高等数学练习答案12-3

高等数学练习答案12-3
高等数学练习答案12-3

习题12-3

1. 求下列齐次方程的通解:

(1)022=---'x y y y x ;

解 原方程变为

1)(2--=x y x y dx dy . 令x

y u =, 则原方程化为 12-+=+u u dx du x u , 即dx x du u 11

12=-, 两边积分得

C x u u ln ln )1ln(2+=-+, 即Cx u u =-+12, 将x

y u =代入上式得原方程的通解

Cx x y x y =-+1)(2, 即222Cx x y y =-+. (2)x

y y dx dy x

ln =; 解 原方程变为x

y x y dx dy ln =. 令x

y u =, 则原方程化为 u u dx

du x u ln =+, 即dx x du u u 1)1(ln 1=-, 两边积分得

ln(ln u -1)=ln x +ln C , 即u =e Cx +1, 将x

y u =代入上式得原方程的通解 y =xe Cx +1.

(3)(x 2+y 2)dx -xydy =0;

解 这是齐次方程. 令x

y u =, 即y =xu , 则原方程化为 (x 2+x 2u 2)dx -x 2u (udx +xdu )=0, 即dx x udu 1=,

两边积分得

u 2=ln x 2+C , 将x

y u =代入上式得原方程的通解 y 2=x 2(ln x 2+C ).

(4)(x 3+y 3)dx -3xy 2dy =0;

解 这是齐次方程. 令x

y u =, 即y =xu , 则原方程化为 (x 3+x 3u 3)dx -3x 3u 2(udx +xdu )=0, 即dx x du u

u

121332=-, 两边积分得

C x u ln ln )21ln(213+=--, 即2

312x C

u -=, 将x

y u =代入上式得原方程的通解 x 3-2y 3=Cx .

(5)0ch 3)ch 3sh 2(=-+dy x

y x dx x y y x y x ; 解 原方程变为x

y x y dx dy +=th 32. 令x

y u =, 则原方程化为 u u dx du x u +=+th 32, 即dx x

du u u 2sh ch 3=, 两边积分得

3ln(sh u )=2ln x +ln C , 即sh 3u =Cx 2, 将x

y u =代入上式得原方程的通解 22sh Cx x

y =. (6)0)1(2)21(=-++dy y

x e dx e y x

y x . 解 原方程变为y

x y

x

e e y x dy dx 21)1(2+-=.

令y

x u =, 则原方程化为 u u e e u dy du y u 21)1(2+-=+, 即u

u e e u dy du y 212++-=, 分离变量得

dy y du e

u e

u u 1221-=++, 两边积分得

ln(u +2e u )=-ln y +ln C , 即y (u +2e u )=C , 将y

x u =代入上式得原方程的通解 C e y

x y x =+)2(, 即C ye x y x

=+2. 2. 求下列齐次方程满足所给初始条件的特解:

(1)(y 2-3x 2)dy +2xydx =0, y |x =0=1;

解 这是齐次方程. 令x

y u =, 即y =xu , 则原方程化为 (x 2u 2-3x 2)(udx +xdu )+2x 2udx =0,

即 dx x du u u u 1332=--, 或dx x

du u u u 1)11113(=-+++- 两边积分得

-3ln |u |+ln|u +1|+ln|u -1|=ln|x |+ln|C |, 即u 2-1=Cxu 3, 将x

y u =代入上式得原方程的通解 y 2-x 2=Cy 3.

由y |x =0=1得C =1, 故所求特解为y 2-x 2=y 3.

(2)x

y y x y +=', y |x =1=2; 解 令x

y u =, 则原方程化为 u u dx du x u +=+1, 即dx x

udu 1=, 两边积分得

C x u +=ln 212,

将x

y u =

代入上式得原方程的通解 y 2=2x 2(ln x +C ).

由y |x =1=2得C =2, 故所求特解为y 2=2x 2(ln x +2).

