multiuser-CoMP OFDM systems with low-complexity estimation of multiple CFOs

multiuser-CoMP OFDM systems with low-complexity estimation of multiple CFOs
multiuser-CoMP OFDM systems with low-complexity estimation of multiple CFOs

2012 International Conference on Systems and Informatics (ICSAI 2012) Independent Component Analysis Based Semi-Blind Equalization for Multiuser-CoMP OFDM Systems

with Low-Complexity Estimation of Multiple CFOs

Yufei Jiang??,Xu Zhu?,Enggee Lim?,Wenfei Zhu??,Linhao Dong?and Yi Huang?

?Department of Electrical Engineering and Electronics,The University of Liverpool Brownlow Hill,Liverpool,L693GJ,U.K.

Email:{yufei10,xuzhu}@https://www.360docs.net/doc/4914183947.html,

?Department of Electrical and Electronic Engineering,Xi’an JiaoTong Liverpool University,Suzhou,China215123

Abstract—We propose a low-complexity carrier frequency offset(CFO)estimation method and an independent component analysis(ICA)based semi-blind equalization structure for mul-tiuser and coordinated multi-point(CoMP)OFDM systems.A group of orthogonal sequences is employed to enable separation and simultaneous estimation of multiple CFOs,dividing the multi-dimensional search into series of low-complexity mono-dimensional searches.The ICA is used for equalization,with a small number of pilot symbols employed for ambiguity elimination in the ICA equalized signals.The proposed semi-blind equalization structure slightly outperforms the previous precoding aided scheme,with a lower complexity.It also provides a almost same BER performance to the case of zero forcing(ZF) and minimum mean square error(MMSE)based equalization with perfect CSI and no CFO at the receiver.

Index Terms—independent component analysis(ICA),coordi-nated multi-point(CoMP),OFDM,CFO

I.I NTRODUCTION

Coordinated multi-point(CoMP)transmission which has been adopted by3GPP LTE-Advanced[2]is a promising technique to reduce intra-cell interference and improve the coverage of data rate services,by enabling the multiple geographically separated base stations to jointly process the multiuser’s signal in wireless communication.

Channel estimation and multiuser signal detection play an important role in multiuser-CoMP OFDM systems.Indepen-dent component analysis[3][4],as one of higher order statistic(HOS)based blind source separation approaches,can be employed to estimate the data directly from the statistics of received signal,without knowing the channel state information (CSI).However,the ambiguity problem exists in the ICA equalized signal.In[5],the statistical correlation between subcarriers is used to resolve the frequency dependent permu-tation problem but incurs ambiguity error propagations across subcarriers.In[6],a precoding is employed to eliminate the permutation and phase ambiguities without consuming extra bandwidth.However,it has a good BER performance only when data frame size is large enough.

One of the main drawbacks of OFDM systems is their sensitivity to the carrier frequency offset(CFO)due to the imperfect local oscillators between the transmitter and re-ceiver,destroying the orthogonality among the subcarriers and inducing the additional intercarrier interference(ICI).In the multiuser-CoMP system,multiple CFOs exist between mobile terminals and each base station,introducing multiple access interference(MAI).The optimum maximum likelihood(ML) based CFO estimation is proposed in[7]but its complexity is prohibitive in real systems.A low-complexity algorithm is proposed in[8],suf?cient samplings are generated,incapable of the practical implementations.In[9],a sub-optimal esti-mation using constant amplitude zero autocorrelation(CAZA) sequences is proposed,however the error?oor is suffered.

In this paper,we propose a low-complexity CFO estimation method and an ICA based semi-blind equalization structure for multiuser-CoMP OFDM systems.Our work is different in the following aspects.First,a group of orthogonal sequences are employed for multiple CFO separations and estimations during the preamble,dividing the multidimensional search into a serials of low-complexity mono-dimension searches. Second,an ICA based semi-blind equalization structure is proposed,where a small number of pilot symbols are used to eliminate the permutation and quadrant ambiguities induced by ICA exploring the cross correlation between the original and equalized pilot symbols.Simulation results show that the proposed pilot aided and ICA based semi-blind equalization scheme provides a better bit error rate(BER)performance than the precoding aided ICA based equalization scheme in [6].It also requires a lower complexity than the method in[6] as the permutation and quadrature ambiguities can be solved sequentially,rather than separately.The proposed semi-blind equalization scheme is also shown to be more robust against channel variations.

II.SYSTEM MODEL

Throughout the paper,we consider an uplink multiuser-CoMP OFDM system.The K users transmit different signal simultaneously using the same set of N subcarriers to the M separated base stations.Only single antenna is assumed for each base station and user.Each receiver experiences

multiple CFOs from K users.The source signal of each user is transmitted in terms of frames containing N s blocks of QPSK symbols,while each symbol block is prepended with a cyclic pre?x (CP)of length L cp before the transmission and removed at the receiver to avoid inter-block interference.

We de?ne the k -th user’s signal in the i -th block as s k (i )=[s k (0,i ),s k (1,i ),...,s k (N ?1,i )]T where s k (n,i )denotes the symbol on the n -th subcarrier (n =0,1,...,N ?1)in the i -th (i =0,1,...,N s ?1)block transmitted by the k -th user.F H and F are the N -point unitary IDFT and DFT matrix respectively.The channel is assumed to be quasi-static block fading and the CSI remains constant for the duration of a frame.h m,k is the channel impulse response between the k -th user and m -th base station with L paths.At the m -th receiver,after the removal of cyclic pre?x,following [9],the received signal y m (i )=[y m (0,i ),y m (1,i ),...,y m (N ?1,i )]T in the i -th block combined with all K users with multiple CFOs in the time domain is expressed as

y m

(i )=

K ?1∑k =0

E (?

m,k

)?h

m,k F H s k (i )+z m (i )(1)

where E (?m,k )=diag (1,e j 2π?m,k

N ,???,e

j 2π(N ?1)?m,k

N )is the normalized CFO matrix on N subcarriers with diag (?)denot-ing the diagonal matrix.?m,k is the normalized CFO which is de?ned as ?m,k =△f m,k /f 0where △f m,k is the CFO between the k -th user and the m -th base station,and f 0is the

subcarrier spacing.?h

m,k is the circular matrix obtained from h m,k .z m (i )is the additive white Gaussian noise (AWGN).The entries of the vector z m (i )are independent identically distributed (i.i.d.)complex Gaussian random variables with zero mean and variance of σ2.Equation (1)is transformed to frequency domain by taking the N -point DFT of y m (i ):

Y m (i )=Fy m

(i )=

K ?1∑k =0

FE (?m,k )??h

m,k

?F H s k (i )+Z m (i )

=

K ?1∑k =0C m,k H m,k s k (i )+Z m (i )

(2)

where Y m

(i )=[Y m

(0,i ),Y m

(1,i ),...,Y m

(N ?1,i )]T

is

the frequency domain received signal at the m -th base station.C m,k =FE (?m,k )F H is the ICI matrix caused by the CFO between the k -th user and the m -th base station.H m,k =F ?h

m,k F H is the relevant channel frequency response between the m -th base station and the k -th user.Z m (i )=Fz m (i )is the frequency domain noise matrix.

