,并需使用厂商指定的变频器专用电动机进行控制,否则难以达到理想的控制效果。目前新型矢量控制通用变频器中已经具备异步电动机参数自动辨识、自适应功能,带有这种功能的通用变频器在驱动异步电动机进行正常运转之前可以自动地对异步电动机的参数进行辨识,并根据辨识结果调整控制算法中的有关参数,从而对普通的异步电动机进行有效的矢量控制。除了上述的无传感器矢量控制和转矩矢量控制等,可提高异步电动机转矩控制性能的技术外,目前的新技术还包括异步电动机控制常数的调节及与机械系统匹配的适应性控制等,以提高异步电动机应用性能的技术。为了防止异步电动机转速偏差以及在低速区域获得较理想的平滑转速,应用大规模集成电路并采用专用数字式自动电压调整(AVR)控制技术的控制方式,已实用化并取得良好的效果。

闭环控制数字液压缸的结构及工作原理

闭环控制数字液压缸的结构及工作原理 图4-41是一种闭环控制数字液压缸的结构原理图。 步进电动机1接到脉冲信号,其输出轴旋转一定的角度,旋转运动通过花键2、万向联轴器3、阀芯4传递给外螺纹5,外螺纹5和沉入缸外转轴7右端的内螺纹相互配合,内螺纹位置固定,在旋转作用下外螺纹带动阀芯发生轴向的移动。 数字液压缸采用负开口三位四通阀控制流量,阀口存在一定的死区,开始的几个脉冲产生的一小段位移并不能将P口处的高压油与A口或B口接通。死区过后,步进电动机再旋转一定角度,在旋转作用下阀芯又发生一定的轴向位移。 如果阀芯向左移动,P口和A口连通,B口和T口连通,P口处的高压油通过A口流入液压缸的后腔。后腔增压,空心活塞杆15向左运动,前腔的油经过B口、T口流回油箱。 空心活塞杆向左移动时,带动固定在空心活塞杆上的丝杠螺母14向左运动,滚珠丝杠13在轴向上不移动,丝杠与步进电动机旋向相反,带动缸内转盘11旋转。后缸盖9两边的磁铁10相互吸引,使得缸外转盘8和缸内转盘11同时旋转相同的角度。反向旋转运动通过这个机构被准确地传递到液压缸外。缸外转轴7和缸外转盘8是一

个整体,缸外转轴7和编码器6通过平键连接,沉入缸外转轴7右端的内螺纹和外螺纹5配合。缸外转轴7反向旋转,外螺纹5向右移动,阀口关闭,一个步进过程结束。控制流程如图4-42所示。 滚珠丝杠旋转的角度被平键连接于缸外转轴7上的编码器6检测到,此旋转角度和空心活塞杆15的位移对应,此信号传给以单片机为核心的控制系统,控制系统根据运行位移和速度要求,对步进电动机进行闭环控制。 阀芯的两端使用万向联轴器连接,不限制径向的小位移,防止阀芯被拉伤,同时保证轴向运动、旋转运动的双向传递。数字液压缸在向前运动的同时不断关闭阀口,形成一个伺服控制系统。 和开环控制数字液压缸相比,该闭环控制数字液压缸的创新之处有以下两点。 第一,采用了光电编码器反馈的闭环控制系统,能对系统温度、压力负载、内泄及死区等因素的影响进行补偿,并进一步提高了控制精度。 当油液温度升高时,黏度降低,流动速度加快,在阀的开口大小一定的情况下,即步进电动机接收到的控制脉冲速度一定的情况下,液压缸的运动速度加快;使用闭环控制系统,可以设定一个速度值,如果使用光电编码器检测到的液压缸速度大于此速度,就减小对步进电动机的脉冲发送速度,如果使用光电编码器检测到的液压缸速度小于设定速度,就增加对步进电动机的脉冲发送速度,这样始终可以使数字液压缸的运动速度保持在设定值。当压力负载增大时,缸体内外的油液压力差减小,油液的流动速度减小,再加上油液所受的压力增大,液体体积被压缩,这两个因素都会造成

基于PLC模拟量的变频器闭环调速控制

闽南师范大学 PLC课程设计 课题:基于PLC模拟量的变频器闭环调速控制 姓名: 学号: 1205000529 系别:物理与信息工程学院 专业:电气工程及其自动化 年级: 12级电气1班 指导教师:洪清辉 2015年5月18日

目录 1 引言 (3) 2 系统设计 (3) 2.1 设计目的 (3) 2.2 设计要求 (3) 2.3 设计思路 (3) 2.4 系统硬件配置及组成原理 (4) 2.5变频器 (7) 2.5.1变频器主要功能 (7) 2.5.2 变频器平面图 (7) 2.6 同轴编码器 (7) 3 硬件接线图 (8) 4 软件设计 (8) 4.1 软件流程图 (8) 4.2梯形图 (8) 5 应用扩展------基于PLC模拟量的矿井通风系统 (10) 5.1设计内容 (10) 5.2设计实现目标 (10) 5.3控制系统设计 (11) 5.3.1控制程序流程图设计 (11) 5.3.1控制程序设计思路 (11) 6心得体会 (11) 7 参考文献 (12)

