函数列一致收敛性的判别

函数列一致收敛性的判别
函数列一致收敛性的判别

安庆师范学院毕业论文(设计)开题报告

院系数学与计算科学学院

专业数学与应用数学

届别2016届

学生学号060112199

学生姓名刘雪龙

论文(设计)题目函数列一致收敛性的判别

安庆师范学院教务处制

填表说明

1、本表请用钢笔填写或打印。

2、本表除“指导教师意见”和“院系毕业论文(设计)指导

组审核意见”外,均由学生填写。

3、课题研究计划应包括从选题到定稿全过程,须注明详细的

时间安排。

4、主要参考文献应注明文献名、作者、出版单位及时间,文

献中应尽量有外文资料。

5、指导教师意见应有针对性,并明确研究目的和研究提纲是

否科学合理,研究计划是否可行、能否采用等。

本课题研究目的、主要内容

本课题研究目的

课题研究的目的:

由于本课题是数学分析教学中难点之一,难以掌握与应用,有效的判别函数列的收敛性对研究函数列的性质起着重要的作用。所以研究此课题目的是让学习者掌握此课题,使学习者有一个清晰的思路。也为研究函数项级数的收敛与一致收敛性奠定了基础。

本课题研究的主要内容(提纲)

主要内容:

1.函数列一致收敛性的定义

2.函数列一致收敛性的判别法

3.函数列一致收敛性的柯西准则

4.函数列一致收敛性的充要条件

5.函数列一致收敛性判别法的应用

课题研究计划1. 2015年10月15日至10月16日(第7--7周)

与指导老师见面,接受任务书。

2. 2015年10月16日至12月31日(第8--17周)

撰写毕业论文(设计)开题报告并提交第一次“周志”交指导老师审阅。

3. 2016年3月10日前(第1--2周)

完成毕业论文(设计)初稿并提交第二次“周志”交指导老师审阅。

4. 2016年4月20日前(第2--8周)

修改毕业论文(设计)初稿、二稿直至最终定稿。

5.指导教师、评阅教师分别评定论文(设计)成绩。

6.2016年5月上旬(第10--11周)

准备毕业论文(设计)答辩。

课题研究现状及主要参考文献研究现状:

函数列一致收敛性的判别在求解极限领域中起着极其重要的作用,它不仅有助于提高我们对极限认识清晰度,而且更能帮助我们领悟一致收敛这一性质。但在国内对于写相关课题已被广泛研究,1991年海南师范学院学报第二期张国才和方良秋的《函数列一致收敛性判别法》,这篇文章参考数学分析中函数列的性质得出了函数列一致收敛性的基本方法,包括柯西判别法。1995年吉林师范学院学报第16卷上关伟大的《关于一致收敛的判别问题》,这篇文章讨论了处处收敛与一致收敛的关系,得出了“单调的一致收敛函数列是一致收敛的”结论。1994年上海师范大学学报第23卷第3期张骏芳的《广义一致收敛与亚一致收敛》,这篇文章讨论了连续函数列的极限函数连续条件,采用了先把函数列为正则收敛减弱为弱正则收敛或一致收敛,在减弱为广义一致收敛,最后成为一个定理证明。还有很多学者研究了一致收敛判别的各个方面,不仅未来的研究指明了方向,而且在学术界得到广泛应用。

参考文献:

[1]华东师范大学数学系.数学分析(第四版)[M],高等教育出版社,2003.

[2]陈纪修:数学分析(第二版)[M],高等教育出版社,2004.

[3]谢慧民:数学分析习题课讲义[M],高等教育出版社,2003.

[4]孙涛:数学分析经典习题解析[M],高等教育出版社,2004.

[5]裴礼文.数学分析中的典型问题和方法,(第2版)[M],高

等教育出版社,2006.

[6]孙清华:数学分析内容、方法与技巧[M],华中科技大学出版社,2003.

[7]张筑生:数学分析新讲[M],北京大学出版社,1990.