The entry [c m,k ]u,v denotes the ICI term on the u -th row and v -th column of C m,k having such properties:

Property I:C m,k is circulant matrix transformed from diagonal matrix E (?m,k )[10].

Property II:the sum of the elements on any row or any column is equal to one.That is ∑N ?1u =0[c m,k

]u,v =1,∑N ?1v =0[c m,k ]u,v =1and ∑N ?1u =0∑N ?1v =0[c

m,k

]u,v =N .III.O RTHOGONAL S EQUENCES B ASED M ULTIPLE CFO S

E STIMATION During preamble,a simple and viable method to reduce the computational complexity consists of separating the k -th user’s ICI matrix along with channel frequency response matrix C m,k H m,k at the m -th receiver accomplished by the application of a group of different orthogonal sequences on N subcarriers and K users.The ICI property is used to estimate the channel frequency response matrix of H m,k ,and then each user’s ICI matrix of C m,k at the m -th base station is decoupled.Finally,the multiple CFOs can be estimated in the frequency domain at M base stations simultaneously by searching for the value closest to the real CFO.

With the known k ′-th (k ′=0,1,???,K ?1)user’s orthog-onal sequences of size N ×P ,the combination T m,k ′of the ICI matrix and channel frequency response matrix for the k ′-th user at the m -th receiver is separated from other users:

T m,k ′

=

1P

Y m ort?[s k ′ot?]H

(3)

where Y m ort?is the received pilot during preamble at the m -th receiver.s k ot?and s k

ot?are the orthogonal sequence matrix of the k -th user and the k ′-th user respectively which can be obtained from a group of well studied Hadamard matrix [6].They satisfy

s k ot?[s k ′ot?]H

={

P I N k =k ′0N ×N k =k ′(4)

Shown from (4),any two different users are orthogonal to each other on all subcarriers.Substituting (4)into (3)yields

T m,k ′

=C m,k ′

H m,k

(5)

Since C m,k ′

is a circulant matrix [10]and H m,k ′

is a

diagonal matrix,based on the property II of the ICI ma-trix,∑N ?1u =0[c m,k ′

]u,v =1,the channel frequency response ?H m,k ′

(v )on the v -th (v =0,1,???,N ?1)subcarrier between the m -th receiver and the k ′-th user is decoupled as

?H

m,k ′

(v )=

N ?1∑u =0

[T m,k ′

]u,v

(6)

where [T m,k ′

]u,v denotes the entry on the u -th row and v -th column of T m,k ′

.Combining and rearranging the channel frequency responses on N subcarriers,the channel frequency

response matrix ?H

m,k ′between the m -th receiver and the k ′-th user is estimated as

?H

m,k ′

=diag ([?H m,k ′(0),?H m,k ′(1),???,?H m,k ′(N ?1)])(7)

The channel frequency response matrix in (7)is taken into (5),

the ICI matrix C

m,k ′

caused by CFO between the k ′-th user and the m -th base station is obtained with very low complexity as:?C

m,k ′

=T m,k ′[?H m,k ′]H (8)

Since C =FE (?)F H ,the CFO ??

m,k ′between the k ′-th user and the m -th base station ??m,k ′is estimated by searching for the minimum distance between ?C

m,k ′

and C as ??

m,k ′=arg min ?∈(?0.5,0.5)

?C m,k ′

?C 22=arg min ?∈(?0.5,0.5)

?C

m,k ′?FE (?)F H 22(9)where ∣∣?∣∣denotes the L-2norm.In reality,the value of

CFO △f ,is less than the half of subcarrier spacing [10],so the normalized CFO is searched in the range from ?0.5to 0.5.The multiple CFOs can be estimated simultaneously by using (9),dividing the multidimensional search into a serial of low-complexity mono-dimension searches.After the multiple CFOs are estimated during the preamble,they can

be compensated for correctly by multiplying [?C

m,k ′]?1in the frequency domain.The novelty of the proposed method is that it can separate and estimate the multiple CFOs when the number of users is greater than the number of base stations.

IV.ICA B ASED S EMI -B LIND E QUALIZATION

With CFO estimation and compensation,the received signal is a linear mixture of transmitted signal.The separated base stations jointly detect and equalize the multiuser’s signal by employing ICA [4]on each subcarrier.However,as the instinct drawback of ICA models,the permutation and phase ambigu-ities exist in the ICA separated signal.In order to eliminate the ambiguity problem,the de-rotation process is ?rst used to correct some possible phase shifts in the ICA separated signal,enabling the signal to have a same phase rotation in a data frame.Second,the pilots of length N pil ,known at the receiver,are extracted to resolve the problem of permutation and phase ambiguities,by using the cross-correlation between equalized and original pilot symbols.The received signal Y (n,i )=[Y 0(n,i ),Y 1(n,i ),???,Y M ?1(n,i )]T on the n -th subcarrier is re-expressed as

Y (n,i )=QH (n )s (n,i )+Z (n,i )

(10)

where s (n,i )=[s 0(n,i ),s 1(n,i ),???,s K ?1(n,i )]T is the K users on the n -th subcarrier .Q is the estimation error between the estimated and the real CFO.H (n )and Z (n,i )are the M ×K channel frequency response matrix and M ×1noise vector on the n -th subcarrier,respectively.A.Independent Component Analysis

ICA aimes to extract the original source data from the linear mixture based on the statistics of received signal.JADE [3],as one of the well-established methods in ICA,resulting in pa-rameter free and shorter data sequences,is employed in this pa-per.To obtain the spatially uncorrelated signals,principal com-ponent analysis (PCA)[3]is used ?rstly to whiten the received signal.The whitening matrix W (n )is obtained from the eigen-value decomposition of the autocorrelation matrix of received signal as R xx (n )=E {Y (n,i )Y H (n,i )}=U (n )Λ(n )U H (n ).The whitening matrix is given as W (n )=Λ?1/2(n )U H (n )such that W (n )E {Y (n,i )Y H (n,i )}W H (n )=I K .JADE is

applied on each frame of length N s to get the unitary matrix

V (n )on the n -th subcarrier.The separated signal ?s (n,i )on the n -th subcarrier and in the i -th OFDM symbol is given by:

?s (n,i )=V (n )W (n )Y (n,i )+?Z

(n,i )(11)

where ?Z

(n,i )=V (n )W (n )Z (n,i )is the output noise ma-trix from the ICA based equalization.However,there exists ambiguity matrix G (n )in ?s (n,i ),compared with s (n,i )as

?s (n,i )=G (n )s (n,i )

(12)

The N s symbols in a data frame on the n -th subcarrier has a same ambiguity matrix G (n )composed of two indeterminacies as

