ArcGIS 投影

ArcGIS 投影
ArcGIS 投影

UTM投影

UTM投影全称为“通用横轴墨卡托投影”,英文名称为Universal Transverse Mercator,是一种等角横轴割圆柱投影,圆柱割地球于南纬80度、北纬84度两条等高圈,被许多国家用作地形图的数学基础,如中国采用的高斯-克吕格投影就是UTM投影的一种变形,很多遥感数据,如Landsat和Aster数据都应用UTM投影发布的。

UTM投影将北纬84度和南纬80度之间的地球表面积按经度6度划分为南北纵带(投影带)。从180度经线开始向东将这些投影带编号,从1编至60(北京处于第50带)。每个带再划分为纬差8度的四边形。两条标准纬线距中央经线为180KM左右,中央经线比例系数为0.9996。

UTM北半球投影北伪偏移为零,南半球则为10000公里。

在ArcGIS中UTM投影坐标文件名的N和S的区别。N代表北半球,S代表南半球,文件内容的区别在与参数False_Northing—北伪偏移值。

中国UTM投影带号:中国国境所跨UTM带号为43-53。

UTM投影带号计算,如WGS_1984_UTM_Zone_49N,这个49的计算方法:

49:从180度经度向东,每6度为一投影带,第49个投影带

49=(114+180)/6,这个114为49投影带的最大经线层次

ArcGIS 坐标系统文件

ArcGIS自带了多种坐标系统,在${ArcGISHome}\Coordinate Systems\目录下可以看到三个文件夹,分别是Geographic Coordinate Systems、Projected Coordinate Systems、Vertical Coordinate Systems,中文翻译为地理坐标系、投影坐标系、垂直坐标系。

1 Geographic Coordinate Systems

在Geographic Coordinate Systems目录中,我们可以看到已定义的许多坐标系信息,典型的如Geographic Coordinate Systems\World目录下的WGS 1984.prj。

2 Projected Coordinate Systems

在Projected Coordinate Systems目录中同样存在许多已定义的投影坐标系,我国大部分地图所采用的北京54和西安80坐标系的投影文件就在其中,它们均使用高斯-克吕格投影,前者使用克拉索夫斯基椭球体,后者使用国际大地测量协会推荐的IAG 75地球椭球体。

北京54和西安80是我们使用最多的坐标系,在ArcGIS文件中,对于这两种坐标系统的命名有一些不同,简单看去很容易让人产生迷惑。在此之前,先简单介绍高斯-克吕格投影的基本知识,了解就直接跳过,我国大中比例尺地图均采用高斯-克吕格投影,其通常是按6度和3度分带投影,1:2.5万-1:50万比例尺地形图采用经差6度分带,1:1万比例尺的

地形图采用经差3度分带。具体分带法是:6度分带从本初子午线开始,按经差6度为一个投影带自西向东划分,全球共分60个投影带,带号分别为1-60;3度投影带是从东经1度30秒经线开始,按经差3度为一个投影带自西向东划分,全球共分120个投影带。为了便于地形图的测量作业,在高斯-克吕格投影带内布置了平面直角坐标系统,具体方法是,规定中央经线为X轴,赤道为Y轴,中央经线与赤道交点为坐标原点,x值在北半球为正,南半球为负,y值在中央经线以东为正,中央经线以西为负。由于我国疆域均在北半球,x 值均为正值,为了避免y值出现负值,规定各投影带的坐标纵轴均西移500km,中央经线上原横坐标值由0变为500km。为了方便带间点位的区分,可以在每个点位横坐标y值的百千米位数前加上所在带号,如20带内A点的坐标可以表示为YA=20 745 921.8m。

在Coordinate Systems\Projected Coordinate Systems\Gauss Kruger\Beijing 1954目录中,我们可以看到四种不同的命名方式:

Beijing 1954 3 Degree GK CM 75E.prj

Beijing 1954 3 Degree GK Zone 25.prj

Beijing 1954 GK Zone 13.prj

Beijing 1954 GK Zone 13N.prj

对它们的说明分别如下:

三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前不加带号

三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前加带号

六度分带法的北京54坐标系,分带号为13,横坐标前加带号

六度分带法的北京54坐标系,分带号为13,横坐标前不加带号

在Coordinate Systems\Projected Coordinate Systems\Gauss Kruger\Xian 1980目录中,文件命名方式又有所变化:

Xian 1980 3 Degree GK CM 75E.prj

Xian 1980 3 Degree GK Zone 25.prj

Xian 1980 GK CM 75E.prj

Xian 1980 GK Zone 13.prj

西安80坐标文件的命名方式、含义和北京54前两个坐标相同,但没有出现“带号+N”这种形式,为什么没有采用统一的命名方式?让人看了有些费解。

3 Vertical Coordinate Systems

Vertical Coordinate Systems定义了测量海拔或深度值的原点,具体的定义,英文描述的更为准确:

A vertical coordinate system defines the origin for height or depth values. Like a horizontal coordinate system, most of the information in a vertical coordinate system is not needed unless you want to display or combine a dataset with other data that uses a different vertical coordinate system.

Perhaps the most important part of a vertical coordinate system is its unit of measure. The unit of measure is always linear (e.g., international feet or meters). Another important part is whether the z values represent heights (elevations) or depths. For each type, the z-axis direction is positive "up" or "down", respectively.

One z value is shown for the height-based mean sea level system. Any point that falls below the mean sea level line but is referenced to it will have a negative z value. The mean low water

system has two z values associated with it. Because the mean low water system is depth-based, the z values are positive. Any point that falls above the mean low water line but is referenced to it will have a negative

坐标转换简介

坐标系统之间的坐标转换既包括不同的参心坐标之间的转换,或者不同的地心坐标系之间的转换,也包括参心坐标系与地心坐标系之间的转换以及相同坐标系的直角坐标与大地坐标之间的坐标转换,还有大地坐标与高斯平面坐标之间的转换。在两个空间角直坐标系中,假设其分别为O-XYZ和O-XYZ,如果两个坐标系的原来相同,通过三次旋转,就可以两个坐标系重合;如果两个直角坐标系的原点不在同一个位置,通过坐标轴的平移和旋转可以取得一致;如果两个坐标系的尺度也不尽一致,就需要再增加一个尺度变化参数;而对于大地坐标和高斯投影平面坐标之间的转换,则需要通过高斯投影正算和高斯投影反算,通过使用中央子午线的经度和不同的参考椭球以及不同的投影面的选择来实现坐标的转换。