(3)(x 2+2xy -y 2)dx +(y 2+2xy -x 2)dy =0, y |x =1=1.

解 这是齐次方程. 令x

y u =, 即y =xu , 则原方程化为 (x 2+2x 2u -x 2u 2)dx +(x 2u 2+2x 2u -x 2)(udx +xdu )=0,

即 dx x du u u u u u 11

12232-=+++-+, 或 dx x

du u u u 1)12

11(2=+-+, 两边积分得

ln|u +1|-ln(u 2+1)=ln|x |+ln|C |, 即u +1=Cx (u 2+1), 将x

y u =代入上式得原方程的通解 x +y =C (x 2+y 2).

由y |x =1=1得C =1, 故所求特解为x +y =(x 2+y 2).

3. 设有连结点O (0, 0)和A (1, 1)的一段向上凸的曲线弧A O , 对于A O 上任一点P (x , y ), 曲线弧P O 与直线段OP 所围图形的面积为x 2, 求曲线弧A O 的方程. 解 设曲线弧A O 的方程为y =y (x ). 由题意得

20)(2

1)(x x xy dx x y x

=-?, 两边求导得

x x y x x y x y 2)(2

1)(21)(='--, 即 4-='x

y y . 令x

y u =, 则有 4-=+u dx du x u , 即dx x du u 41-=,

两边积分得

u =-4ln x +C . 将x

y u =代入上式得方程的通解 y =-4x ln x +Cx .

由于A (1, 1)在曲线上, 即y (1)=1, 因而C =1, 从则所求方程为y =-4x ln x +x .

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

高等数学考试题库(附答案)

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数( )()2 0ln 10x f x x a x ≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211 f dx x x ??' ????的结果是( ). (A )1f C x ??-+ ??? (B )1f C x ??--+ ??? (C )1f C x ??+ ??? (D )1f C x ?? -+ ??? 8.x x dx e e -+? 的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++ 9.下列定积分为零的是( ). (A )4 24arctan 1x dx x π π-+? (B )44 arcsin x x dx ππ-? (C )112x x e e dx --+? (D )()121sin x x x dx -+? 10.设() f x 为连续函数,则()1 02f x dx '?等于( ). (A )()()20f f - (B )()()1 1102f f -????(C )()()1202 f f -????(D )()()10f f - 二.填空题(每题4分,共20分) 1.设函数()21 0x e x f x x a x -?-≠?=??=? 在0x =处连续,则a =.

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

高等数学试题及答案新编

《 高等数学》 一.选择题 1.当0→x 时,)1ln(x y +=与下列那个函数不是等价的() A)、x y =B)、x y sin =C)、x y cos 1-=D)、1-=x e y 2.函数f(x)在点x 0极限存在是函数在该点连续的() A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3.下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有(). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、 (( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4.下列各式正确的是() A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+?D )、2 11 ()dx C x x -=-+? 5.下列等式不正确的是(). A )、 ()()x f dx x f dx d b a =???????B )、()()()[]()x b x b f dt x f dx d x b a '=???? ??? C )、()()x f dx x f dx d x a =???????D )、()()x F dt t F dx d x a '=???? ??'? 6.0 ln(1)lim x x t dt x →+=?() A )、0 B )、1 C )、2 D )、4 7.设bx x f sin )(=,则=''?dx x f x )(()

高等数学练习题附答案

第一章 自测题 一、填空题(每小题3分,共18分) 1. () 3 lim sin tan ln 12x x x x →=-+ . 2. 1 x →= . 3.已知212lim 31 x x ax b x →-++=+,其中为b a ,常数,则a = ,b = . 4. 若()2sin 2e 1 ,0 ,0ax x x f x x a x ?+-≠?=? ?=? 在()+∞∞-,上连续,则a = . 5. 曲线2 1 ()43 x f x x x -= -+的水平渐近线是 ,铅直渐近线是 . 6. 曲线() 121e x y x =-的斜渐近线方程为 . 二、单项选择题(每小题3分,共18分) 1. “对任意给定的()1,0∈ε,总存在整数N ,当N n ≥时,恒有ε2≤-a x n ” 是数列{}n x 收敛于a 的 . A. 充分条件但非必要条件 B. 必要条件但非充分条件 C. 充分必要条件 D. 既非充分也非必要条件