G (n )=P (n )D (n )(13)with P (n )denoting the permutation ambiguity matrix and

D (n )denoting the quadrant ambiguity matrix.The ambiguity which remains in the ICA separated signal can be resolved by the proposed pilot aided method described as below.B.Phase Deviation Correction

First,the de-rotation process can correct possible phase deviations in the ICA separated signal,to ensure that all of the data,including the separated pilot and source symbols in a frame,has a same phase rotation on each substream.The equalized signal ˇs (n,i )after phase deviation correction is denoted as

ˇs (n,i )=?s (n,i )[αk (n )/∣αk (n )∣]

(14)where αk (n )={1N s ?1

∑N s i =0[?s k (n,i )]4}?14e j π

4is the de-rotation factor obtained from the statistical characteristics of ?s (k,i )with QPSK modulation.The de-rotation process

introduces a phase rotation of θ(θ∈{0,π2,π,3π

2})in ˇs (n,i ),

which might vary from frame to frame,and from user to user.C.Permutation and Quadrant Ambiguity Resolution After the de-rotation process,the data in a frame for each separated user on one subcarrier has the same quadrant and permutation ambiguities which can be resolved by the cross correlation property between the original and equalized pilot symbols.The cross correlation ρπk (n ),k (n )between the ICA equalized pilot symbols ˇs pil,πk (n )(n,i )and the original pilot symbols s pil,k (n,i )on the n -th subcarrier for the k -th user is de?ned as

ρπk (n ),k (n )=1

N pil N pil ?1∑i =0

{[ˇs pil,πk (n )(n,i )e jθπk (n )]s ?pil,k (n,i )}(15)

where θπk (n )=π

2l l ∈{0,1,2,3}is the possible phase rotation for the πk (n )-th separated user on the n -th subcarrier.In the noiseless case σ2=0,∣ρπk (n ),k (n )∣=1only when πk (n )=k ,while the absolute value of cross correlation is less than 1when πk (n )=k .The phase rotation of θπk (n )on

the πk (n )-th user can be found as e jθπk (n )=s pil,k (n,i )

ˇs pil,πk (n )(n,i ).In the presence of noise,we can search for the largest real part of cross correlation in equation (15)to ?nd the correct

[θcor πcor k

(n ),πcor k

(n )]=arg max θπk (n ),πk (n )

?e (ρπk (n ),k )=arg max θπk (n ),πk (n )?e {1N pil N pil

∑i =1{[ˇs pil,πk (n )(n,i )e jθπk (n )]

?s ?pil,k

(n,i )}}

(16)

The reason that we choose the real part of ρπk (n ),k is because the real part is less than one while the value of imaginary part βim (n )is not zero any more due to the noise.Thus,the πcor k (n )and θcor

πcor k

(n )are considered as the highest possibility

of being the correct order and the correct phase rotation when the real part is the largest one.

V.C OMPLEXITY A NALYSIS

In this section,the complexities of the proposed CFO estimation and the pilot aided ICA based equalization are presented in terms of the number of complex multiplications.The complexity of the ML based CFO estimation [7]and the precoding aided ICA based equalization [6]are also analyzed

for comparison.q =1

Δ

is the homogenization of step size Δbetween ?0.5and 0.5for CFO search.As shown in Table I,according to (3)-(9),the multiple CFOs are separated with the complexity order of N 2MKP ,and are estimated simul-taneously with only complexity order of qK ,while the ML based CFO estimator including matrix inversion dominates the computational complexity and its search complexity of q MK increases exponentially with the number of base stations and users.Therefore,the proposed CFO estimation has a much lower complexity than the ML based CFO estimation which requires exhaustive search and is impractical for real systems.For ambiguity elimination problem induced by ICA,the permutation and quadrate ambiguities can be solved simul-taneously by the proposed pilot aided ICA based equalization,rather than separately in [6],having lower complexity order.

VI.S IMULATION R ESULTS

We use simulation results to demonstrate the performance of the orthogonal sequence based CFO estimation and the pilot aided ICA based signal equalization for multiuser-CoMP OFDM systems with K =2users and M =2base stations.A

Fig.1.Normalized MSE of CFO estimation with different sets of CFOs

CP of length L cp =16is used and the number of subcarriers is N =64for the OFDM systems.The Clarke block’s fading channel model [1]with an exponential power delay pro?le is employed,where the CSI remains constant during a frame.Each data frame with QPSK modulation consists of N s =256symbol blocks where the ?rst 6blocks (N pil =6)of each frame are used as pilots,resulting in a training overhead of 2.3%.The root mean square (RMS)delay spread is 86ns.The resulting channel impulse response length is L =7.The orthogonal sequences of length P =32are assigned across on the 16subcarrires to separate and estimate the multiple CFOs on each base station during preamble.The step size Δ=0.001results in q =1000within the range between -0.5and 0.5for CFO search.

Fig.1and Fig.2show the normalized MSE of the multiple CFOs over a range of SNRs,which is de?ned as

NMSE =∑M ?1m =0∑K ?1k =0[(?m,k ???m,k )]2

∑M ?1m =0∑K ?1k =0[?m,k ]2(17)The performances of NMSE demonstrate that the proposed

CFO estimation has ability to estimate the multiple CFOs.The NMSE performances improve as the SNR increase and have no error ?oor at high SNR region.The MSE performance of different CFOs are close together.However,the different values of the multiple CFOs result in the NMSE performance gap in Fig.1.To eliminate the effect of different CFOs on the NMSE performance,the CFO in Fig.2is only set as 0.1or ?0.1.The number of users varies from two to four for two base stations,showing that the proposed CFO estimation can be applied for the scenario where the number of users is more than the number of base stations.With the same NMSE performances,the proposed CFO estimation is also shown to be robust against the change of the number of users.

Fig.3demonstrates the BER performance of the pilot aided ICA based equalization compared with the precoding aid,the ZF based and the MMSE based equalization.The CFO is set to [-0.10.1;0.1-0.1]in Fig.3.With the proposed

Fig.2.Impact of the number of users on the normalized MSE of

CFOs Fig.3.BER performances of semi-blind equalization structures with CFO, in comparison to ZF and MMSE based equalization in the perfect

case Fig.4.Impact of frame size on BER performances of pilot aided and precoding aided semi-blind equalization structures

estimation and compensation,the pilot aided method, close to the ZF based and the MMSE based equalization CFO,and signi?cantly outperforms the precoding

method with optimum selection of precoding constant 0.25in[6],showing the effectiveness of our proposed

in ambiguity elimination.In Fig.4,the precoding

method is shown to be very sensitive to the change frame length from small to medium size,while the pilot method keeps constant at both SNR=10dB and20dB.

the precoding aided approach is related to a statistics, great number of symbols are required to eliminate ambiguity Thus,the precoding aided method has a good BER

only when the frame is large enough.