我们通常说的WGS-84坐标是指经纬度这种坐标表示方法,北京54坐标通常是指经过高斯投影的平面直角坐标这种坐标表示方法。为什么要进行坐标转换?我们先来看两组参数,如表1所示:

很显然,WGS84与BJ54是两种不同的大地基准面,不同的参考椭球体,因而两种地图下,同一个点的坐标是不同的,无论是三度带六度带坐标还是经纬度坐标都是不同的。当要把GPS接收到的点(WGS84坐标系统的)叠加到BJ54坐标系统的底图上,那就会发现这些GPS点不能准确的在它该在的地方,即“与实际地点发生了偏移”。这就要求把这些GPS 点从WGS84的坐标系统转换成BJ54的坐标系统了。

有关WGS84与BJ54的坐标转换问题,实质是WGS-84椭球体到BJ54椭球体的转换问题。如果我们是需要把WGS84的经纬度坐标转换成BJ54的高斯投影坐标,那就还会涉及到投影变换问题。因此,这个转换过程,一般的GPS数据处理软件都是采用下述步骤进行的:

1)(B,L)84—(X,Y,Z)84,空间大地坐标到空间直角坐标的转换。

2)(X,Y,Z)84—(X,Y,Z)54,坐标基准的转换,即Datum转换。通常有三种转换方法:七参数、简化三参数、Molodensky。

3)(X,Y,Z)54—(B,L)54,空间直角坐标到空间大地坐标的转换。

4)(B,L)54—(x,y)54,高斯投影正算。

从以上步骤不难看出,转换的关键是第二步,转换的参数。鉴于我国曾使用不同的坐标基准(BJ54、State80、Correct54),各地的重力值又有很大差异,所以很难确定一套适合全国且精度较好的转换参数。在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,在每个地方会不一样。

必须了解,在不同的椭球之间的转换是不严密的。那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法,即3个平移因子(X平移,Y平移,Z平移),3个旋转因子(X旋转,Y旋转,Z旋转),一个比例因子(也叫尺度变化K)。国内参数来

源的途径不多,一般当地测绘部门会有。通行的做法是:在工作区内找三个以上的已知点,利用已知点的BJ54坐标和所测WGS84坐标,通过一定的数学模型,求解七参数。若多选几个已知点,通过平差的方法可以获得较好的精度。如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即只考虑3个平移因子(X平移,Y平移,Z平移),而将旋转因子及比例因子(X旋转,Y旋转,Z旋转,尺度变化K)都视为0,所以三参数只是七参数的一种特例。北京54和西安80也是两种不同的大地基准面,不同的参考椭球体,他们之间的转换也是同理。在ArcGIS中提供了三参数、七参数转换法。而在同一个椭球里的转换都是严密的,在同一个椭球的不同坐标系中转换需要用到四参数转换,举个例子,在深圳既有北京54坐标又有深圳坐标,在这两种坐标之间转换就用到四参数,计算四参数需要两个已知点。

AutoCAD数据导入ArcGIS后的投影定义与投影转换

1.CAD格式数据转ArcGIS格式数据

虽然ArcGIS可以直接读取CAD数据,但是,由于CAD与ArcGIS的数据管理模型不同,所以如果需要使用CAD数据进行地理处理的时候,还是建议把CAD数据转入到Geodatabase中然后再进行应用。具体操作如下图所示:在ArcCatalog中,打开CAD工程文件,选择相应的要素类型,右键导出到地理数据库中。

2.定义投影

导入到Geodatabas中的数据,这个时候虽然坐标信息显示的和CAD是一样的,但是还没有地理参考信息,如果要想把这个数据展现在地理环境中,这个时候就需要对它进行投影的定义。

首先在CAD的图框上查找相关的地理和投影坐标信息,一般在左下角会有投影坐标信息,比如北京1954坐标,图框的格网线附近还会有相应的分带,带号信息,找到这些信息以后,就可以进行投影定义了,选择,工具箱->数据管理工具->投影与变换->定义投影

3.投影转换

ArcGIS也提供了投影转换的工具,矢量数据的投影转换使用,工具箱->数据管理工具->投影和变换->要素->投影工具。

例如要把北京1954转为WGS84,

在ArcGIS中北京1954转WGS84一共提供了6种可选的参数,每种参数的意思如下:Beijing_1954_To_WGS_1984_1 15918 China - Orduz basin 鄂尔多斯盆地

Beijing_1954_To_WGS_1984_2 15919 China - offshore Yellow Sea 黄海海域

Beijing_1954_To_WGS_1984_3 15920 China - offshore South China Sea - Pearl River basin 南海海域-珠江口

Beijing_1954_To_WGS_1984_4 15921 China - south and west Tarim basin 塔里木盆地Beijing_1954_To_WGS_1984_5 15935 China - Bei Bu Basin 北部湾

Beijing_1954_To_WGS_1984_6 15936 China - Orduz basin 鄂尔多斯盆地

1对应内蒙、陕西、山西、宁夏、甘肃、重庆;

2东北三省、北京、天津、河北、河南、山东、江苏、安徽、上海;

3对应浙江、福建、江西、湖北、湖南、广东、广西、海南、贵州、云南、香港、澳门、台湾;

4对应青海、新疆、西藏。

arcgis坐标转换

在ArcGIS中的西安80坐标系转北京54坐标系收藏 一、数据说明 本次投影变换坐标的源数据采用的是采用1980西安的地理坐标系统,1985国家高程基准的1:50000的DLG数据。 二、投影变换基础知识准备 北京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换。 在ArcGIS中定义了两套坐标系:地理坐标系(Geographic coordinate system)和投影坐标系(Projected coordinate system)。 1、地理坐标系,是以经纬度为地图的存储单位的,是球面坐标系统。地球是一个不规则的椭球,为了将数据信息以科学的方法放到椭球上,这就需要有一个可以量化计算的椭球体。具有长半轴,短半轴,偏心率。一下几行是GCS_Xian_1980椭球及其相应的参数。 Geographic Coordinate System: GCS_Xian_1980 Datum: D_Xian_1980 Prime Meridian: Greenwich Angular Unit: Degree 每个椭球体都需要一个大地基准面将这个椭球定位,因此可以看到在坐标系统中有Datum: D_Xian_1980的描述,表示,大地基准面是D_Xian_1980。 2、有了椭球体和基准面这两个基本条件,地理坐标系便可以定义投影坐标系统了。以下是已定义Beijing_1954坐标的投影坐标系统的参数: Projected Coordinate System: Beijing_1954_GK_Zone_19 Projection: Gauss_Kruger False_Easting: 19500000.00000000 False_Northing: 0.00000000 Central_Meridian: 111.00000000 Scale_Factor: 1.00000000