摘要 一种基于FX2NPLC控制的变频调速的闭环控制系统及其在液位控制中的应用,在电机速度闭环控制中,由同轴编码器对电机测速,经PLC内部A/D转换后与给定值比较再由PID运算控制得出的值经D/A转换后输出给变频器,从而闭环控制电机的转速。 关键词:plc 模拟量变频器 1 引言 随着变频调速技术的应用日益广泛,应用水平的不断提高,对变频调速控制系统的精度要求也越来越高。目前,许多变频调速装置属于开环控制方式,不能满足有较高精度的控制要求。为提高开环变频调速器控制精度,本系统采用有编码器速度检测的、由高性能FX2NPLC 调节控制的闭环系统。 2 系统设计 2.1 设计目的 1.利用可编程控制器及其模拟量模块,通过对变频器的控制,实现电机的闭环调速。 2.了解可编程控制器在实际工厂生产中的应用及可编程控制器的编程方法。 2.2 设计要求 电机的实际转速在较快的时间内接近给定目标转速,并且能够稳定运行。当改变给定速度时,电机能快速响应达到接近给定值。 2.3 设计思路 变频器控制电机,电机上同轴连旋转编码器。编码器根据电机的转速变化而输出电压信号Vil 反馈到PLC模拟量模块(Fx2n-3A)的电压输入端,在PLC 内部给定量经过运算处理后,通过PLC模拟量模块的电压输出端输出一路DC0~+10V电压信号Vout来控制变频器的输出,达到闭环控制的目的。 运算方案一: 采用数学运算,当反馈值小于给定值时,让控制信号Vout加适当值。同理,当反馈量大于给定值时,用软件给控制信号减适当值。

变频器的控制方式有哪些

变频器的控制方式有哪些 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。那么,常见的变频器有哪些种类,它们的控制方法又是什么? 变频器的种类从控制方式来讲,现在市场上常见的有V/F控制变频器、矢量控制变频器两种。从电压角度来讲,有低压变频器、高压变频器两种。从电源角度来讲,有单相变频器、三相变频器的区分。从适用场合来分,有通用变频器、风机水泵专用型变频器、注塑机专用型变频器、拉丝机专用变频器、电梯专用变频器、球磨机专用变频器等等。 变频器常用的控制方式1、非智能控制方式在交流变频器中使用的非智能控制方式有V/f 协调控制、转差频率控制、矢量控制、直接转矩控制等。 (1)V/f正弦脉宽调制(SPWM)控制方式 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2)转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有 对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳

直流电机PID闭环数字控制器设计实验报告

直流电机PID 闭环数字控制器设计 姓名: 学院: 实验内容:直流电机pid 闭环数字控制器设计 2015年 4月12日 实验地点: 实验目的: 1.巩固闭环控制系统的基本概念。 2.了解闭环控制系统中反馈量的引入方法。 3.掌握PID 算法数字化的方法和编程及不同PID 算法的优缺点。 实验设备与软件: 1. labACT 实验台 2. MATLAB 软件 3. labACT 软件 实验原理: 1、PID 控制原理 按偏差的比例、积分、微分控制(简称PID 控制)是过程控制中应用最广的一种控制规则。由PID 控制规则构成的PID 调节器是一种线性调节器。这种调节器将设定值U 与实际输出值Y 构成控制偏差(e=U —Y)的比例(P)、微分(D)、积分(I)的线性组合作为输出的控制量进行控制 ??? ? ? ?++=? dt t de T dt t e T t e K t u t )()(1 )()(d i p (1) 式中,()u t ——调节器的输出信号;()e t ——调节器的偏差信号;p K ——调节器的比例系数; T ——调节器的积分时间常数;T ——调节器的微分时间常数。 下面介绍比例、积 分、微分各自的作用。 比例调节作用:按比例反应系统的偏差,一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作 用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统不稳定。 积分调节作用:消除稳态误差。有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti ,Ti 越小,积分作用就越强;反之,Ti 大则积分作用弱。加入积分调节可使系统稳定性下降,动态响应变慢,即积分作用使响应滞后。 微分调节作用:微分作用反映系统偏差信号的变化率,能预见偏差变化的趋势,能产生超前的控制作用。在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的

基于PLC模拟量方式变频闭环调速控制系统设计

***************************************** 基于PLC模拟量方式的变频闭环 调速控制系统设计 学生学号:********** 学生姓名:****** 专业班级:********* 指导教师:****** 职称:**** 起止日期:*********~********* ********* ******************