2. 设()2,0 2,0x x g x x x -≤?=?+>?,()2,0 , x x f x x x ?<=? -≥?则()g f x =???? . A. 22,02,0x x x x ?+

高等数学课后习题与解答

高等数学课后习题及解答 1. 设u=a-b+2c,v=-a+3b-c.试用a,b,c 表示2u-3v. 解2u-3v=2(a-b+2c)-3(-a+3b-c) =5a-11b+7c. 2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平 行四边形. 证如图8-1 ,设四边形ABCD中AC 与BD 交于M ,已知AM = MC ,DM 故 MB . AB AM MB MC DM DC . 即AB // DC 且|AB |=| DC | ,因此四边形ABCD是平行四边形. 3. 把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各 分点与点 A 连接.试以AB=c, BC=a 表向量 证如图8-2 ,根据题意知 1 D 1 A, 1 D 2 A, D 3 A, D A. 4 1 D3 D4 BD1 1 a, 5 a, D1D2 a, 5 5 1 D 2 D 3 a, 5 故D1 A=- (AB BD1)=- a- c 5

D 2 A =- ( AB D A =- ( AB BD 2 BD )=- )=- 2 a- c 5 3 a- c 3 =- ( AB 3 BD 4 )=- 5 4a- c. 5 4. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示 向量 M 1M 2 及-2 M 1M 2 . 解 M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) . -2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4). 5. 求平行于向量 a =(6, 7, -6)的单位向量 . a 解 向量 a 的单位向量 为 ,故平行向量 a 的单位向量为 a a 1 = ( 6,7, -6)= 6 , 7 , 6 , a 11 11 11 11 其 中 a 6 2 72 ( 6)2 11. 6. 在空间直角坐标系中,指出下列各点在哪个卦限? A (1,-2,3), B ( 2, 3,-4), C (2,-3,-4), D (-2, -3, 1). 解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 . 7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A ( 3, 4, 0), B ( 0, 4,3), C ( 3,0,0), D ( 0, D A 4

高等数学试题及答案91398

《高等数学》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+? D )、2 11 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=???? ??'? 6. ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、 C bx bx b x +-sin cos B ) 、C bx bx b x +-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin

高等数学练习题库及答案

高等数学练习题库及答 案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

《高等数学》练习测试题库及答案 一.选择题 1.函数y= 1 1 2 +x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin 2 x )=cosx+1,则f(x)为( ) A 2x 2-2 B 2-2x 2 C 1+x 2 D 1-x 2 3.下列数列为单调递增数列的有( ) A . ,,, B . 23 ,32,45,54 C .{f(n)},其中f(n)=?????-+为偶数,为奇数n n n n n n 1,1 D. {n n 21 2+} 4.数列有界是数列收敛的( ) A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( ) A .发散数列必无界 B .两无界数列之和必无界 C .两发散数列之和必发散 D .两收敛数列之和必收敛 6.=--→1 ) 1sin(lim 21x x x ( ) .0 C 2 7.设=+∞→x x x k )1(lim e 6 则k=( ) .2 C 6 8.当x →1时,下列与无穷小(x-1)等价的无穷小是( ) 2 B. x 3-1 C.(x-1)2 (x-1) (x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )

A.必要条件 B.充分条件 C.充分必要条件 D.无关条件 10、当|x|<1时,y= () A、是连续的 B、无界函数 C、有最大值与最小值 D、无最小值 11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为() A、B、e C、-e D、-e-1 12、下列有跳跃间断点x=0的函数为() A、 xarctan1/x B、arctan1/x C、tan1/x D、cos1/x 13、设f(x)在点x 0连续,g(x)在点x 不连续,则下列结论成立是() A、f(x)+g(x)在点x 必不连续 B、f(x)×g(x)在点x 必不连续须有 C、复合函数f[g(x)]在点x 必不连续 D、在点x0必不连续 f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b 14、设 满足() A、a>0,b>0 B、a>0,b<0 C、a<0,b>0 D、a<0,b<0 15、若函数f(x)在点x 0连续,则下列复合函数在x 也连续的有() A、 B、

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

高等数学习题集及答案

第一章 函数 一、选择题 1. 下列函数中,【 】不是奇函数 A. x x y +=tan B. y x = C. )1()1(-?+=x x y D. x x y 2sin 2 ?= 2. 下列各组中,函数)(x f 与)(x g 一样的是【 】 A. 3 3)(,)(x x g x x f = = B.x x x g x f 22tan sec )(,1)(-== C. 1 1 )(,1)(2+-=-=x x x g x x f D. 2ln )(,ln 2)(x x g x x f == 3. 下列函数中,在定义域内是单调增加、有界的函数是【 】 A. +arctan y x x = B. cos y x = C. arcsin y x = D. sin y x x =? 4. 下列函数中,定义域是[,+]-∞∞,且是单调递增的是【 】 A. arcsin y x = B. arccos y x = C. arctan y x = D. arccot y x = 5. 函数arctan y x =的定义域是【 】 A. (0,)π B. (,)22ππ - C. [,]22ππ - D. (,+)-∞∞ 6. 下列函数中,定义域为[1,1]-,且是单调减少的函数是【 】 A. arcsin y x = B. arccos y x = C. arctan y x = D. arccot y x = 7. 已知函数arcsin(1)y x =+,则函数的定义域是【 】 A. (,)-∞+∞ B. [1,1]- C. (,)ππ- D. [2,0]- 8. 已知函数arcsin(1)y x =+,则函数的定义域是【 】 A. (,)-∞+∞ B. [1,1]- C. (,)ππ- D. [2,0]- 9. 下列各组函数中,【 】是相同的函数 A. 2()ln f x x =和 ()2ln g x x = B. ()f x x =和()g x = C. ()f x x =和()2g x = D. ()sin f x x =和()arcsin g x x = 10. 设下列函数在其定义域内是增函数的是【 】 A. ()cos f x x = B. ()arccos f x x = C. ()tan f x x = D. ()arctan f x x = 11. 反正切函数arctan y x =的定义域是【 】 A. (,)22 ππ - B. (0,)π C. (,)-∞+∞ D. [1,1]- 12. 下列函数是奇函数的是【 】

高等数学上考试试题及答案

四川理工学院试卷(2007至2008学年第一学期) 课程名称: 高等数学(上)(A 卷) 命题教师: 杨 勇 适用班级: 理工科本科 考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项: 1、 满分100分。要求卷面整洁、字迹工整、无错别字。 2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否 则视为废卷。 3、 考生必须在签到单上签到,若出现遗漏,后果自负。 4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷 分别一同交回,否则不给分。 试 题 一、单选题(请将正确的答案填在对应括号内,每题3分,共15分) 1. =--→1 ) 1sin(lim 21x x x ( C ) (A) 1; (B) 0; (C) 2; (D) 2 1 2.若)(x f 的一个原函数为)(x F ,则dx e f e x x )(? --为( B ) (A) c e F x +)(; (B) c e F x +--)(; (C) c e F x +-)(; (D ) c x e F x +-) ( 3.下列广义积分中 ( D )是收敛的. (A) ? +∞ ∞ -xdx sin ; (B)dx x ? -111 ; (C) dx x x ?+∞ ∞-+2 1; (D)?∞-0dx e x 。 4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( B )