ArcGIS教程:投影参数

ArcGIS 教程:投影参数 仅有地图投影并不足以定义投影坐标系。可以声明数据集处于横轴墨卡托投影中,但这些信息并不充足。投影中心在哪?是否使用了比例尺因子?如果不知道投影参数的精确值,就无法重新投影数据集。 还可以了解投影对数据造成的变形程度。如果对澳大利亚感兴趣,但知道数据集的投影中心是 0,0(即赤道与格林尼治本初子午线的交点),那么您可能想要更改投影的中心。 每种地图投影都有一组必须定义的参数。参数用于指定原点以及为感兴趣区域自定义投影。角度参数使用地理坐标系单位,而线性参数使用投影坐标系单位。 线性参数 东移假定值是应用到 x 坐标原点的线性值。北移假定值是应用到 y 坐标原点的线性值。 通常使用东移假定值和北移假定值来确保所有 x 值和 y 值都是正数。也可以使用东移假定值和北移假定值参数来缩小x 坐标值或 y 坐标值的范围。例如,如果知道所有 y 值均大于 5,000,000 米,则可使用 -5,000,000 的北移假定值。 在垂直近侧透视投影中,高度定义球体或旋转椭球体表面上方的透视点。 角度参数 ?方位角定义投影的中心线。旋转角度用于测量北偏东方向的角度。它在洪特尼斜轴墨卡托投影、改良斜正形投影和局部投影中与方位角配合使用。 ?中央子午线定义 x 坐标的原点。 ?起始经度定义 x 坐标的原点。中央子午线与起始经度参数同义。 ?中央纬线定义 y 坐标的原点。 ?起始纬度定义 y 坐标的原点。此参数可能并不在投影中心。特别地,圆锥投影使用此参数设置感兴趣区域下 y 坐标的原点。在这种情况下,不需要设置北移假定值参数来确保所有 y 坐标都是正数。 ?中心经度与洪特尼斜轴墨卡托投影中心(两点和方位角)配合使用来定义 x 坐标的起点。它通常与起始经度和中央子午线参数同义。 ?中心纬度与洪特尼斜轴墨卡托投影中心(两点和方位角)配合使用来定义 y 坐标的原点。它几乎总是投影的中心。 ?标准纬线 1 和标准纬线 2 与圆锥投影配合使用来定义比例为 1.0 的纬线。使用一条标准纬线定义兰勃特等角圆锥投影时,第一条标准纬线定义 y 坐标的原点。 对于其他圆锥投影来说,y 坐标原点由起始纬度参数确定。 ?第一点的经度 ?第一点的纬度 ?第二点的经度 ?第二点的纬度

ArcGIS中坐标系统详解

ArcGIS的地理坐标系与大地坐标系 一直以来,总有很多朋友针对地理坐标系、大地坐标系这两个概念吃不透。近日,在网上看到一篇文章介绍它们,非常喜欢。所以在此转发一下,希望能够对制图的朋友们有所帮助。 地理坐标:为球面坐标。参考平面地是椭球面,坐标单位:经纬度 大地坐标:为平面坐标。参考平面地是水平面,坐标单位:米、千米等 地理坐标转换到大地坐标的过程可理解为投影。(投影:将不规则的地球曲面转换为平面) 在ArcGIS中预定义了两套坐标系:地理坐标系(Geographic coordinate system)投影坐标系(Projected coordinate system) 1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate syst em是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening(扁率): 298.300000000000010000 然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行: Datum: D_Beijing_1954表示,大地基准面是D_Beijing_1954。 -------------------------------------------------------------------------------- 有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。 完整参数: Alias: Abbreviation:

ARCGIS中坐标转换

ArcGIS 坐标转换 1.坐标分析 问题:对于某地A中心点坐标为455299.845,3223622.525的CAD矩形,CAD施工图。将其转换为WGS-84坐标,如何转换? 分析:分析455299.845为6位,则为东向Y坐标,省去了带号,加上了5000000加常数,其最大为为4,说名在中央子午线的左侧(左侧为负值,加上500万后肯定小于500万,首位为4。若在中央子午线右侧,则最大位数为5);3223622.525为7位,为北向X坐标。 查看“某地A”的经度为92.5度,因为为CAD施工图,比例尺肯定大于1:5万,所以为3度带,所以此点的中央子午线为93E,带号为Beijing_54_Zone_31。 2.CAD转为shp格式并设定坐标系: ArcTool box-Convesion Tools->To Geodatabse->CAD to Geodatabase: 其中空间参考坐标系选择Beijing_1954_3_Degree_GK_CM_93E。 具体原因:选择投影坐标系-Gauss Kruger-Bei Jing54,此时3度带有两种:Beijing_1954_3_Degree_GK_CM_93E和Beijing_54_Zone_31,前者表示中央子午线为93E的3度带,后者表示北京54 31度带,二者意义一样,但选择哪种呢?因为点坐标东向为455299.845为6位,不带带号,因此选择Beijing_1954_3_Degree_GK_CM_93E(若东向坐标

为31455299.845,则选择Beijing_54_Zone_31), 3.北京54到WGS84坐标的转换 1.1加载图层: 打开ArcTool box-Data Management Tools->Project and transformation->feature->Project,加载shp图层,弹出下列窗口: 出现红色“X”号,说明原始图层坐标系没有识别出,则需要首先设定其坐标系后再转换。具体设坐标系参考“9 设置或改变Shp文件坐标系” 1.2选择输出图层地址和名称: 在Out Put Dataset or Feature处输入输出图层名:

利用ArcGIS进行地图投影和坐标转换的方法

利用ArcGIS进行地图投影和坐标转换的方法 1、动态投影(ArcMap) 所谓动态投影指,ArcMap中的Data 的空间参考或是说坐标系统是默认为第一加载到当前工作区的那个文件的坐标系统,后加入的数据,如果和当前工作区坐标系统不相同,则ArcMap会自动做投影变换,把后加入的数据投影变换到当前坐标系统下显示。但此时数据文件所存储的数据并没有改变,只是显示形态上的变化。因此叫动态投影。表现这一点最明显的例子就是,在Export Data时,会让你选择是按this layer's source data(数据源的坐标系统导出),还是按照the Data(当前数据框架的坐标系统)导出数据。 2、坐标系统描述(ArcCatalog) 大家都知道在ArcCatalog中可以一个数据的坐标系统说明。即在数据上鼠标右键→Properties→XY Coordinate System选项卡,这里可以通过modify,Select、Import方式来为数据选择坐标系统。但有许多人认为在这里改完了,数据本身就发生改变了。但不是这样的。这里缩写的信息都对应到该数据的.aux文件。如果你去把该文件删除了,重新查看该文件属性时,照样会显示Unknown。这里改的仅仅是对数据的一个描述而已,就好比你入学时填写的基本资料登记卡,我改了说明但并没有改变你这个人本身。因此数据文件中所存储的数据的坐标值并没有真正的投影变换到你想要更改到的坐标系统下。 但数据的这个描述也是非常重要的,如果你拿到一个数据,从ArcMap下所显示的坐标来看,像是投影坐标系统下的平面坐标,但不知道是基于什么投影的。因此你就无法在做对数据的进一不处理。比如:投影变换操作。因为你不知道要从哪个投影开始变换。 因此大家要更正一下对ArcCatalog中数据属性中关于坐标系统描述的认识。 3、投影变换(ArcToolBox) 上面说了这么多,要真正的改变数据怎么办,也就是做投影变换。在ArcToolBox->Data Management Tools->Projections and Transformations下做。 在这个工具集下有这么几个工具最常用, 1、Feature→Project 2、Raster→Project Raster 3、Create Custom Geographic Transformation

arcgis转换坐标

ArcGIS中的投影和坐标转换及编程实现 摘要:一般情况下地理数据库(如Personal GeoDatabase的Feature DataSet 、Shape File等)在创建时都具有空间参考的属性,空间参考定义了该数据集的地理坐标系统或投影坐标系统,但由于在数据格式转换、转库过程中可能造成坐标系统信息丢失,或创建数据库时忽略了坐标系统的定义,因此需要对没有坐标系统信息的数据集进行坐标系统定义。 ArcGIS中的投影和坐标转换 1 ArcGIS中坐标系统的定义 一般情况下地理数据库(如Personal GeoDatabase的Feature DataSet 、Shape File等)在创建时都具有空间参考的属性,空间参考定义了该数据集的地理坐标系统或投影坐标系统,没有坐标系统的地理数据在生产应用过程中是毫无意义的,但由于在数据格式转换、转库过程中可能造成坐标系统信息丢失,或创建数据库时忽略了坐标系统的定义,因此需要对没有坐标系统信息的数据集进行坐标系统定义。 坐标系统的定义是在不改变当前数据集中特征X Y值的情况下对该数据集指定坐标系统信息。 操作方法:运行ArcGIS9中的ArcMap,打开ArcToolBox,打开Data Management Tools ->Projections and Transformations->Define Projection 项打开坐标定义对话框。介下来在Input DataSet or Feature Class栏中输入或点击旁边的按钮选择相应的DataSet或Feature Class;在Coordinate System栏中输入或点击旁边的按钮选择需要为上述DataSet或Feature定义的坐标系统。最后点OK键即可。 例如某点状shape文件中某点P的坐标为X 112.2 Y 43.3 ,且该shape文件没有带有相应的Prj文件,即没有空间参考信息,也不知道X Y 的单位。通过坐标系统定义的操作定义其为Beijing1954坐标,那么点P的信息是东经112.2度北纬43.3度。 2 ArcGIS中的投影方法 投影的方法可以使带某种坐标信息数据源进行向另一坐标系统做转换,并对源数据中的X 和Y值进行修改。我们生产实践中一个典型的例子是利用该方法修正某些旧地图数据中X,Y 值前加了带数和分带方法的数值。 操作方法:运行ArcGIS9中的ArcMap,打开ArcToolBox,打开Data Management Tools ->Projections and Transformations->Feature->Project 项打开投影对话框。在Input DataSet or Feature Class栏中输入或点击旁边的按钮选择相应的DataSet或Feature Class(带有空间参考),Output DataSet or Feature Class栏中输入或点击旁边的按钮选择目标DataSet或Feature Class,在Output Coordinate System 栏中输入或点击旁边的按钮选择目标数据的坐标系统。最后点OK键即可。 例如某点状shape文件中某点P的坐标为X 40705012 Y 3478021 ,且该shape文件坐标系统为中央为东经120度的高斯克吕格投影,在数据使用过程中为了将点P的值改为真实值X 705012 Y478021,首先将源数据的投影参数中False_Easting和False_Northing值分别加上40000000和3000000作为源坐标系统,修改参数前的坐标系统作为投影操作的目标坐标系统,然后通过投影操作后生成一新的Shape文件,且与源文件中点P对应的点的坐标

坐标投影的ArcGIS操作步骤

- 110 - 说明说明:: 投影投影其实其实其实是是实现实现((B ,L ,H )与(x,y,H )之间之间的的相互相互转换转换转换。。 步骤步骤如下如下如下:: 1.在ArcCatalog 中设置设置坐标坐标坐标参考参考参考((已知已知))。 2.投影投影转换转换 a. 动态动态投影投影投影::在ArcMap 中view 菜单菜单下下实现实现,,不改变 空间空间数据数据数据的的坐标值标值。。 b.持久持久化化投影投影::利用ArcToolBox 实现实现,,改变改变空间 空间空间数数据的坐标值标值。。