VII.C ONCLUSION

In this paper,we have proposed a CFO estimation approach and a pilot aided ICA based semi-blind equalization structure multiuser-CoMP OFDM systems.Based on the property orthogonal sequences,the multiple CFOs are separated estimated simultaneously.The multi-dimensional search divided into a serial of one-dimensional searches with lower and higher accuracy.Utilizing the cross-correlation

the original and equalized pilot symbols,the per-

and phase ambiguities due to the ICA model are

simultaneously,without increasing the computational The BER performance of the proposed pilot-aided

equalization structure is not only better than that of precoding aided scheme[6],but is also close to the ideal with perfect CSI and no CFO.

R EFERENCES

A.Goldsmith,Wireless communications.London,U.K.:Cambridge

University Press,2005.

3GPP Technical Report36.913Version9.0.0,Requirements for fur-ther advancements for Evolved Universal Terrestrial Radio Access(E-UTRA)(LTE-Advanced)(Release9),Dec.2009.

[3]J.F.Cardoso,”High-order contrasts for independent component analysis,”

Neural Computation,vol.11,pp.157-192,1999.

A.Hyvarinen,J.Karhunen,and E.Oja,Independent component analysis.

New York,U.S.A.:John Wiley&Sons,2001.

D.Obradovic,N.Madhu, A.Szabo,and C.S.Wong,”Independent

component analysis for semiblind signal separation in MIMO mobile frequency selective communication channels,”in IEEE international Conference on Neural Networks,pp.53-58.Budapest,Hungary,Jul.2004.

J.Gao,X.Zhu,and A.K.Nandi,”Non-redundant precoding and PAPR reduction in MIMO OFDM systems with ICA based blind equalization,”

IEEE Transactions on Wireless Communications,vol.8,no.6,pp.3038-3049,Jun.2009.

M.Morelli and U.Mengali,”Carrier-frequency estimation for transmis-sions over selective channels,”IEEE Transactions on Communications, vol.48,no.9,pp.1580-1589,Aug.2000.

J.Chen,Y.C.Wu,S.Ma,and T.S.Ng,”Joint CFO and channel estimation for multiuser MIMO-OFDM systems with optimal training sequences,”

IEEE Transactions on Signal Processing,vol.56,no.8,pp.4008-4019, Jul.2008.

Y.Wu,J.W.M.Bergmans and S.Attallah,”Carrier frequency offset estimation for multiuser MIMO OFDM uplink using CAZAC sequences: performance and sequence optimization,”in IEEE Wireless Communica-tions and Networking Conference,pp.1-5,Apr.2009.

[10]H.Wang,X.Xia and Q.Yin,”Distributed space-frequency codes

for cooperative communications systems with multiple carrier frequency offsets,”IEEE Transactions on Wireless Communications,V ol.8,No.2, pp.1045-1055,Feb.2009.

基于matlab实现OFDM的编码.

clc; clear all; close all; fprintf('OFDM系统仿真\n'); carrier_count=input('输入系统仿真的子载波数: \n');%子载波数128,64,32,16 symbols_per_carrier=30;%每子载波含符号数 bits_per_symbol=4;%每符号含比特数,16QAM调制 IFFT_bin_length=1024;%FFT点数 PrefixRatio=1/4;%保护间隔与OFDM数据的比例1/6~1/4 GI=PrefixRatio*IFFT_bin_length ;%每一个OFDM符号添加的循环前缀长度为1/4*IFFT_bin_length ,即256 beta=1/32;%窗函数滚降系数 GIP=beta*(IFFT_bin_length+GI);%循环后缀的长度40 SNR=10; %信噪比dB %================信号产生=================================== baseband_out_length=carrier_count*symbols_per_carrier*bits_per_symbol;%所输入的比特数目 carriers=(1:carrier_count)+(floor(IFFT_bin_length/4)-floor(carrier_count/2));%共轭对称子载波映射复数数据对应的IFFT点坐标 conjugate_carriers = IFFT_bin_length - carriers + 2;%共轭对称子载波映射共轭复数对应的IFFT点坐标 rand( 'twister',0); %每次产生不相同得伪随机序列 baseband_out=round(rand(1,baseband_out_length));%产生待调制的二进制比特流figure(1); stem(baseband_out(1:50)); title('二进制比特流') axis([0, 50, 0, 1]); %==============16QAM调制==================================== complex_carrier_matrix=qam16(baseband_out);%列向量 complex_carrier_matrix=reshape(complex_carrier_matrix',carrier_count,symbols_per

OFDM技术仿真(MATLAB代码)

第一章绪论 1.1简述 OFDM是一种特殊的多载波传输方案,它可以被看作是一种调制技术,也可以被当作一种复用技术。多载波传输把数据流分解成若干子比特流,这样每个子数据流将具有低得多的比特速率,用这样的低比特率形成的低速率多状态符号再去调制相应的子载波,就构成多个低速率符号并行发送的传输系统。正交频分复用是对多载波调制(MCM,Multi-Carrier Modulation)的一种改进。它的特点是各子载波相互正交,所以扩频调制后的频谱可以相互重叠,不但减小了子载波间的干扰,还大大提高了频谱利用率。 符号间干扰是多径衰落信道宽带传输的主要问题,多载波调制技术包括正交频分复用(OFDM)是解决这一难题中最具前景的方法和技术。利用OFDM技术和IFFT方式的数字实现更适宜于多径影响较为显著的环境,如高速WLAN 和数字视频广播DVB等。OFDM作为一种高效传输技术备受关注,并已成为第4代移动通信的核心技术。如果进行OFDM系统的研究,建立一个完整的OFDM 系统是必要的。本文在简要介绍了OFDM 基本原理后,基于MATLAB构建了一个完整的OFDM动态仿真系统。 1.2 OFDM基本原理概述 1.2.1 OFDM的产生和发展 OFDM的思想早在20世纪60年代就已经提出,由于使用模拟滤波器实现起来的系统复杂度较高,所以一直没有发展起来。在20世纪70年代,提出用离散傅里叶变换(DFT)实现多载波调制,为OFDM的实用化奠定了理论基础;从此以后,OFDM在移动通信中的应用得到了迅猛的发展。 OFDM系统收发机的典型框图如图1.1所示,发送端将被传输的数字信号转换成子载波幅度和相位的映射,并进行离散傅里叶变换(IDFT)将数据的频谱表达式变换到时域上。IFFT变换与IDFT变换的作用相同,只是有更高的计算效

OFDM系统设计及其Matlab实现

课程设计 。 课程设计名称:嵌入式系统课程设计 专业班级: 07级电信1-1 学生姓名:__王红__________ 学号:_____107_____ 指导教师:李国平,陈涛,金广峰,韩琳 课程设计时间:— |