指导教师(签名)

年月日院

组长(签名)

年月日

函数列与函数项级数一致收敛性解析

第十三章函数列与函数项级数 §1 一致收敛性 (一) 教学目的: 掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (二) 教学内容: 函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法. 基本要求: 1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法. 2、教学基本要求:理解并掌握函数列与函数项级数的概念及一致收敛的概念和性质;掌 握函数项级数的几个重要判别法,并能利用它们去进行判别;掌握一致收敛函数列与函数项级数的极限与和函数的连续性,可积性,可微性,并能应用它们去解决问题。3、教学重点难点:重点是函数列一致收敛的概念、性质;难点是一致收敛性的概念、判 别及应用。 (三) 教学建议: (1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项 级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别 法. (2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法. ————————————————————一函数列及其一致收敛性

对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。 使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。 若函数列})({x f n 在数集E D ?上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值 )()(lim x f x f n n =∞ → 与之对应,由这个对应关系所确定的函数,称为函数列})({x f n 的极限函数。 逐点收敛 ( 或称为“点态收敛” )的“N -ε”定义. 例1 对定义在) , (∞+∞-内的等比函数列)(x f n =n x , 用“N -ε”定义 验证其收敛域为] 1 , 1 (-, 且 ∞→n lim )(x f n = ∞→n lim n x =? ??=<. 1 , 1 , 1 || , 0 x x 例2 )(x f n = n nx sin . 用“N -ε”定义验证在) , (∞+∞-内∞→n lim )(x f n =0. 函数列的一致收敛性: 设函数列 })({x f n 在E 上收敛于 )(x f ,若对任意的0>ε ,存在自然数 )(εN N =,当 N n >时,对E 中一切 x 都有 ε<-)()(x f x f n 则称函数列)}({x f n 在E 上一致收敛于)(x f 。 注意 这里的 N 只与ε有关,与x 无关,这一点是一致收敛与逐点收敛的本质区别。

习题反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(. 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?.则当?∞ +a dx x f )(发散 时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散. 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有

函数项级数的一致收敛性共8页word资料

第三节 函数项级数的一致收敛性 本节将讨论函数项级数有关性质。 定义 1 设 )(1x u ,)(2x u ,……,)(x u n ,……,是集合E 上的函数列,我们称形为 )(1x u +)(2x u +……+)(x u n +…… 为E 上的函数项级数,简记为∑∞ =1 )(n n x u 。其中)(x u n 称为第n 项. )(x u k +)(1x u k ++……+)(x u n +……也记为∑∞ =k n n x u )(. 记号中n 可以用其它字母 代之. 同研究常数项级数一样,我们类似可以定义其收敛性。 定义 2 设∑∞ =1)(n n x u 是集合E 上的函数项级数,记 ∑==n i i n x u x S 1 )()(=)(1x u +)(2x u +……+)(x u n , 它称为级数∑∞ =1 )(n n x u 的部分和函数(严格地说是前n 项部分和函数). {})(x S n 称为∑∞ =1 )(n n x u 的部分和函数列。 如果{})(x S n 在0x 点收敛,我们也说∑∞ =1 )(n n x u 在0x 点收敛或称0x 为该级数 的收敛点。 如果|)(|1 ∑∞ =n n x u 在0x 点收敛,我们称∑∞ =1 )(n n x u 在0x 点绝对收敛。非常容易证 明绝对收敛一定收敛。 {})(x S n 的收敛域也称为该级数的收敛域。如果{})(x S n 在0x 点不收敛,

我们说∑∞ =1 )(n n x u 在0x 点发散。 如果{})(x S n 在D 上点态收敛于)(x S ,我们称∑∞ =1 )(n n x u 在D 上点态收敛于 )(x S . )(x S 称为该级数的的和函数。)()()(x S x S x R n n -=称为该级数关于前 n 项部分和的余项. {})(x R n 称为该级数的余项函数列. 如果{})(x S n 在D 上一致收敛于)(x S ,我们称∑∞ =1)(n n x u 在D 上一致收敛于 )(x S , 或∑∞ =1 )(n n x u 在D 上一致收敛. 如果{})(x S n 在D 上内闭一致收敛于)(x S ,我们称∑∞ =1 )(n n x u 在D 上内闭一致收敛. 用N -ε的进行叙述将是: 设∑∞ =1)(n n x u 是D 上函数项级数,)(x S 是D 上函数。 若对任意ε>0,总存 在一个正数正数N (只能依赖于ε,绝对不依赖于x ),当N n >时,对一切的D x ∈,总有 ε<-∑=|)()(|1x S x u n i i , 则称该函数项级数在D 上一致收敛于)(x S . 同样一致收敛一定点态收敛. 例 1 定义在(—∞,+∞)上的函数项级数(几何级数) ΛΛΛΛ+++++=∑∞ =-n n n x x x x 21 1 1 的部分和函数是x x x S n n --=11)( .显然当|x |<1时