(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导; (C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则? x a dt t f )(在[]b a ,上一定可导。 5. 设函数=)(x f n n x x 211lim ++∞→ ,则下列结论正确的为( D ) (A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x 二、填空题(请将正确的结果填在横线上.每题3分,共18分) 1. 极限=-+→x x x 1 1lim 20 _0____. 2. 曲线? ??=+=3 2 1t y t x 在2=t 处的切线方程为______. 3. 已知方程x xe y y y 265=+'-''的一个特解为x e x x 22 )2(2 1+- ,则该方程的通解为 . 4. 设)(x f 在2=x 处连续,且22 ) (lim 2=-→x x f x ,则_____)2(='f 5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。 6.曲线23 3 2 x y =上相应于x 从3到8的一段弧长为 . 三、设0→x 时,)(22 c bx ax e x ++-是比2 x 高阶的无穷小,求常数c b a ,,的值(6分)

(完整版)高等数学试题及答案

《高等数学》试题30 考试日期:2004年7月14日 星期三 考试时间:120 分钟 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+? D )、2 11 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、 ()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=???? ??'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、 C bx bx b x +-sin cos B ) 、C bx bx b x +-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin

高等数学试卷和答案新编

高等数学(下)模拟试卷一 一、填空题(每空3分,共15分) (1)函数 11z x y x y =+ +-的定义域为 (2)已知函数 arctan y z x =,则z x ?= ? (3)交换积分次序, 2 220 (,)y y dy f x y dx ? ? = (4)已知L 是连接(0,1),(1,0)两点的直线段,则 ()L x y ds +=? (5)已知微分方程230y y y '''+-=,则其通解为 二、选择题(每空3分,共15分) (1)设直线L 为321021030x y z x y z +++=?? --+=?,平面π为4220x y z -+-=,则() A.L 平行于πB.L 在π上C.L 垂直于πD.L 与π斜交 (2)设是由方程 222 2xyz x y z +++=确定,则在点(1,0,1)-处的dz =() dx dy +2dx dy +22dx dy +2dx dy -(3)已知Ω是由曲面222425()z x y =+及平面5 z =所围成的闭区域,将 2 2()x y dv Ω +???在柱面坐标系下化成三次积分为() 22 5 3 d r dr dz πθ? ??. 24 5 3 d r dr dz πθ? ?? 22 5 3 50 2r d r dr dz πθ? ??. 22 5 20 d r dr dz π θ? ?? (4)已知幂级数,则其收敛半径() 2112 2(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y * =() ()x ax b xe +()x ax b ce ++()x ax b cxe ++ 三、计算题(每题8分,共48分) 1、 求过直线1L :1231 01x y z ---==-且平行于直线2L :21211x y z +-==的平面方程 2、 已知 22 (,)z f xy x y =,求z x ??,z y ?? 3、 设 22{(,)4}D x y x y =+≤,利用极坐标求 2 D x dxdy ?? 4、 求函数 22 (,)(2)x f x y e x y y =++的极值 得分 阅卷人

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

(完整版)高等数学测试题一(极限、连续)答案

高等数学测试题(一)极限、连续部分(答案) 一、选择题(每小题4分,共20分) 1、 当0x →+时,(A )无穷小量。 A 1sin x x B 1 x e C ln x D 1 sin x x 2、点1x =是函数31 1()1131x x f x x x x -? 的(C )。 A 连续点 B 第一类非可去间断点 C 可去间断点 D 第二类间断点 3、函数()f x 在点0x 处有定义是其在0x 处极限存在的(D )。 A 充分非必要条件 B 必要非充分条件 C 充要条件 D 无关条件 4、已知极限22 lim()0x x ax x →∞++=,则常数a 等于(A )。 A -1 B 0 C 1 D 2 5、极限2 01 lim cos 1 x x e x →--等于(D )。 A ∞ B 2 C 0 D -2 二、填空题(每小题4分,共20分) 1、21lim(1)x x x →∞ -=2 e - 2、 当0x →+时,无穷小ln(1)Ax α=+与无穷小sin 3x β=等价,则常 数A=3 3、 已知函数()f x 在点0x =处连续,且当0x ≠时,函数2 1()2 x f x -=, 则函数值(0)f =0 4、 111lim[ ]1223(1) n n n →∞+++??+L =1