1 需求分析 运用模拟角度调制系统的分析进行频分复用通信系统设计。从OFDM系统的实现模型可以看出,输入已经过调制的复信号经过串/并变换后,进行IDFT或IFFT和并/串变换,然后插入保护间隔,再经过数/模变换后形成OFDM调制后的信号s(t)。该信号经过信道后,接收到的信号r(t)经过模/数变换,去掉保护间隔,以恢复子载波之间的正交性,再经过串/并变换和DFT或FFT后,恢复出OFDM的调制信号,再经过并/串变换后还原出输入符号 2 概要设计 1.简述OFDM通信系统的基本原理 2.简述OFDM的调制和解调方法 3.概述OFDM系统的优点和缺点 4.基于MATLAB的OFDM系统的实现代码和波形 : 3 运行环境 硬件:Windows XP 软件:MATLAB 4 详细设计 OFDM基本原理 一个完整的OFDM系统原理如图1所示。OFDM的基本思想是将串行数据,并行地调制在多个正交的子载波上,这样可以降低每个子载波的码元速率,增大码元的符号周期,提高系统的抗衰落和干扰能力,同时由于每个子载波的正交性,大大提高了频谱的利用率,所以非常适合移动场合中的高速传输。

在发送端,输入的高比特流通过调制映射产生调制信号,经过串并转换变成N条并行的低速子数据流,每N个并行数据构成一个OFDM符号。插入导频信号后经快速傅里叶反变换(IFFT)对每个OFDM符号的N个数据进行调制,变成时域信号为: [ 式 式1中:m为频域上的离散点;n为时域上的离散点;N为载波数目。为了在接收端有效抑制码间干扰(InterSymbol Interference,ISI),通常要在每一时域OFDM符号前加上保护间隔(Guard Interval,GI)。加保护间隔后的信号可表示为式,最后信号经并/串变换及D/A转换,由发送天线发送出去。 式 接收端将接收的信号进行处理,完成定时同步和载波同步。经A/D转换,串并转换后的信号可表示为:

无线通信原理 基于matlab的ofdm系统设计与仿真..

基于matlab的ofdm系统设计与仿真

摘要 OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。 本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

第一章 ODMF 系统基本原理 1.1多载波传输系统 多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。 图1-1多载波系统的基本结构 多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。 1.2正交频分复用 OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?? ???=? +m n m n m n T T tdt m t n T t t ωω 其中ωπ2=T (1-1)

用MATLAB实现OFDM仿真分析

3.1 计算机仿真 仿真实验是掌握系统性能的一种手段。它通过对仿真模型的实验结果来确定实际系统的性能。从而为新系统的建立或系统的改进提供可靠的参考。通过仿真,可以降低新系统失败的可能性,消除系统中潜在的瓶颈。优化系统的整体性能,衡量方案的可行性。从中选择最后合理的系统配置和参数配置。然后再应用于实际系统中。因此,仿真是科学研究和工程建设中不可缺少的方法。 3.1.1 仿真平台 ●硬件 CPU:Pentium III 600MHz 内存:128M SDRAM ●软件 操作系统:Microsoft Windows2000 版本5.0 仿真软件:The Math Works Inc. Matlab 版本6.5 包括MATLAB 6.5的M文件仿真系统。 Matlab是一种强大的工程计算软件。目前最新的6.x版本 (windows环境)是一种功能强、效率高、便于进行科学和工程计算的交互式软件包。其工具箱中包括:数值分析、矩阵运算、通信、数字信号处理、建模和系统控制等应用工具程序,并集应用程序和图形于一便于使用的集成环境中。在此环境下所解问题的Matlab语言表述形式和其数学表达形式相同,不需要按传统的方法编程。Matlab的特点是编程效率高,用户使用方便,扩充能力强,语句简单,内涵丰富,高效方便的矩阵和数组运算,方便的绘图功能。 3.1.2 基于MATLAB的OFDM系统仿真链路 根据OFDM 基本原理,本文给出利用MATLAB编写OFDM系统的仿真链路流程。串行数据经串并变换后进行QDPSK数字调制,调制后的复信号通过N点IFFT变换,完成多载波调制,使信号能够在N个子载波上并行传输,中间插入10训练序列符号用于信道估计,加入循环前缀后经并串转换、D /A后进入信道,接收端经过N点FFT变换后进行信道估计,将QDPSK解调后的数据并串变换后得到原始信息比特。 本文采用MATLAB语言编写M文件来实现上述系统。M文件包括脚本M文件和函数M文件,M文件的强大功能为MATLAB的可扩展性提供了基础和保障,使MATLAB能不断完善和壮大,成为一个开放的、功能强大的实用工具。M文件通过input命令可以轻松实现用户和程序的交互,通过循环向量化、数组维数预定义等提高M文件执行速度,优化内存管理,此外,还可以通过类似C++语言的面向对象编程方法等等。

2010年本科毕业设计:基于MATLAB的OFDM系统仿真及分析

2010年本科毕业设计:基于MATLAB的OFDM系统仿真及分 析 MATLABOFDM 正交频分复用(OFDM) 是第四代移动通信的核心技术。该文首先简要介绍了OFDM的发展状况及基本原理, 文章对OFDM 系统调制与解调技术进行了解析,得 到了OFDM 符号的一般表达式,给出了OFDM 系统参数设计公式和加窗技术的原理 及基于IFFT/FFT 实现的OFDM 系统模型,阐述了运用IDFT 和DFT 实现OFDM 系统的根源所在,重点研究了理想同步情况下,保护时隙(CP)、加循环前缀前后和不同的信道内插方法在高斯信道和多径瑞利衰落信道下对OFDM系统性能的影响。在给出OFDM系统模型的基础上,用MATLAB语言实现了传输系统中的计算机仿真并给出 参考设计程序。最后给出在不同的信道条件下,研究保护时隙、循环前缀、信道 采用LS估计方法对OFDM系统误码率影响的比较曲线,得出了较理想的结论。 : 正交频分复用;仿真;循环前缀;信道估计 I Title: MATLAB Simulation and Performance Analysis of OFDM System ABSTRACT OFDM is the key technology of 4G in the field of mobile communication. In this

article OFDM basic principle is briefly introduced. This paper analyzes the modulation and demodulation of OFDM system, obtaining a general expression of OFDM mark, and giving the design formulas of system parameters, principle of windowing technique, OFDM system model based on IFFT/FFT, the origin which achieves the OFDM system by using IDFT and DFT. Then, the influence of CP and different channel estimation on the system performance is emphatically analyzed respectively in Gauss and Rayleigh fading channels in the condition of ideal synchronization. Besides, based on the given system model OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Finally, the BER curves of CP and channel estimation are given and compared. The conclusion is satisfactory. KEYWORDS:OFDM; Simulation; CP; Channel estimation II