几种收敛函数的介绍

概率论中的收敛-正文 概率论中的极限定理和数理统计学中各种统计量的极限性质,都是按随机变量序列的各种不同的收敛性来研究的。 设{X n,n≥1}是概率空间(Ω,F,P)(见概率)上的随机变量序列,从随机变量作为可测函数看,常用的收敛概念有以下几种: 以概率1收敛若,则称{X n,n≥1}以概率1收敛于X。强大数律(见大数律)就是阐明事件发生的频率和样本观测值的算术平均分别以概率 1收敛于该事件的概率和总体的均值。以概率 1收敛也常称为几乎必然(简记为α.s)收敛,它相当于测度论中的几乎处处(简记为α.e.)收敛。 依概率收敛若对任一正数ε,都有,则称{X n,n≥1}依概率收敛于X。它表明随机变量X n与X发生较大偏差(≥ε)的概率随n无限增大而趋于零。概率论中的伯努利大数律就是最早阐明随机试验中某事件 A发生的频率依概率收敛于其概率P(A)的。依概率收敛相当于测度论中的依测度收敛。 r阶平均收敛对r≥1,若X n-X的r阶绝对矩(见矩)的极限,则称{X n,n≥1}r阶平均收敛于X。特别,当r=1时,称为平均收敛;当r=2时,称为均方收敛,它在宽平稳过程(见平稳过程)理论中是一个常用的概念。 弱收敛设X n的均值都是有限的,若对任一有界随机变量Y都有,则称{X n,n≥1}弱收敛于X。由平均收敛可以推出弱收敛。 从随机变量的分布函数(见概率分布)看,常用的有如下收敛概念。 分布弱收敛设F n、F分别表示随机变量X n、X的分布函数,若对F的每一个连续点x都有,则称X n的分布F n弱收敛于X的分布F,也称X n依分布收敛于X。分布弱收敛还有各种等价条件,例如,对任一有界连续函数?(x), img src="image/254-6.gif" align="absmiddle">。 分布弱收敛是概率论和数理统计中经常用到的一种收敛性。中心极限定理就是讨论随机变量序列的标准化部分和依分布收敛于正态随机变量的定理。大样本统计中也要讨论各种统计量依分布收敛的问题。 分布淡收敛设{F n(x),n≥1}为分布函数列,而F(x)为一非降右连续函数(不一定是分布函数),若对F(x)的每一个连续点x都有 ,则称F n淡收敛于F。 上述各种收敛之间有如下蕴含关系(A崊B表示由A可推出B),若r′≥r≥1,则有:。此外,依概率收敛于常数与依分布收敛于常数是等价的。

函数项级数一致收敛的几个判别法及其应用

函数项级数一致收敛性判别法及其应用 栾娈 20111101894 数学科学学院 数学与应用数学11级汉班 指导老师:吴嘎日迪 摘要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用.另外,仿照极限的夹逼原理,得到函数项级数一致收敛的夹逼判别法. 关键词:一致收敛,函数项级数,和函数 1.函数列与一致收敛性 (1)函数项级数一致收敛性的定义:设有函数列{S n (x )}(或函数项级数∑∞ =1 )(n n x u 的 部分和序列)。若对任给的0>ε,存在只依赖于ε的正整数N (ε),使n > N (ε)时,不等式 ε<-)()(x S x S n 对X 上一切x 都成立,则称{S n (x )}(∑∞ =1 )(n n x u )在X 上一致收敛于S (x ). 一致收敛的定义还可以用下面的方式来表达: 设 =-S S n X x ∈s u p )()(x S x S n -, 如果 0lim =-∞ →S S n n 就称S n (x )在X 上一致收敛于S(x ). 例1 讨论 = +=X x n nx x S n 在2 2 1)([0,1]的一致收敛性 由于S (x )=0, 故 2 11)(m a x 1 = ?? ? ??==-≤≤n S x S S S n n x o n , 不收敛于零,故在[0,1]上非一致收敛 (2)函数项级数一致收敛的几何意义:函数列{f n }一致收敛于的f 几何意义:对任 给的正数ε ,存 N ,对一切序号大于N 的曲线y=f n (x )都落在以曲 线y= f (x )+ε与y=f (x )-ε为上,下边界的带形区域内. 2.函数列一致收敛的判别准则(充要条件)