5、 若lim ()x f x π →存在,且sin ()2lim ()x x f x f x x ππ →= +-,则lim ()x f x π→=1 二、解答题 1、(7分)计算极限 222111 lim(1)(1)(1)23n n →∞- --L 解:原式=132411111 lim()()()lim 223322 n n n n n n n n →∞→∞-++???=?=L 2、(7分)计算极限 3 0tan sin lim x x x x →- 解:原式=2 322000sin 1sin 1cos 1cos 2lim lim lim cos cos 2 x x x x x x x x x x x x x →→→--=== 3、(7分)计算极限 1 23lim()21 x x x x +→∞++ 解:原式= 11 122 11 22 21lim(1)lim(1)1212 11lim(1)lim(1)11 22 x x x x x x x x x e x x +++→∞→∞+→∞→∞+=+++ =+?+=++ 4、(7分)计算极限 1 x e →-解:原式=201 sin 12lim 2 x x x x →= 5、(7分)设3214 lim 1 x x ax x x →---++ 具有极限l ,求,a l 的值 解:因为1 lim(1)0x x →-+=,所以 3 2 1 lim(4)0x x ax x →---+=, 因此 4a = 并将其代入原式 321144(1)(1)(4) lim lim 1011 x x x x x x x x l x x →-→---++--===++

高等数学典型习题及参考答案

第八章典型习题 一、 填空题、选择题 1、点)3,1,4(M -到y 轴的距离就是 2、平行于向量}1,2,1{a -=? 的单位向量为 3、().0431,2,0垂直的直线为 且与平面过点=--+-z y x 4、.xoz y z y x :面上的投影柱面方程是在曲线?? ?==++Γ2 10222 5、()==-=+=+=-δ λ δλ则平行与设直线,z y x :l z y x : l 1111212121 ()23A ()12B ()32C ()21 D 6、已知k 2j i 2a ????+-=,k 5j 4i 3b ? ???-+=,则与b a 3??-平行的单位向量为 ( ) (A )}11,7,3{(B )}11,7,3{- (C )}11,7,3{1291-± (D )}11,7,3{179 1-± 7、曲线???==++2 z 9 z y x 222在xoy 平面上投影曲线的方程为( ) (A )???==+2z 5y x 22 (B )???==++0z 9z y x 222(C )???==+0 z 5y x 22 (D )5y x 22=+ 8、设平面的一般式方程为0A =+++D Cz By x ,当0==D A 时,该平面必( ) (A)平行于y 轴 (B) 垂直于z 轴 (C) 垂直于y 轴 (D) 通过x 轴 9 、 设 空 间 三 直 线 的 方 程 分 别 为 251214: 1+=+=+z y x L ,67313:2+=+=z y x L ,4 1312:3-=+=z y x L 则必有 ( ) (A) 31//L L (B) 21L L ⊥ (C) 32L L ⊥ (D) 21//L L 10、设平面的一般式方程为0=+++D Cz By Ax ,当0==B A 时,该平面必 ( ) (A) 垂直于x 轴 (B) 垂直于y 轴 (C) 垂直于xoy 面 (D) 平行于xoy 面 11、方程05 z 3y 3x 2 22=-+所表示的曲面就是( ) (A )椭圆抛物面 (B )椭球面 (C )旋转曲面 (D )单叶双曲面 二、解答题