- 111 -第四章 空间数据的转换与处理 空间数据是GIS 的一个重要组成部分。整个GIS 都是围绕空间数据的采集、加工、存储、分析和表现展开的。原始数据往往由于在数据结构、数据组织、数据表达等方面与用户自己的信息系统不一致而需要对原始数据进行转换与处理,如投影变换,不同数据格式之间的相互转换,以及数据的裁切、拼接等处理。以上所述的各种数据转换与处理均可以利用ArcToolbox 中的工具实现。在ArcGIS9中,ArcToolbox 嵌入到了ArcMap 中。本章就投影变换、数据格式转换、数据裁切与拼接等内容分别介绍。 4.1 投影变换 由于数据源的多样性,当数据与研究、分析问题的空间参考系统(坐标系统、投影方式)不一致时,就需要对数据进行投影变换。同样,在完成本身有投影信息的数据采集时,为了保证数据的完整性和易交换性,要定义数据投影信息。以下就地图投影及投影变换的概念做简单介绍,之后分别讲述在ArcGIS 中如何实现地图投影定义及变换。 空间数据与地球上的某个位置相对应。对空间数据进行定位,必须将其嵌入到空间参照系中。因为GIS 描述的是位于地球表面的信息,所以根据地球椭球体建立的地理坐标(经纬网)可以作为空间数据的参照系统。而地球是一个不规则的球体,为了能够将其表面内 容显示在平面的显示器或纸面上,就必须将球面地理坐标系统变换到平面投影坐标系统(图4.1)。因此,运用地图投影方法,建立地球表面上和平面上点的函数关系,使地球表图4.1椭球体表面投影到平面的微分梯形 Y

arcgis空间数据处理投影变换

1.空间数据处理(融合、合并、剪切、交叉、合并) 2.设置地图投影及投影变换 空间数据处理 (1) 第1步裁剪要素 (2) 第2步拼接图层 (3) 第3步要素融合 (4) 第4步图层合并 (6) 第5步图层相交 (7) 定义地图投影 (9) 第6步定义投影 (9) 第7步投影变换――地理坐标系->北京1954坐标系转换->西安80坐标系 (10) 补充:图层相减,计算面积 (11) 空间数据处理 ●数据:云南县界.shp; Clip.shp西双版纳森林覆盖.shp 西双版纳县界.shp ●步骤: 将所需要的数据下载后,解压到到 e:\gisdata, 设定工作区:在ArcMap中执行菜单命令:<工具>-><选项>,在“空间处理”选项页里,点 击“环境变量”按钮,在环境变量对话框 中的常规设置选项中,设定“临时工作空 间”为 e:\gisdata

第1步裁剪要素 ◆在ArcMap中,添数据GISDATA\云南县界.shp,添加数据GISDATA\Clip.shp (Clip 中 有四个要素) ◆激活Clip图层。选中Clip图层中的一个要素,注意确保不要选中“云南县界”中的 要素! 点击打开ArcToolbox, 指定输出要素类路径及名称,这里请命 名为“云南县界_Clip1” 指定输入类:云南县界

指定剪切要素:Clip(必须是多边形要素)依次选中Clip主题中其它三个要素,重复以上的操作步骤,完成操作后将得到共四个图层(“云南县界_Clip1” , “云南县界_Clip2”,“云南县界_Clip3”,“云南县界_Clip4” )。 第2步拼接图层 ◆在ArcMap中新建地图文档,加载你在剪切要素操作中得到的四个图层 ◆点击打开ArcToolbox

ArcGIS 投影

UTM投影 UTM投影全称为“通用横轴墨卡托投影”,英文名称为Universal Transverse Mercator,是一种等角横轴割圆柱投影,圆柱割地球于南纬80度、北纬84度两条等高圈,被许多国家用作地形图的数学基础,如中国采用的高斯-克吕格投影就是UTM投影的一种变形,很多遥感数据,如Landsat和Aster数据都应用UTM投影发布的。 UTM投影将北纬84度和南纬80度之间的地球表面积按经度6度划分为南北纵带(投影带)。从180度经线开始向东将这些投影带编号,从1编至60(北京处于第50带)。每个带再划分为纬差8度的四边形。两条标准纬线距中央经线为180KM左右,中央经线比例系数为0.9996。 UTM北半球投影北伪偏移为零,南半球则为10000公里。 在ArcGIS中UTM投影坐标文件名的N和S的区别。N代表北半球,S代表南半球,文件内容的区别在与参数False_Northing—北伪偏移值。 中国UTM投影带号:中国国境所跨UTM带号为43-53。 UTM投影带号计算,如WGS_1984_UTM_Zone_49N,这个49的计算方法: 49:从180度经度向东,每6度为一投影带,第49个投影带 49=(114+180)/6,这个114为49投影带的最大经线层次 ArcGIS 坐标系统文件 ArcGIS自带了多种坐标系统,在${ArcGISHome}\Coordinate Systems\目录下可以看到三个文件夹,分别是Geographic Coordinate Systems、Projected Coordinate Systems、Vertical Coordinate Systems,中文翻译为地理坐标系、投影坐标系、垂直坐标系。 1 Geographic Coordinate Systems 在Geographic Coordinate Systems目录中,我们可以看到已定义的许多坐标系信息,典型的如Geographic Coordinate Systems\World目录下的WGS 1984.prj。 2 Projected Coordinate Systems 在Projected Coordinate Systems目录中同样存在许多已定义的投影坐标系,我国大部分地图所采用的北京54和西安80坐标系的投影文件就在其中,它们均使用高斯-克吕格投影,前者使用克拉索夫斯基椭球体,后者使用国际大地测量协会推荐的IAG 75地球椭球体。 北京54和西安80是我们使用最多的坐标系,在ArcGIS文件中,对于这两种坐标系统的命名有一些不同,简单看去很容易让人产生迷惑。在此之前,先简单介绍高斯-克吕格投影的基本知识,了解就直接跳过,我国大中比例尺地图均采用高斯-克吕格投影,其通常是按6度和3度分带投影,1:2.5万-1:50万比例尺地形图采用经差6度分带,1:1万比例尺的