正项数收敛判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质: 若级数 1 n n u ∞ =∑与 1 n n v ∞ =∑都收敛,c d 是常数,则 1 ()n n n cu dv ∞ =+∑收敛,且满足

一致收敛函数列与函数项级数的性质

§2 一致收敛函数列与函数项级数的性质 教学计划:4课时. 教学目的:让学生掌握一致收敛函数列与函数项级数的性质及其应用. 教学重点:函数列与函数项级数的确定的函数的连续性、可积性与可微性. 教学难点:在一致收敛的条件下证明各项分析性质. 教学方法:讲授法. 教学步骤: 本节讨论由函数列与函数项级数的确定的函数的连续性、可积性与可微性. 定理13.8 设函数列{}n f 在()()b x x a o o ,, 上一致收敛于()x f ,且对每个n , ()n n x x a x f o =→lim 则n a ∞ →lim 和()x f o x x →lim 均存在且相等. 证 先证{}n a 是收敛数列.对任意0>ε,由于{}n f 一致收敛,故有N ,当N n >和任意正整数p ,对一切()()b x x a x o o ,, ∈有 ()().ε<-+x f x f p n n (1) 从而 ()()ε≤-=-+→+x f x f a a p n n x x p n n 0 lim 这样由柯西准则可知{}n a 是收敛数列. 设.lim A a n n =∞ →.再证().lim 0 A x f x x =→ 由于)(x f n 一致收敛于)(x f 及n a 收敛于A ,因此对任意,0>ε存在正数N ,当N n >时,对任意),(),(00b x U x a x ∈ 3 3 )()(ε ε < -< -A a x f x f n 和 同时成立.特别取,1+=N n 有 .3 ,3 )()(11ε ε < -< -++A a x f x f N N 又(),lim 110 ++→=N N x x a x f ,故存在,0>δ,当δ<-<00x x 时, .3 )(11ε < -++N N a x f 这样,当x 满足δ<-<00x x 时, A a a x f x f x f A x f N N N N -+-+-≤-++++1111)()()()( ,3 3 3 εε ε ε =+ + < 即 ().lim 0 A x f x x =→ □ 这个定理指出:在一致收敛的条件下,{})(x f n 中两个独立变量x 与n ,在分别求极限时其求极限的顺序可以交换,即 ()().lim lim lim lim 0 0x f x f n x x n n n x x →∞→∞ →→= (2) 类似地,若)(x f n 在()b a ,上一致收敛且)(lim x f n a x + →存在,可推得 ()().lim lim lim lim x f x f n a x n n n a x ++→∞→∞ →→=;若)(x f n 在()b a ,上一致收敛和)(lim x f n b x +→存在,则可推 得()().lim lim lim lim x f x f n b x n n n b x + + →∞→∞ →→=.

函数项级数一致收敛的判定开题报告

一、本课题研究现状及可行性分析 目前通用的数学分析教材(如华东师范大学,复旦大学,吉林大学,北京师范大学等)其介绍的主要内容如下:M 判别法,狄利克雷判别法,阿贝尔判别法,柯西收敛准则等,用来判别一些级数的一致收敛性问题,其他一些数学方面的工作者对某些特殊级数的收敛性进行了讨论。当前对级数的收敛性的讨论研究已经到达比较高级阶段,分枝也比较细,发展也相对较完善。但在许多实际解题过程中,往往不是特定的级数,用特殊的方法不能解决。故需对特殊级数情况要总结和发展。 函数项级数的一致收敛性的判定是数学分析中的一个重要知识点,函数项级数既可以被看作是对数项级数的推广,同时数项级数也可以看作是函数项级数的一个特例。它们在研究内容上有许多相似之处,如研究其收敛性及和等问题,并且它们很多问题都是借助数列和函数极限来解决,同时它们敛散性的判别方法也具有相似之处,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等。教材中给出了对于()n u x 一致收敛性的判别法,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等,但在具体进行一致收敛的判别时,往往会有一定的困难,这就需要我们有效地运用函数项级数一致收敛的判别法。而此课题除了叙述以上判别法外,还对这些判别方法进行了一些推广,从而进一步丰富了判别函数项级数一致收敛的方法。 二、本课题研究的关键问题及解决问题的思路 关键问题:对函数项级数一致收敛性判别法总结和推广。 基本思路:首先从定义出发,让读者了解函数项级数及一致收敛的定义,对函数项级数一致收敛有一个大致的认识,并对其进行一定的说明,且将收敛与一致收敛做一个比较,使读者对其有一个更深刻的认识。随后给出一些常见的一致收敛的判别法,并附上例题加以说明。当熟悉了一般的判别法后,我将其加以推广,得到一些特殊的判别法,如比式判别法,根式判别法,对数判别法等。