课程设计任务书 一、设计题目:基于PLC模拟量方式的变频闭环调速控制系统设计 二、设计目的: 1.掌握S7-200 SMART PLC数据转换指令的使用及编程; 2.掌握S7-200 SMART PLC模拟量控制MM440变频器进行闭环调速的接线、调试、操作; 三、设计任务及要求: 1. 设计任务: 用S7-200 SMART PLC控制西门子MM440变频器,PLC根据模拟量输入端的给定值和过程变量值,经过程序运算后由模拟量输出端输出值控制变频器运行。 2. 设计要求: 2.1电机运行速度超出设定值时开始减速; 2.2电机运行速度低于设定值时开始加速; 四、设计时间及进度安排: 设计时间共三周,具体安排如下表:

目录 第1章绪论 (1) 第2章系统设计 (2) 2.1 设计思路 (2) 2.2 系统硬件配置及组成原理 (3) 2.3 变频器 (4) 第3章MM440变频器简介 (5) 3.1 MM440变频器 (5) 3.2 MM440变频器的组成 (5) 3.3 主电路工作原理 (6) 第4章西门子S7-200 (7) 4.1 S7-200的介绍 (7) 4.2 S7-200SMART系列PLC结构 (8) 4.3 S7-200 SMART的特点 (8) 4.4 CPU单元设计 (9) 第5章PLC PID变频调速系统结构 (10) 5.1 系统结构控制模型 (10) 5.2 PID调节 (11) 总结 (17) 参考文献 (18)

基于PLC模拟量的变频器闭环调速控制

漳州师范学院 课 程 设 计 报 告 课题名称:PLC的变频闭环调速及其应用 姓名:林铭泰 学号:070505116 班级:07电气1班 指导老师:洪清辉 2010-06-20

1 引言 (3) 2 系统设计 (3) 2.1 设计目的 (3) 2.2 设计要求 (3) 2.3 硬件接线图 (6) 3 各硬件模块简介 (6) 3.1 变频器 (6) 3.1.1 变频器主要功能 (6) 3.1.2 变频器平面图 (7) 4 软件设计 (8) 4.1 A/D输入模块程序 (8) 4.2 D/A输出模块程序 (8) 4.3 偏移参数设定 (8) 5 系统测试 (8) 5.1 测试方法 (8) 5.2 测试中遇到的问题 (9) 6 应用扩展 (10) 基于PLC在矿井提升机中的调速控制系统 (10) 6.1 控制要求 (10) 6.2 本设计控制结构 (10) 6.3 设计说明 (11) 7 结束语 (12) 8 参考文献 (12) 9 附录 (13)

1 引言 随着变频调速技术的应用日益广泛,应用水平的不断提高,对变频调速控制系统的精度要求也越来越高。目前,许多变频调速装置属于开环控制方式,不能满足有较高精度的控制要求。为提高开环变频调速器控制精度,本系统采用有编码器速度检测的、由高性能FX2NPLC 调节控制的闭环系统。 2 系统设计 2.1 设计目的 1.利用可编程控制器及其模拟量模块,通过对变频器的控制,实现电机的闭环调速。 2.了解可编程控制器在实际工厂生产中的应用及可编程控制器的编程方法。 2.2 设计要求 电机的实际转速在较快的时间内接近给定目标转速,并且能够稳定运行。当改变给定速度时,电机能快速响应达到接近给定值。 系统简介 1.1FXON一3A简介 可编程控制器(PLC)原是为了开关量的控制而设计的。但是,在一个复杂的控制系统中,控制任务多种多样,而且随着电子技术的发展,新型过程控制计算机的不断涌现,在STD总线计算机、可编程调节器、集散型控制系统的基础上,PLC的模拟量控制越来越得到广泛的应用。模拟量不同于开关量,它在时间上、数值上都是连续变化的。 为了满足模拟量控制系统的控制要求,几乎所有的可编程控制器生产厂家都开发了模拟量控制功能。采取的方法是在软件上为PLC增加功能指令,在硬件上为PLC设计各种各样的模拟量控制模块。不同厂家的可编程控制器,开发了不同的模拟量专用模块,三菱FXON一3A模块就是其中的一种。 FXoN是日本三菱公司设计的产品,该系列是依据FX2系列的固定及可扩展性概念,在软硬件两方面兼备微程序装置所必要的性能、功能。FX ON一3A是可编程控制器的模拟量特殊功能模块。该模块具有2路模拟量输入通道和1路模拟量输出通道。其输入通道数字分辨率为8位,A/D的转换时间为100s,在模拟与数字信号之间采用光电隔离,适用于FX1N、FX2N、FX2NC子系列。在A/D转换中,输入通道接收模拟信号后转换成数字信号;在D /A转换中,输出通道取数字信号并输出等同的模拟信号。它占用FXON扩展总线的8点输入/输出,8点可定为输入或输出。对于FXON一3A模块,用户可连接电压或电流输入/输出,并有3种信号形式可供选择:0~10 VDC(分辨率为40 mV),0~5 VDC(分辨率为

相关文档
最新文档