ArcGIS中的投影和坐标转换

ArcGIS中的投影和坐标转换 1 ArcGIS中坐标系统的定义 一般情况下地理数据库(如Personal GeoDatabase的Feature DataSet 、Shape File等)在创建时都具有空间参考的属性,空间参考定义了该数据集的地理坐标系统或投影坐标系统,没有坐标系统的地理数据在生产应用过程中是毫无意义的,但由于在数据格式转换、转库过程中可能造成坐标系统信息丢失,或创建数据库时忽略了坐标系统的定义,因此需要对没有坐标系统信息的数据集进行坐标系统定义。 坐标系统的定义是在不改变当前数据集中特征X Y值的情况下对该数据集指定坐标系统信息。操作方法:运行ArcGIS9中的ArcMap,打开ArcToolBox,打开Data Management Tools ->Projections and Transformations->Define Projection 项打开坐标定义对话框。介下来在Input DataSet or Feature Class栏中输入或点击旁边的按钮选择相应的DataSet或Feature Class;在Coordinate System栏中输入或点击旁边的按钮选择需要为上述DataSet或Feature定义的坐标系统。最后点OK键即可。 例如某点状shape文件中某点P的坐标为X 112.2 Y 43.3 ,且该shape文件没有带有相应的Prj文件,即没有空间参考信息,也不知道X Y 的单位。通过坐标系统定义的操作定义其为Beijing1954坐标,那么点P的信息是东经112.2度北纬43.3度。 2 ArcGIS中的投影方法 投影的方法可以使带某种坐标信息数据源进行向另一坐标系统做转换,并对源数据中的X和Y 值进行修改。我们生产实践中一个典型的例子是利用该方法修正某些旧地图数据中X,Y值前加了带数和分带方法的数值。 操作方法:运行ArcGIS9中的ArcMap,打开ArcToolBox,打开Data Management Tools ->Projections and Transformations->Feature->Project 项打开投影对话框。在Input DataSet or Feature Class栏中输入或点击旁边的按钮选择相应的DataSet或Feature Class(带有空间参考),Output DataSet or Feature Class栏中输入或点击旁边的按钮选择目标DataSet或Feature Class,在Output Coordinate System 栏中输入或点击旁边的按钮选择目标数据的坐标系统。最后点OK键即可。 例如某点状shape文件中某点P的坐标为X 40705012 Y 3478021 ,且该shape文件坐标系统为中央为东经120度的高斯克吕格投影,在数据使用过程中为了将点P的值改为真实值X 705012 Y478021,首先将源数据的投影参数中False_Easting和False_Northing值分别加上40000000和3000000作为源坐标系统,修改参数前的坐标系统作为投影操作的目标坐标系统,

ARCGIS中坐标系的定义及投影转换方法

ArcGIS中坐标系的定义及投影转换方法 张卫东 (安徽省环境信息中心 合肥 230001 ) 摘 要:本文就我省GIS项目中地理数据所涉及的多种坐标系及地图投影转换等问题作了详细分析,并在ESRI公司的ArcGIS软件平台上介绍了不同坐标系的定义及投影转换方法。 关键词:坐标系; 地图投影 一、问题的提出 GIS技术在我省环保工作中已应用多年,现有多套基于不同坐标系的地理数据,如全省1:5万的北京54坐标系数据,主要城市1:1万的西安80坐标系数据,GPS采集的WGS84坐标系数据以及同是北京54坐标系但不同投影的遥感解译数据等,这些不同坐标系的数据给我们的使用带来了困难:如何将遥感解译数据和不同的地理数据转换到一起,GPS采集的经纬度数据如何正确加载到地图上,以前在北京54坐标系上使用的数据又如何转换到新的西安80坐标系上来?通过摸索,本人找到了解决问题的一些方法,现介绍如下,首先介绍一下相关的几个概念。 二、相关概念 由于GIS所描述是位于地球表面的空间信息,所以在表示时必须嵌入到一个空间参照系中,这个参照系统就是坐标系,它是根据椭球体等参数建立的。另外,为了能够将地图从球面转换到平面,还要进行投影。 1. 椭球体(Spheroid)、基准面(Datum)、坐标系(Coordinate System)及投影(Projection) 尽管地球是一个不规则的椭球,但为了将数据信息以科学的方法存放到椭球上,我们需要用一个可以量化计算的椭球体作为地球的模型。这样的椭球体用长半轴a(semimajor axis),短半轴b(semiminor axis),偏心率倒数1/f(Inverse flattening)来描述,这三个参数数学关系为:1/f=a/(a-b),实际中我们一般用长、短半轴二个参数来表示就可以了,根据需要人们定义了多种参考椭球体模型。然而有了这个椭球体还不够,还需要一个大地基准面将这个椭球定位,它的作用是来确定地球与椭球体之间的位置关系,由于每个国家或地区需要最大限度的贴合自己的那一部分不同,基准面也不同。 有了基于椭球体参数的基准面,再加上角度单位(Angular Unit)和本初子午线(Prime Meridian),就定义了地理坐标系(Geographic Coordinate System),图2清楚地表明了这一点。 但地理坐标系是用经纬度表示球面的位置,很多时候我们精确分析需要在平面上来进行,这就要将地图从三维地理坐标通过投影转换成二维平面坐标,这样的坐标系叫投影坐标系(Projection Coordinate System),它是在地理坐标系上加上投影转换参数(参见图4)。 由于从球面到平面的转换会引起距离、面积、形状、方向一个或多个空间属性的变形失真,没有一种投影转换能保持所有的空间属性不变。所以一些地图投影通过损失其它空间属性来使某一属性失真最小,而另一些地图投影则努力平衡全部空间属性的失真,现有数百种地图投影,它们各自适合于表示整个地球表面或某些区域的不同需求,如我国1:50万和更大比例尺地形图使用的是高斯-克吕格 (Gauss-Kruger) 投影,它没有角度变形,在长度和面积上变形也很小,通过分带投影后能保证很高的精度(参见图4),而遥感解译数据常采用阿尔勃斯(Albers Equal-Area Conic)投影,它是等面积割圆锥投影,可以保持面积不变(参见图5)。

ArcGIS中坐标转换及地理坐标、投影坐标的定义

ARCGIS中坐标转换及地理坐标、投影坐标的定义 1.ARCGIS中坐标转换及地理坐标、投影坐标的定义 1.1动态投影(ArcMap) 所谓动态投影指,ArcMap中的Data 的空间参考或是说坐标系统是默认为第一加载到当前工作区的那个文件的坐标系统,后加入的数据,如果和当前工作区坐标系统不相同,则ArcMap会自动做投影变换,把后加入的数据投影变换到当前坐标系统下显示!但此时数据文件所存储的数据并没有改变,只是显示形态上的变化!因此叫动态投影!表现这一点最明显的例子就是,在Export Data时,会让你选择是按this layer's source data(数据源的坐标系统导出),还是按照the Data (当前数据框架的坐标系统)导出数据! 1.2坐标系统描述(ArcCatalog) 大家都知道在ArcCatalog中可以一个数据的坐标系统说明!即在数据上鼠标右键->Properties->XY Coordinate System选项卡,这里可以通过modify,Select、Import方式来为数据选择坐标系统!但有许多人认为在这里改完了,数据本身就发生改变了!但不是这样的!这里缩写的信息都对应到该数据的.aux 文件!如果你去把该文件删除了,重新查看该文件属性时,照样会显示Unknown!这里改的仅仅是对数据的一个描述而已,就好比你入学时填写的基本资料登记卡,我改了说明但并没有改变你这个人本身!因此数据文件中所存储的数据的坐标值并没有真正的投影变换到你想要更改到的坐标系统下!但数据的这个描述也是非常重要的,如果你拿到一个数据,从ArcMap下所显示的坐标来看,像是投影坐标系统下的平面坐标,但不知道是基于什么投影的!因此你就无法在做对数据的进一不处理!比如:投影变换操作!因为你不知道要从哪个投影开始变换!因此大家要更正一下对ArcCatalog中数据属性中关于坐标系统描述的认识! 1.3投影变换(ArcToolBox) 页脚内容1