无穷积分的性质与收敛判别法

§2 无穷积分的性质与收敛判别法 教学目的与要求: 掌握条件收敛与绝对收敛的概念,收敛的无穷积分具有的四个性质;掌握收敛的Cauchy 准则、比较判别法及其三个推论、阿贝耳判别法、狄利克雷判别法等。 教学重点,难点: 无穷积分的收敛性比较判别法、柯西判别法、狄利克雷判别法等。 教学内容: 本节介绍了无穷积分的三个性质和四种判别收敛的方法 一 无穷积分的性质 由定义知道,无穷积分 ()dx x f a ? +∞ 收敛与否,取决于函数F (u )=()dx x f u a ?在u →+∞时是否存在 极限。因此由函数极限的柯西准则导出无穷积分收敛的柯西准则。 定理11.1 无穷积分()dx x f a ? +∞ 收敛的充要条件是:任给ε>0,存在G ≥a ,只要u 1、u 2>G ,便 有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ?≥a ,只要u 1、u 2>G ,便有 ()()()221 1 21|()()|.u u u u a a f x dx f x dx f x dx F u F u ε=-=-

广义积分的收敛判别法

第二节 广义积分的收敛判别法 上一节我们讨论了广义积分的计算, 在实际应用中,我们将发现大量的积分是不能直接计算的,有的积分虽然可以直接计算,但因为过程太复杂,也不为计算工作者采用,对这类问题计算工作者常采用数值计算方法或Monte-Carlo 方法求其近似值. 对广义积分而言,求其近似值有一个先决条件 — 积分收敛,否则其结果毫无意义。 因此,判断一个广义积分收敛与发散是非常重要的. 定理9.1(Cauchy 收敛原理)f (x )在[a , +∞ )上的广义积分? +∞a dx x f )(收敛的充分必要条件是:0>?ε, 存在A>0, 使得b , b '>A 时,恒有 ε?ε , 0>?δ, 只要0<δηη<

可测函数列常见的几种收敛

可测函数列常见的几种收敛 摘 要:本文介绍了可测函数列常见的几种收敛:一致收敛、几乎一致收敛、几乎处处收敛、依测度收敛等以及它们之间的关系. 关键字:可测函数列;一致收敛;几乎一致收敛;几乎处处收敛;依测度收敛 前言 在数学分析中我们知道一致收敛是函数列很重要的性质,比如它能保证函数列的极限过程和(R)积分过程可交换次序等.可是一般而言函数列的一致收敛性是不方便证明的,而且有些函数列在其收敛域内也不一定是一致收敛的,如文中所给的例2函数()f x 在收敛域[0,1]内不一致收敛,但对于一个0δ>当0δ→时在[0,]δ内一致收敛,这不见说明了一致收敛的特殊性,也验证了我们平时常说的“矛盾的同一性和矛盾的斗争性是相联系的、相辅相成的”[1] 1 可测函数列几种收敛的定义 1.1 一致收敛[3] 设12(),(),(),,(),k f x f x f x f x 是定义在点集E 上的实值函数.若对于0,ε?>存在,K N +∈使得对于,k K x E ?≥?∈都有 ()()k f x f x ε-< 则称}{()k f x 在E 上一致收敛到()f x .记作: u k f f ??→(其中u 表示一致uniform). 1.2 点点收敛 若函数列12(),(),(),,(),k f x f x f x f x 在点集D E ?上每一点都收敛,则称它在D 上点点收敛. 例1 定义在[0,1]E =上的函数列1(),1k f x kx =+则()k f x 在E 上点点收敛到函数 1,0,()0,0 1. x f x x =?=?<≤? 而且还能看出{()}k f x 在[]0,1上不一致收敛到()f x ,但对于0,{()}k f x δ?>在[,1]δ上一致收敛到()f x .