基于Matlab的OFDM系统仿真

论文题目: 基于MATLAB的OFDM系统仿真 学院: 专业年级: 学号: 姓名: 指导教师、职称: 2010 年 12 月 10 日

基于Matlab的OFDM系统仿真 摘要:正交频分复用(OFDM)是一种多载波宽带数字调制技术。相比一般的数字通信系统,它具有频带利用率高和抗多径干扰能力强等优点,因而适合于高速率的无线通信系统。正交频分复用OFDM是第四代移动通信的核心技术。论文首先简要介绍了OFDM 基本原理。在给出OFDM系统模型的基础上,用MATLAB语言实现了整个系统的计算机仿真并给出参考设计程序。最后给出在不同的信道条件下,对OFDM系统误码率影响的比较曲线,得出了较理想的结论,通过详细分析了了技术的实现原理,用软件对传输的性能进行了仿真模拟并对结果进行了分析。 介绍了OFDM技术的研究意义和背景及发展趋势,还有其主要技术和对其的仿真?具体如下:首先介绍了OFDM的历史背景?发展现状及趋势?研究意义和研究目的及研究方法和OFDM的基本原理?基本模型?OFDM的基本传输技术及其应用,然后介绍了本课题所用的仿真工具软件MATLAB,并对其将仿真的OFDM各个模块包括信道编码?交织?调制方式?快速傅立叶变换及无线信道进行介绍,最后是对于OFDM的流程框图进行分析和在不影响研究其传输性的前提下进行简化,并且对其仿真出来的数据图形进行分析理解? 关键词:OFDM;MATLAB;仿真 一、OFDM的意义及背景 现代通信的发展是爆炸式的。从电报、电话到今天的移动电话、互联网,人们从中享受了前所未有的便利和高效率。从有线到无线是一个飞跃,从完成单一的话音业务到完成视频、音频、图像和数据相结合的综合业务功能更是一个大的飞跃。在今天,人们获得了各种各样的通信服务,例如,固定电话、室外的移动电话的语音通话服务,有线网络的上百兆bit的信息交互。但是通信服务的内容和质量还远不能令人满意,现有几十Kbps传输能力的无线通信系统在承载多媒体应用和大量的数据通信方面力不从心:现有的通信标准未能全球统一,使得存在着跨区的通信障碍;另一方面,从资源角度看,现在使用的通信系统的频谱利用率较低,急需高效的新一代通信系统的进入应用。 目前,3G的通信系统己经进入商用,但是其传输速率最大只有2Mbps,仍然有多个标准,在与互联网融合方面也考虑不多。这些决定了3G通信系统只是一个对现有移动通信系统速度和能力的提高,而不是一个全球统一的无线宽带多媒体通信系统。因此,在全世界范围内,人们对宽带通信正在进行着更广泛深入的研究。 正交频分复用(OFDM, Orthogonal Frequency Division Multiplexing) 是一种特殊的多载波方案,它可以被看作一种调制技术,也可以被当作是一种复用技术。选择OFDM的一个主要原因在于该系统能够很好地对抗频率选择性衰落或窄带干扰。正交频分复用(OFDM)最早起源于20世纪50年代中期,在60年代就已经形成恶劣使用并行数据传输和频分复用的概念。1970年1月首次公开发表了有关OFDM的专利。 在传统的并行数据传输系统中,整个信号频段被划分为N个相互不重叠的频率子信道。每个子信道传输独立的调制符号,然后再将N个子信道进行频率复用。这种避免信道频谱重叠看起来有利于消除信道间的干扰,但是这样又不能有效利用宝贵频谱资源。为了解决这种低效利用频谱资源的问题,在20世纪60年代提出一种思想,即使用子信道频谱相互覆盖的频域距离也是如此,从而可以避免使用高速均衡,并且可以对抗窄带脉冲噪声和多径衰落,而且还可以充分利用可用的频谱资源。 常规的非重叠多载波技术和重叠多载波技术之间的差别在于,利用重叠多载波调制技术可以几乎节省50%的带宽。为了实现这种相互重叠的多载波技术,必须要考虑如何减少各个子信道之间的干扰,也就是要求各个调制子载波之间保持正交性。 1971年,Weinstein和Ebert把离散傅立叶变换(DFT)应用到并行传输系统中,作为调制和解调过程的一部分。这样就不再利用带通滤波器,同时经过处理就可以实现FDM。而且,这样在完成FDM的过程中,不再要求使用子载波振荡器组以及相关解调器,可以完全依靠执行快速傅立叶变换(FFT)的硬件来实施。

本科毕业设计:基于MATLAB的OFDM系统仿真及分析

摘要 正交频分复用(OFDM) 是第四代移动通信的核心技术。该文首先简要介绍了OFDM的发展状况及基本原理, 文章对OFDM 系统调制与解调技术进行了解析,得到了OFDM 符号的一般表达式,给出了OFDM 系统参数设计公式和加窗技术的原理及基于IFFT/FFT 实现的OFDM 系统模型,阐述了运用IDFT 和DFT 实现OFDM 系统的根源所在,重点研究了理想同步情况下,保护时隙(CP)、加循环前缀前后和不同的信道内插方法在高斯信道和多径瑞利衰落信道下对OFDM系统性能的影响。在给出OFDM系统模型的基础上,用MATLAB语言实现了传输系统中的计算机仿真并给出参考设计程序。最后给出在不同的信道条件下,研究保护时隙、循环前缀、信道采用LS估计方法对OFDM系统误码率影响的比较曲线,得出了较理想的结论。 关键词: 正交频分复用;仿真;循环前缀;信道估计

Title: MATLAB Simulation and Performance Analysis of OFDM System ABSTRACT OFDM is the key technology of 4G in the field of mobile communication. In this article OFDM basic principle is briefly introduced.This paper analyzes the modulation and demodulation of OFDM system, obtaining a general expression of OFDM mark, and giving the design formulas of system parameters, principle of windowing technique, OFDM system model based on IFFT/FFT, the origin which achieves the OFDM system by using IDFT and DFT. Then, the influence of CP and different channel estimation on the system performance is emphatically analyzed respectively in Gauss and Rayleigh fading channels in the condition of ideal synchronization. Besides, based on the given system model OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Finally, the BER curves of CP and channel estimation are given and compared. The conclusion is satisfactory. KEYWORDS:OFDM; Simulation; CP; Channel estimation