坐标系统和投影变换基础知识及其在ArcGIS桌面产品中的应用

坐标系统和投影变换基础知识及其在ArcGIS桌面产品中的应用(二) 2011-01-24 10:52 5555人阅读评论(4) 收藏举报产品transformation工作工具system 坐标系统和投影变换在ArcGIS桌面产品中的应用 在我们了解了坐标系统和投影的定义和其内在的联系后,本文着重总结一下坐标系统和投影变换在桌面产品(版本9.2)中的应用(分ArcMap、ArcCatalog、ArcToolBox三大主要应用模块)。 1、动态投影(ArcMap) 所谓动态投影指:改变ArcMap中的Data Frame(工作区)的空间参考或是对后加入到ArcMap工作区中数据的投影变换。ArcMap的Data Frame (工作区)的坐标系统默认为第一个加载到当前Data Frame(工作区)的那个文件的坐标系统,后加入的数据,如果和当前工作区坐标系统不同,则ArcMap 会自动做投影变换,把后加入的数据投影变换到当前坐标系统下显示,但此时数据文件所存储的实际数据坐标值并没有改变,只是显示形态上的变化!因此叫动态投影。表现这一点最明显的例子就是在Export Data时,用户可以选择是按this layer's source data(数据源的坐标系统导出),还是按照the Data Frame (当前工作区的坐标系统)导出数据。 关于ArcMap的这种动态投影机制,我们可以利用一个北京54投影坐标系数据(乡镇.shp)和

Directory>/DeveloperKit/SamepleCom/data/World/目录下的 world30.shp数据来做一个实验说明。 乡镇.shp数据的坐标系统为北京54投影坐标系 (Krasovsky_1940_Transverse_Mercator)。在ArcMap或ArcCatalog中预览形态如图7所示: 图7 北京54投影坐标系数据单独显示几何形态 world30.shp数据的坐标系统为WGS84坐标系(GCS_WGS_1984)。在ArcMap或ArcCatalog中预览形态如图8所示:

Arcgis地图投影和坐标转换方法

Arcgis地图投影和坐标转换方法 1、动态投影(ArcMap) 所谓动态投影指,ArcMap中的Data 的空间参考或是说坐标系统是默认为第一加载到当前工作区的那个文件的坐标系统,后加入的数据,如果和当前工作区坐标系统不相同,则ArcMap会自动做投影变换,把后加入的数据投影变换到当前坐标系统下显示!但此时数据文件所存储的数据并没有改变,只是显示形态上的变化!因此叫动态投影!表现这一点最明显的例子就是,在Export Data时,会让你选择是按this layer's source data(数据源的坐标系统导出),还是按照the Data (当前数据框架的坐标系统)导出数据! 2、坐标系统描述(ArcCatalog) 大家都知道在ArcCatalog中可以一个数据的坐标系统说明!即在数据上鼠标右键->Properties->XY Coordinate System选项卡,这里可以通过modify,Select、Import方式来为数据选择坐标系统!但有许多人认为在这里改完了,数据本身就发生改变了!但不是这样的!这里缩写的信息都对应到该数据的.aux文件!如果你去把该文件删除了,重新查看该文件属性时,照样会显示Unknown!这里改的仅仅是对数据的一个描述而已,就好比你入学时填写的基本资料登记卡,我改了说明但并没有改变你这个人本身!因此数据文件中所存储的数据的坐标值并没有真正的投影变换到你想要更改到的坐标系统下! 但数据的这个描述也是非常重要的,如果你拿到一个数据,从ArcMap下所显示的坐标来看,像是投影坐标系统下的平面坐标,但不知道是基于什么投影的!因此你就无法在做对数据的进一不处理!比如:投影变换操作!因为你不知道要从哪个投影开始变换! 因此大家要更正一下对ArcCatalog中数据属性中关于坐标系统描述的认识!3、投影变换(ArcToolBox) 上面说了这么多,要真正的改变数据怎么办,也就是做投影变换!在ArcToolBox->Data Management Tools->Projections and Transformations下

ArcGIS中的坐标系统定义与投影转换

ArcGIS中的坐标系统定义与投影转换 ArcGIS中的坐标系统定义与投影转换 坐标系统是GIS数据重要的数学基础,用于表示地理要素、图像和观测结果的参照系统,坐标系统的定义能够保证地理数据在软件中正确的显示其位置、方向和距离,缺少坐标系统的GIS数据是不完善的,因此在ArcGIS软件中正确的定义坐标系统以及进行投影转换的操作非常重要。 1.ArcGIS中的坐标系统 ArcGIS中预定义了两套坐标系统,地理坐标系(Geographic coordinate system)和投影坐标系(Projectedcoordinate system)。 1.1 地理坐标系 地理坐标系 (GCS) 使用三维球面来定义地球上的位置。GCS中的重要参数包括角度测量单位、本初子午线和基准面(基于旋转椭球体)。地理坐标系统中用经纬度来确定球面上的点位,经度和纬度是从地心到地球表面上某点的测量角。球面系统中的水平线是等纬度线或纬线,垂直线是等经度线或经线。这些线包络着地球,构成了一个称为经纬网的格网化网络。 GCS中经度和纬度值以十进制度为单位或以度、分和秒 (DMS) 为单位进行测量。纬度值相对于赤道进行测量,其范围是 -90°(南极点)到 +90°(北极点)。