(完整版)高等数学测试题及答案.docx

高等数学测试试题 一、是非题( 3’× 6=18’) 1、 lim (1 x) x e. ( ) x 0 2、函数 f ( x) 在点 x x 0 处连续,则它在该点处必可导 . ( ) 3、函数的极大值一定是它的最大值. ( ) 4、设 G ' x f ( x), 则 G( x) 为 f ( x) 的一个原函数 . ( ) 1 0. ( ) 5、定积分 x cos xd x 1 6. 函数 y x 2 是微分方程 x d y 2 y 0 的解 . ( ) d x 二、选择题( 4’× 5=20’) 7、函数 f ( x) sin 1 是定义域内的( ) x A 、单调函数 B 、有界函数 C 、无界函数 D 、周期函数 8、设 y 1 2x ,则 d y ( ) A 、 2 x d x B 、 2 x ln 2 C 、 2x ln 2 d x D 、( 1+ 2x ln 2) d x 9、设在区间 [ a, b] 上 f ' (x) 0, f " ( x) 0, 则曲线 y f ( x) 在该区间上沿着 x 轴正向( ) A 、上升且为凹弧 B 、上升且为凸弧 C 、下降且为凹弧 D 、下降且为凸弧 10、下列等式正确的是( ) A 、 C 、 f '( x) d x f ( x) f '( x) d x f ( x) C B 、 D 、 f ( x) d x f '( x) f ( x) d x f '( x) C 2 2 2 11、 P cos 2 x d x, Qsin 3x d x, R sin 2 x d x, 则( ) 2 A 、 P Q R B 、 Q P R C 、 P R Q D 、 R Q P 三、选择题( 4’× 5=20’) 12.函数 f ( x) x 2 的间断点为( ) 3 x 3 A 、 3 B 、 4 C 、 5 D 、6 13、设函数 f ( x) 在点 x 0处可导,且 lim h 1 , 则 f ' (0) ( ) h 0 f ( h) f (0) 2

高等数学课后习题与解答

高等数学课后习题及解答 1. 设 u =a -b +2c ,v =-a +3b -c .试用 a ,b , c 表示 2u -3v . 解 2u -3v =2( a -b +2c ) -3(-a +3b -c ) =5a -11b +7c . 2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平 行四边形. 证 如图 8-1 , 设四边 形 ABCD 中 AC 与 BD 交于 M , 已知 AM = MC , DM 故 MB . AB AM MB MC DM DC . 即 AB // DC 且|AB |=| DC | ,因此四边形 ABCD 是平行四边形. 3. 把△ ABC 的 BC 边五等分,设分点依次为 D 1,D 2,D 3,D 4,再把各 分点与点 A 连接.试以 AB =c, BC =a 表向 量 证 如图 8-2 ,根据题意知 1 D 1 A , 1 D 2 A , D 3 A , D A . 4 1 D 3 D 4 BD 1 1 a, 5 a, D 1D 2 a, 5 5 1 D 2D 3 a, 5 故 D 1 A =- ( AB BD 1 )=- a- c 5

D 2 A =- ( AB D A =- ( AB BD 2 BD )=- )=- 2 a- c 5 3 a- c 3 =- ( AB 3 BD 4 )=- 5 4a- c. 5 4. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示 向量 M 1M 2 及-2 M 1M 2 . 解 M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) . -2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4). 5. 求平行于向量 a =(6, 7, -6)的单位向量 . a 解 向量 a 的单位向量 为 ,故平行向量 a 的单位向量为 a a 1 = ( 6,7, -6) = 6 , 7 , 6 , a 11 11 11 11 其 中 a 6 2 7 2 ( 6) 2 11. 6. 在空间直角坐标系中,指出下列各点在哪个卦限? A (1,-2,3), B ( 2, 3,-4), C (2,-3,-4), D (-2, -3, 1). 解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 . 7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A ( 3, 4, 0), B ( 0, 4,3), C ( 3,0,0), D ( 0, D A 4

关于高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自 动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22 +- ++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2 2 22222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重要极限过 于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 21212112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有:

相关文档
最新文档