移动通信系统OFDM系统仿真与实现基于MATLAB

OFDM系统仿真与实现 1、OFDM的应用意义 在近几年以内,无线通信技术正在以前所未有的速度向前发展。由于用户对各种实时多媒体业务需求的增加与互联网技术的迅猛发展,未来的无线通信及技术将会有更高的信息传输速率,为用户提供更大的便利,其网络结构也将发生根本的变化。随着人们对通信数据化、个人化与移动化的需求,OFDM技术在无线接入领域得到了广泛的应用。OFDM就是一种特殊的多载波传输方案,它将数字调制、数字信号处理、多载波传输技术结合在一起,就是目前已知的频谱利用率最高的一种通信系统,具有传输速率快、抗多径干扰能力强的优点。目前,OFDM技术在数字音频广播(DAB)、地面数字视频广播(DVB-T)、无线局域网等领域得到广泛应用。它将就是4G移动通信的核心技术之一。 OFDM广泛用于各种数字传输与通信中,如移动无线FM信道,高比特率数字用户线系统(HDSL),不对称数字用户线系统(ADSL),甚高比特率数字用户线系统HDSL,数字音频广播(DAB)系统,数字视频广播(DVB)与HDTV地面传播系统。1999年,IEEE802.11a通过了一个SGHz的无线局域网标准,其中OFDM调制技术被采用为物理层标准,使得传输速率可以达54MbPs。这样,可提供25MbPs的无线ATM接口与10MbPs的以太网无线帧结构接口,并支持语音、数据、图像业务。这样的速率完全能满足室内、室外的各种应用场合。 OFDM由于技术的成熟性,被选用为下行标准很快就达成了共识。而在上行技术的选择上,由于OFDM的高峰均比(PAPR)使得一些设备商认为会增加终端的功放成本与功率消耗,限制终端的使用时间,一些则认为可以通过滤波,削峰等方法限制峰均比。不过,经过讨论后,最后上行还就是采用了SC-FDMA方式。拥有我国自主知识产权的3G标准一一TD-SCDMA在LTE演进计划中也提出了TD-CDM-OFDM 的方案B3G/4G就是ITU提出的目标,并希望在2010年予以实现。B3G/4G的目标就是在高速移动环境下支持高达100Mb/S的下行数据传输速率,在室内与静止环境下支持高达IGb/S的下行数据传输速率。而OFDM技术也将扮演重要的角色。 2、OFDM的原理研究与分析 2、1OFDM的关键技术 (1) 时域与频域同步 OFDM系统对定时与频率偏移敏感,特别就是实际应用中与FDMA、TDMA与CDMA 等多址方式结合使用时,时域与频率同步显得尤为重要。 (2) 信道估计

基于MATLAB的OFDM的仿真

一、实习目的 1、熟悉通信相关方面的知识、学习并掌握OFDM技术的原理 2、熟悉MATLAB语言 3、设计并实现OFDM通信系统的建模与仿真 二、实习要求 仿真实现OFDM调制解调,在发射端,经串/并变换和IFFT变换,加上保护间隔(又称“循环前缀”),形成数字信号,通过信道到达接收端,结束端实现反变换,进行误码分析三、实习内容 1.实习题目 《正交频分复用OFDM系统建模与仿真》 2.原理介绍 OFDM的基本原理就是把高速的数据流通过串并变换,分配到传输速率相对较低的若干个子信道中进行传输。由于每个子信道中的符号周期会相对增加,因此可以减轻由无线信道的多径时延扩展所产生的时间弥散性对系统造成的影响。并且还可以在OFDM符号之间插入保护间隔,令保护间隔大于无线信道的最大时延扩展,这样就可以最大限度地消除由于多径而带来的符号间干扰(ISI)。而且,一般都采用循环前缀作为保护间隔,从而可以避免由多径带来的子载波间干扰((ICI) 。 3.原理框图 图1-1 OFDM 原理框图

4. 功能说明 4.1确定参数 需要确定的参数为:子信道,子载波数,FF T长度,每次使用的OFDM 符号数,调制度水平,符号速率,比特率,保护间隔长度,信噪比,插入导频数,基本的仿真可以不插入导频,可以为0。 4.2产生数据 使用个随机数产生器产生二进制数据,每次产生的数据个数为carr ier_co un t * sym bols_pe r_car rier * bits_per_s ym bo l。 4.3编码交织 交织编码可以有效地抗突发干扰。 4.4子载波调制 OF DM 采用BP SK 、QP SK 、16QAM 、64QAM 4种调制方式。按照星座图,将每个子信道上的数据,映射到星座图点的复数表示,转换为同相Ic h和正交分量Qch 。 其实这是一种查表的方法,以16QAM 星座为例,bits_p er_sym bo l=4,则每个OFDM 符号的每个子信道上有4个二进制数{d1,d2,d3,d4},共有16种取值,对应星座图上16个点,每个点的实部记为Qch 。为了所有的映射点有相同高的平均功率,输出要进行归一化,所以对应BPSK,PQSK,16QA M,64QA M,分别乘以归一化系数系数1,21, 101, 421.输出的复数序列即为映射后的调制结果。 4.5串并转换。 将一路高速数据转换成多路低速数据 4.6 IFF T。 对上一步得到的相同分量和正交分量按照(Ic h+Qch *i)进行IFFT 运算。并将得到的复数的实部作为新的I ch ,虚部作为新的Qch 。 在实际运用中, 信号的产生和解调都是采用数字信号处理的方法来实现的, 此时要对信号进行抽样, 形成离散时间信号。 由于O FDM 信号的带宽为B=N·Δf, 信号必须以Δt=1/B =1/(N ·Δf )的时间间隔进行采样。 采样后的信号用sn ,i 表示, i = 0, 1, …, N-1,则有 ∑-== 1 /2j ,,e 1N k N ik k n i n S N s π 从该式可以看出,它是一个严格的离散反傅立叶变换(ID FT )的表达式。IDFT 可以采用快速反傅立叶变换(IFFT )来实现 4.7加入保护间隔。 由IF FT运算后的每个符号的同相分量和正交分量分别转换为串行数据,并将符号尾部G 长度的数据加到头部,构成循环前缀。如果加入空的间隔,在多径传播的影响下,会造成载波间干扰ICI 。保护见个的长度G 应该大于多径时的扩张的最大值。

基于MATLAB的MIMO-OFDMA系统的设计与仿真

基于MATLAB的MIMO-OFDMA系统的设计与仿真 摘要 在信息时代的快速发展形势下,产生了越来越多的业务需求,用户对通信系统的性能提出了更高的要求。基于正交频分复用( Orthogonal Frequency Division Multiplexing,OFDM )技术和多输入多输出(Multiple Input Multiple Output,MIMO )技术的无线通信系统在增加系统容量、提高频谱利用率以及对抗频率选择性衰落等方面具备优越的性能,是未来通信领域中的关键技术。 本文首先阐述了MIMO技术和OFDM技术的国内外研究概况,然后通过分析MIMO技术和OFDM技术的基本原理和系统结构,设计出简单的MIMO-OFDM系统。基于MATLAB软件对所建立的MIMO系统的信道容量进行了仿真,并对SISO-OFDM系统和MIMO-OFDM系统的性能进行了比较,仿真结果表明,本文所提出的MIMO-OFDM系统方案能够在不增加误比特率的情况下增加信道容量,最后结合空时分组码(Space Time Block Coding,STBC)对MIMO-OFDM系统进行了完善并采用MATLAB对其性能进行了仿真,结果显示,相较于未完善的系统完善后的系统的误比特率指标明显降低,传输可靠性得到了极大的提高。 关键词:无线通信;MIMO;OFDM;误比特率