经度值相对于本初子午线进行测量。其范围是 -180°(向西行进时)到 180°(向东行进时)。 ArcGIS中,中国常用的坐标系统为GCS_Beijing_1954 (Krasovsky_1940),GCS_Xian_1980(IAG_75),GCS_WGS_1984 (WGS_1984),GCS_CN_2000(CN_2000)。 1.2 投影坐标系 将球面坐标转化为平面坐标的过程称为投影。投影坐标系的实质是平面坐标系统,地图单位通常为米。投影坐标系在二维平面中进行定义。与地理坐标系不同,在二维空间范围内,投影坐标系的长度、角度和面积恒定。投影坐标系始终基于地理坐标系,即: “投影坐标系=地理坐标系+投影算法函数“。 我们国家的投影坐标系主要采用高斯-克吕格投影,分为6度和3度分带投影,1:2.5万-1:50万比例尺地形图采用经差6度分带,1:1万比例尺的地形图采用经差3度分带。具体分带法是:6度分带从本初子午线(prime meridian)开始,按经差6度为一个投影带自西向东划分,全球共分60个投影带,中国跨13-23带;3度投影带是从东经1度30分经线(1.5°)开始,按经差3度为一个投影带自西向东划分,全球共分120个投影带,中国跨25-45带。 在CoordinateSystems\Projected Coordinate Systems\Gauss Kruger\Beijing 1954目录中,我们可以看到四种不同的命名方式:

ArcGIS10.2坐标系定义投影说明

坐标系定义投影说明 1、坐标系基础知识 坐标系分为地理坐标系与投影坐标系。 1.1、地理坐标系 常见地理坐标系:国家2000(CGCS2000);西安80(Xian_1980). 地理坐标系坐标值为经纬度格式,如下: 1.2、投影坐标系 常见投影坐标系:高斯-克吕格投影(Gauss_Kruger);UTM投影. 投影坐标系必须设定在某一个地理坐标系的基础上,其作用是使用某种投影方法将经纬度坐标转换为平面坐标。 投影坐标系按照坐标值的格式分为有代号和无代号两种。 有代号坐标值格式为8-7;(Y值是8位,X值是7位) 无代号坐标值格式为6-7,(Y值6位,X值是7位)

有代号示例:西安80高斯克吕格39带 坐标值格式: 无代号示例,西安80高斯克吕格117度

坐标值格式: 2、坐标系定义 坐标系定义原则:必须定义为待定义文件本身真实正确的坐标系。如不知道其真实坐标系,一般不能直接定义。 定义操作不会改变坐标值,因此如定义错误,可重新定义覆盖。 坐标系定义一般发生在以下情况下:已知某SHP文件坐标系是“西

安80高斯投影无代号117”,但此SHP坐标系未定义,如下图,需要定义之后才能与其他文件、影像套和,或进行投影操作。 定义方法: 在目录中双击文件,出现属性窗口。在坐标系页面选择相应坐标系。

3、坐标系投影 坐标系投影可以将某标系的文件转换成另一坐标系的文件。 投影注意事项 投影之前,必须先正确定义待投影文件的坐标系 投影会改变文件的坐标值,转换后其坐标值格式会发生变化。 例如可以将有代号(38带)转换成无代号,转换后坐标值由8-7格式转为6-7格式 CGCS2000_3_Degree_GK_Zone_38转CGCS2000_3_Degree_GK_CM_114E 或将38带转为39带,转换后坐标值由38开头转为39开头 CGCS2000_3_Degree_GK_Zone_38转CGCS2000_3_Degree_GK_Zone_39 投影方法:

arcgis投影变换与坐标转换研究

arcgis 投影变换与坐标转换研究 arcgis 投影变换与坐标转换研究 1 ArcGIS中的投影方法 投影的方法可以使带某种坐标信息数据源进行向另一坐标系统做转换,并对源数据中的X 和Y值进行修改。我们生产实践中一个典型的例子是利用该方法修正某些旧地图数据中X,Y 值前加了带数和分带方法的数值。字串7 操作方法:运行ArcGIS9中的ArcMap,打开ArcToolBox,打开Data Management Tools ->Projections and Transformations->Feature->Project 项打开投影对话框。在Input DataSet or Feature Class栏中输入或点击旁边的按钮选择相应的DataSet或Feature Class(带有空间参考),Output DataSet or Feature Class栏中输入或点击旁边的按钮选择目标DataSet或Feature Class,在Output Coordinate System 栏中输入或点击旁边的按钮选择目标数据的坐标系统。最后点OK键即可。字串9 例如某点状shape文件中某点P的坐标为X Y 3478021 ,且该shape文件坐标系统为中央为东经120度的高斯克吕格投影,在数据使用过程中为了将点P的值改为真实值X 705012 Y478021,首先将源数据的投影参数中False_Easting和False_Northing值分别加上和3000000作为源坐标系统,修改参数前的坐标系统作为投影操作的目标坐标系统,然后通过投影操作后生成一新的Shape文件,且与源文件中点P对应的点的坐标为X 705012 Y478021。 字串6 2 ArcGIS中坐标系统的定义 一般情况下地理数据库(如Personal GeoDatabase的Feature DataSet 、Shape File等)在创建时都具有空间参考的属性,空间参考定义了该数据集的地理坐标系统或投影坐标系统,没有坐标系统的地理数据在生产应用过程中是毫无意义的,但由于在数据格式转换、转库过程中可能造成坐标系统信息丢失,或创建数据库时忽略了坐标系统的定义,因此需要对没有坐标系统信息的数据集进行坐标系统定义。 字串7 坐标系统的定义是在不改变当前数据集中特征X Y值的情况下对该数据集指定坐标系统信息。 字串3 操作方法:运行ArcGIS9中的ArcMap,打开ArcToolBox,打开Data Management Tools ->Projections and Transformations->Define Projection 项打开坐标定义对话框。介下来在Input DataSet or Feature Class栏中输入或点击旁边的按钮选择相应的DataSet或Feature Class;在Coordinate System栏中输入或点击旁边的按钮选择需要为上述DataSet或Feature 定义的坐标系统。最后点OK键即可。字串7 例如某点状shape文件中某点P的坐标为X 112.2 Y 43.3 ,且该shape文件没有带有相应的Prj文件,即没有空间参考信息,也不知道X Y 的单位。通过坐标系统定义的操作定义其为Beijing1954坐标,那么点P的信息是东经112.2度北纬43.3度。 字串9 3 编程实现坐标转换和投影 3.1 矢量数据投影和坐标转换 相关接口 字串5 3.1.1 IGeometry.Project方法字串8 该方法声明如下

相关文档
最新文档