函数列的几种收敛性

函数列的几种收敛性 王佩 (西北师范大学数学与信息科学学院甘肃兰州730070) 摘要: 讨论和总结函数列的收敛、一致收敛、处处收敛,几乎处处收敛、几乎处处一致收敛、依测度收敛、近乎收敛、近乎一致收敛、强收敛及其它们之间的关系和相关命题. 关键词:函数列;收敛; Several kinds of convergence for the sequence of funcations Wang pei (College of Mathematics and Information Science,Northwest Normal University,Lanzhou 730070,China) Abstract:This article discusses and summarizes the relationship between the convergence, uniform convergence,everywhere convergence,almost everywhere convergence,almost everywhere uniform convergence,convergence in measure,nearly convergence,nearly uniform convergence and strong convergence for the sequence of funcations. Key words: the sequence of funcations; convergence;

一、 几种收敛的定义 1、 收敛的定义 定义1:设{}n a 为数列,a 为定数.若对任给的正数ε,总存在正整数N ,使得当n>N 时有ε<-a n a ,则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作lim n →∞ a n =a ,或()∞→→n a a n . 定义2:设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在正数M (≥a ),使得当x>M 时有 |f(x)-A|<ε,则称函数f 当x 趋于+ ∞时以A 为极限,记作 lim x →∞ f(x)=A 或f(x)→A(x →+ ∞).用c.表示. 2、一致收敛的定义 设函数列{f n (x)}与函数f(x)定义在同一数集E 上,若对任意的ε>0,总存在自然数N ,使得当n>N 时,对一切x ∈E 都有| f n (x)- f(x)|<ε,则称函数列{f n (x)}在E 上一致收敛于f(x),记作f n (x)→ f(x),(n →∞)x ∈E.用u.c.表示. 3、几乎处处收敛的定义 设函数列{f n (x)}与函数f(x)定义在同一可测集E 上,若函数列{f n (x)}在E 上满足mE (f n (x)→ f(x))=0,(其中“→”表示不收敛于),则称{f n (x)}在E 上几乎处处收敛于f(x),记作lim n →∞ f n (x)= f(x)a.e.于E ,或f n →fa.e.于 E.用a.c.表示. 4、几乎处处一致收敛 设函数列{f n (x)}与函数f(x)定义在同一可测集E 上,若函数列{f n (x)}在E 上满足mE (f n (x)?→?uc f(x))=0,(其中“?→?uc ”表示不一致收敛于), 则称{f n (x)}在E 上几乎处处一致收敛于f(x),记作lim n →∞ f n (x)= f(x)a.e.于 E ,或f n ?→?uc f a.e.于E.用a.u.c.表示. 5、依测度收敛 设函数列{f n (x)}是可测集E 上一列a.e.有限的可测函数,若有E 上一列a.e.有限的可测函数f(x)满足下列关系: 对任意ζ>0有lim n mE [|f n -f|≥ζ]=0,则称函数列{f n }依测度收敛于f,或度 量收敛于f 记为:f n (x)? f(x).

浅谈函数列收敛与一致收敛的关系及差异

摘要:本文从定义、定理、集合的角度,通过正反对比的例题,论述函数列收敛、一致收敛、内闭一致收敛间的相互关系及其差异 关键词:函数列;收敛;一致收敛;内闭一致收敛

Abstract:This paper from the definition, theorem, the set point of view, through the contrast of examples, discusses the function series convergence, uniform convergence, in close relationship and difference between the uniform convergence Keyword:Function series; convergence; uniform convergence; uniform convergence

目录 1 引言 (4) 2 函数列收敛与一致收敛的定义 (4) 2.1 函数列收敛 (5) 2.2函数列的一致收敛 (5) 3 论述函数列收敛与一致收敛的差异 (5) 4 阐述函数列收敛与一致收敛的相互关系 (9) 4.1从定理的角度阐述 (10) 4.2从集合的角度阐述 (11) 结论 (12) 参考文献 (13) 致谢 (14)