Performance Evaluation of MIMO-OFDMA System using Matlab Abstract As the rapid development of information technology has resulted in more influences on people’s daily lives and businesses. Higher requirements should be provided by communication system to meet people’s needs. The communication system which based on the technology of Orthogonal Frequency Division Multiplexing (OFDM) and Multiple Input Multiple Output (MIMO) enables to not only increase the system capacity, but improve the spectrum utilization, and moreover to effectively against frequency selective fading, has become the key technologies in the field of communication in the future. This paper first gives an in-detailed survey on MIMO and OFDM technologies in academic society. After that, we designed a simple MIMO-OFDM system by means of the analysis of the basic concepts and the architecture of MIMO and OFDM technology. Followed by performance evaluation via Matlab to compare SISO-OFDM and MIMO-OFDM systems in term of channel capacity and Bit Error Rate (BER) to validate the proposed MIMO-OFDM system outperforms SISO-OFDM. Finally, we further integrated space-time block codes into the proposed MIMO-OFDM system, through simulation results, we can observe that BER can be significant reduced compared to its counterpart which without implements space-time block codes. Keywords:Wireless communication,MIMO, OFDM, Bit Error Rate (BER)

基于matlab的ofdm系统设计与仿真

基于matlab的ofdm系统设计与仿真 OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。 本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

第一章 ODMF 系统基本原理 1.1多载波传输系统 多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。 图1-1多载波系统的基本结构 多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。 1.2正交频分复用 OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?????=? +m n m n m n T T tdt m t n T t t ωω 其中ω π 2=T (1-1) 根据上述理论,令N 个子信道载波频率为)(1t f ,)(2t f ,……,)(t f N ,并使其

无线通信原理基于matlab的ofdm系统设计与仿真

无线通信原理:基于matlab的ofdm系统设计与仿真 OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。 本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。 第一章ODMF系统基本原理 1.1多载波传输系统 多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。 图1-1多载波系统的基本结构

多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。 1.2正交频分复用 OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?????=? +m n m n m n T T tdt m t n T t t ωω 其中ω π 2=T (1-1) 根据上述理论,令N 个子信道载波频率为)(1t f ,)(2t f ,……,)(t f N ,并使其满足下面的关系:),1(,/0N k T k f f N k ?=+=,其中N T 为单元码持续时间。单个子载波信号为: ? ??<≤=others T t t f t f N k k 00)2cos()(π (1-2) 由正交性可知:????≠==n m n m T dt t f t f N m n 0)(*)( (1-3) 由式(1-3)可知,子载波信号是两两正交的。这样只要信号严格同步,调制出的信号严格正交,理论上接收端就可以利用正交性进行解调。OFDM 信号表达式与FDM 的一样,区别在于信号的频谱。OFDM 信号的频谱与FDM 频谱情况对比如图1-2所示。由图1-2可以看出,由于采用的原理不一样,FDM 中接收端需要频率分割,因而需要较宽的保护间隔。OFDM 系统的接收端利用正交性解调,相邻子信道频谱在一定程度上是可以重叠的。 图1-2 FDM 与OFDM 的频谱

基于MATLAB的OFDM系统设计与仿真

基于MATLAB的OFDM系统设计与仿真 摘要:随着通信产业的逐步发展,4G时代已经来临。作为第四代移动通信技术的核心,OFDM得到了前所未有的关注。它具有频谱利用率高、抗干扰能力强等优点。本文首先简要介绍了OFDM的发展状况以及优缺点,然后详细分析了OFDM的工作原理及其相应的各个模块,并介绍了它的关键技术。最后,分别利用M函数和Simulink做了OFDM 系统的设计与仿真,并对误码率进行了分析,得到了BER性能曲线。 关键词:正交频分复用;MATLAB;仿真;BER Design and Simulation of OFDM System Based on MATLAB Abstract:With the gradual development of the communication industry, 4G era has come. As the key technology of the fourth generation mobile communications,OFDM has received unprecedented attention. It has a high spectrum utilization, strong ability of anti-interference and so on. This article describes the development of OFDM and it’s advantages and disadvantages briefly, analysis the working principles of OFDM and each module detailed,and describes it’s key tec hnology.At last, design and simulate OFDM system with the M function and Simulink separately, analysis the error rate and obtain BER performance curve . Keywords: OFDM; MATLAB; Simulation; BER

基于matlab的OFDM系统仿真毕业设计论文

毕业设计论文 基于Matlab的OFDM系统仿真及分析 Simulation and Performance Analysis of OFDM System Based on Matlab

毕业论文任务书

毕业设计开题报告

摘要 在无线通信系统中,存在着各种严重的衰落,例如频率选择性衰落、快衰落和慢衰落,以及由于各种物体对传输信号的反射引起的多径传播,而由此引起的符号间干扰是无线通信系统设计中必须考虑的问题,特别是在高速传输的环境中。而正交频分复用(OFDM)正是为了解决这些问题提出的,它是第四代移动通信的核心技术之一。 OFDM是一种特殊的多载波传输方案,它将数字调制、数字信号处理、多载波传输等技术有机结合在一起,是目前已知的频谱利用率最高的一种通信系统,具有传输速度快、抗多径干扰能力强的优点。目前,OFDM技术在数字音频广播、地面数字视频广播、无线局域网等领域得到广泛应用。 本文论述了OFDM的基本原理以及信号调制技术,给出了OFDM系统模型,并从频域的角度分析OFDM信号的性质及DFT实现,最后用MATLAB语言实现了整个系统的计算机仿真并给出参考设计程序,对OFDM调制系统中主要传输技术、基本参数的选择、同步及关键技术和仿真实现进行了相关的讨论。 关键词:OFDM多载波系统仿真MATLAB

Abstract There are some severe problems in wireless communication systems, such as frequency selective fading, fast fading and slow fading, and various objects of reflection led to the transmitted signal multipath propagation. The resulting inter-symbol interference (ISI) is a wireless communication system design issues that must be considered, especially in the high-speed transmission environment. Orthogonal frequency division multiplexing (OFDM) is proposed to solve these problems, it is the core technology of the fourth generation mobile communication. OFDM is a special multi-carrier transmission scheme, it combines some technologies such as figure modulation, digital signal processing, multi-carrier transmission. It is the maximum utilization of the spectrum communication system, with the advantages of faster transfer rates, anti-multipath interference. Currently known at present, OFDM technology is widely used in the digital audio broadcasting, terrestrial digital video broadcasting and wireless LAN. This paper introduce the orthogonal frequency division multiplexing basic principle and discusses signal modulation technology, then, given OFDM system model, and analysis the nature and DFT realization of OFDM signals from the point of view of frequency domain. Finally, based on the given system model, OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Discussing in the system of OFDM modulation transmission technology, basic parameter selection, system of synchronous, key technology and OFDM system simulation. Key words:OFDM Multi-carrier System Simulation MATLAB

相关文档
最新文档