1引言 收敛与一致收敛理论是数学分析的重要概念之一,同时也是教学的难点之一。 特别是函数列的收敛与一致收敛问题,在各个版本的数学分析教科书中往往都把 函数列的收敛问题与函数项级数的收敛问题混在一起,导致学生往往难以透彻的 理解这个概念。而且证明时学生常常都用""N -ε语言硬套,各个版本数学分析 中对这个概念也仅仅是一般性叙述,例题很少,尤其是正反例题更少。所以本文 为了让学生更好掌握这一重要概念将从定义、定理、集合的角度,系统论述函数 列收敛与一致收敛及内闭一致收敛间的相互关系及差异,让这部分内容能够独立 建立 2 函数列收敛与一致收敛的定义 2.1函数列收敛: 设 ,2,1f f …,,n f … (1) 是一列定义在同一数集E 上的函数,称为定义在E 上的函数列。(1)也可以简单地写作: ? ?????n f 或,n f n=1,2,… 设0x ∈E ,以0 x 代入(1)可得数列 ), 0 (),...0(2),0(1x n f x f x f (2) 若数列(2)收敛,则函数列(1)在点0x 收敛,0 x 称为函数列(1)的收敛点。若数列(1)在数集D E ?上每一点都收敛,则称(1)在数集D 上收敛。这时D 上每一点x ,都有数 列? ?? ???n f 的一个极限值与之对应,由这个对应法则所确定的D 上的函数,称为函数列(1)的极限函数。若把此极限函数记作,f 则有

函数项级数一致收敛性的判别法

函数项级数一致收敛性的判别法 摘 要 函数项级数是数学分析中的重点和难点,因此讨论和分析它的性质和判别方法显得尤为重要,本文给出了函数项级数的定义以及函数项级数一致收敛性的判别定理,并用之来解决函数项级数一致收敛性的一些问题比较容易. 关键词 函数项级数;一致收敛性;判别法. 中图分类号 O173.1 Function Seies Convergence Criterion Abstrac t :Function is a mathematical analysis of series of focus and difficult, so the discussion and analysis of its nature and it is particularly important to identify methods.In this paper, the definition of Function series and uniform convergence of Function series of discriminant theorem,and used to solve the series of uniform convergence of Function of some of the problems is easier. Key words :Function series; Uniform convergence of; Discriminance 1 引言及预备知识 如果函数项级数具有一致收敛性,函数项级数的和函数或余和易于求得,判别它的一致收敛性可应用一致收敛定义,如果很难求得它的和函数或余和,就根据函数自身的结构,找到判别一致收敛性的判别法. 定义1.1[1] 设()12(),,u x u x …()n u x ,…是一列定义在D 上的函数,把这些函数的各项用加号连接起来的表达式 ()()12u x u x ++…+()n u x +…或()1n n u x ∞ =∑, (1) 称为函数项级数.a D ?∈ 函数级数在a 对应一个数值级数 1 ()U n a ∞ =∑ =12()()u a u a ++...+()n u a +. (2) 它的敛散性可用数值级数敛散性的判别法判别,若级数(2)收敛,则称a 是函数级数(1)的收敛点;若级数(2)发散,则称a 是函数级数(1)的发散点. 定义 1.2[1] 函数项级数(1)的收敛点的集合,称为函数项级数(1)的收敛域,若收敛域是一个区间,则称此区间是函数项级数的收敛区间. 定义 1.3[1] 设数集E 为函数项级数()1 n n u x ∞ =∑的收敛域,则对每个x E ∈记S(x)= ()1 n n u x ∞=∑称S(x)为函数项级数()1 n n u x ∞ =∑的和函数.

无穷积分的性质与收敛判别法

§2 无穷积分的性质与收敛判别法 教学目的与要求: 掌握条件收敛与绝对收敛的概念,收敛的无穷积分具有的四个性质;掌握收敛的Cauchy 准则、比较判别法及其三个推论、阿贝耳判别法、狄利克雷判别法等。 教学重点,难点: 无穷积分的收敛性比较判别法、柯西判别法、狄利克雷判别法等。 教学内容: 本节介绍了无穷积分的三个性质和四种判别收敛的方法 一 无穷积分的性质 由定义知道,无穷积分 ()dx x f a ? +∞ 收敛与否,取决于函数F (u )=()dx x f u a ?在u →+∞时是否存在 极限。因此由函数极限的柯西准则导出无穷积分收敛的柯西准则。 & 定理 无穷积分 ()dx x f a ? +∞ 收敛的充要条件是:任给ε>0,存在G ≥a ,只要u 1、u 2>G ,便有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ?≥a ,只要u 1、u 2>G ,便有 ()()()2 2 1 1 21|()()|.u u u u a a f x dx f x dx f x dx F u F u ε=-=-

含参量反常积分一致收敛性的判别法资料

含参量反常积分一致收敛的判别法 王 明 星 (德州学院数学科学学院,山东德州 253023) 摘 要: 含参量反常积分是研究和表达函数特别是非初等函数的有力工具.本文通过对含参量反常积分一致收敛性的分析和研究,总结出了判别含参量反常积分一致收敛的几种简单而有效的方法和定理(柯西准则,M 判别法,确界法,狄利克雷判别法等),从而方便了含参量反常积分一致收敛性的学习和掌握. 关键词: 含参量反常积分; 一致收敛; 判别法 含参量反常积分包括含参量无穷限反常积分和含参量无界函数反常积分,两种反常积分一致收敛性的判别法是相似的,所以我们下面仅仅讨论含参量无穷限反常积分一致收敛性的判别法. 1 含参量无穷限反常积分一致收敛的概念 1.1 含参量无穷限反常积分 设函数(,)f x y 定义在无界区域(){},,R x y a x b c y =|≤≤≤<+∞上,若对每一个固定的[],x a b ∈,反常积分 (,)c f x y dy +∞ ? 都收敛,则它的值是x 在[],a b 上取值的函数,当记这个函数为()I x 时,则有 ()(,)c I x f x y dy +∞=?,[],x a b ∈ 称(,)c f x y dy +∞? 为定义在[],a b 上的含参量无穷限反常积分. 1.2 含参量无穷限反常积分收敛 若含参量无穷限反常积分(,)c f x y dy +∞? 与函数()I x 对每一个固定的 [],x a b ∈,任给的正数ε,总存在某一实数N c >,使得M N >时,都有 (,)()M c f x y dy I x ε-

数列收敛判别法

学士学位毕业论文设计 数列收敛的判别法 所在系别:数学与应用数学系 专业:数学与应用数学

目录 中文摘要--------------------------------------------------------------------I 英文摘要-------------------------------------------------------------------II 前言------------------------------------------------------------------III 第一章数列极限的概念--------------------------------------------------------1 1.1 数列极限的定义-------------------------------------------------------1 1.2 收敛数列的定义-------------------------------------------------------2第二章判别数列收敛的方法----------------------------------------------------3 2.1 定义法---------------------------------------------------------------3 2.2 单调有界定理---------------------------------------------------------6 2.3 迫敛性定理-----------------------------------------------------------8 2.4 柯西收敛准则---------------------------------------------------------9 2.5 关于子列的重要定理--------------------------------------------------12参考文献-------------------------------------------------------------------14致谢-----------------------------------------------------------------------15

函数项级数一致收敛性

函数项级数一致收敛性有关问题的讨论 函数项级数是微积分的主要内容之一,是数学分析研究的重点.用函数项级数(或函数列)来表示(或定义)一个函数,判断其一致收敛性是关键.从函数项级数一致收敛的定义及性质出发,下面主要讨论函数项级数(或函数列)一致收敛性的判别及其应用. 1 函数项级数一致收敛的相关定义 定义1.1 []1(31) P 设函数列{})(x S n 是函数项级数 ∑∞ =1 )(n n x u 的部分和函数列,若,0>?ε 存在正 整数)(εN ,当n >)(εN 时,不等式 ∑=-n k k x S x u 1 )()(=)()(x S x S n -<ε 对I 上一切x 都成立,则称 ∑∞ =1 )(n n x u 在I 上一致收敛于()S x . 一致收敛的定义还可以用下面的方式来表达: 定义1.1[]2(67) ' P 函数列{})(x S n (或 ∑∞ =1 )(n n x u )在I 上一致收敛于()S x ?∞ →n lim I x ∈sup )(x R n =0)()(sup lim =-∈∞→x S x S n I x n ,其中)(x R n =()()n S x S x -称为函数项级数 ∑∞ =1 )(n n x u 的余项. 定义1.2 函数列{})(x S n 在I 上非一致收敛于()S x ?00>?ε,0>?N ,N n >?0,I x ∈?0,使得)()(000x S x S n -≥0ε. 定义 1.3 函数列{})(x S n 在区间()b a ,内的任一闭区间上一致收敛时,称{})(x S n 在区间()b a ,内闭一致收敛. 2 一致收敛函数项级数的性质[] 3(417430) P - 定理2.1(逐项取极限) 设级数 ∑∞ =1)(n n x u 在0x 的某个空心邻域0U (0x )={}δ<-<||0:0x x x 内 一致收敛,0 lim x x →()n n u x c =.则 ∑∞ =1 n n c 收敛,且

相关文档
最新文档