数学方法在物理中的应用

数学方法在物理中的应用
数学方法在物理中的应用

第8专题 数学方法在物理中的应用

方法概述

数学是解决物理问题的重要工具,借助数学方法可使一些复杂的物理问题显示出明显的规律性,能达到打通关卡、长驱直入地解决问题的目的.中学物理《考试大纲》中对学生应用数学方法解决物理问题的能力作出了明确的要求,要求考生有“应用数学处理物理问题”的能力.对这一能力的考查在历年高考试题中也层出不穷,如2009年高考北京理综卷第20题、宁夏理综卷第18题、江苏物理卷第15题;2008年高考四川理综卷第24题、延考区理综卷第25题、上海物理卷第23题、北京理综卷第24题等.

所谓数学方法,就是要把客观事物的状态、关系和过程用数学语言表达出来,并进行推导、演算和分析,以形成对问题的判断、解释和预测.可以说,任何物理问题的分析、处理过程,都是数学方法的运用过程.本专题中所指的数学方法,都是一些特殊、典型的方法,常用的有极值法、几何法、图象法、数学归纳推理法、微元法、等差(比)数列求和法等.

一、极值法

数学中求极值的方法很多,物理极值问题中常用的极值法有:三角函数极值法、二次函数极值法、一元二次方程的判别式法等.

1.利用三角函数求极值 y =a cos θ+b sin θ

=a 2+b 2(a a 2+b 2cos θ+b

a 2+b

2sin θ) 令sin φ=a a 2+b 2,cos φ=b

a 2+

b 2

则有:y =a 2+b 2(sin φcos θ+cos φsin θ)

=a 2+b 2sin (φ+θ)

所以当φ+θ=π

2

时,y 有最大值,且y max =a 2+b 2.

2.利用二次函数求极值

二次函数:y =ax 2+bx +c =a (x 2

+b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 2

4a (其中a 、b 、c

为实常数),当x =-b

2a 时,有极值y m =4ac -b 24a

(若二次项系数a >0,y 有极小值;若a <0,

y 有极大值).

3.均值不等式

对于两个大于零的变量a 、b ,若其和a +b 为一定值p ,则当a =b 时,其积ab 取得极大值 p 2

4

;对于三个大于零的变量a 、b 、c ,若其和a +b +c 为一定值q ,则当a =b =c 时,

其积abc 取得极大值 q 3

27

二、几何法

利用几何方法求解物理问题时,常用到的有“对称点的性质”、“两点间直线距离最短”、“直角三角形中斜边大于直角边”以及“全等、相似三角形的特性”等相关知识,如:带电粒子在有界磁场中的运动类问题,物体的变力分析时经常要用到相似三角形法、作图法等.与圆有关的几何知识在力学部分和电学部分的解题中均有应用,尤其在带电粒子在匀强磁场中做圆周运动类问题中应用最多,此类问题的难点往往在圆心与半径的确定上,确定方法有以下几种.

1.依切线的性质确定.从已给的圆弧上找两条不平行的切线和对应的切点,过切点作切线的垂线,两条垂线的交点为圆心,圆心与切点的连线为半径.

2.依垂径定理(垂直于弦的直径平分该弦,且平分弦所对的弧)和相交弦定理(如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项)确定.如图8-1所示.

图8-1

由EB2=CE·ED

=CE·(2R-CE)

得:R=

EB2

2CE+

CE

2

也可由勾股定理得:

R2=(R-CE)2+EB2

解得:R=

EB2

2CE+

CE

2.

以上两种求半径的方法常用于求解“带电粒子在匀强磁场中的运动”这类习题中.

三、图象法

中学物理中一些比较抽象的习题常较难求解,若能与数学图形相结合,再恰当地引入物理图象,则可变抽象为形象,突破难点、疑点,使解题过程大大简化.图象法是历年高考的热点,因而在复习中要密切关注图象,掌握图象的识别、绘制等方法.

1.物理图象的分类

整个高中教材中有很多不同类型的图象,按图形形状的不同可分为以下几类.

(1)直线型:如匀速直线运动的s-t图象、匀变速直线运动的v-t图象、定值电阻的U -I图象等.

(2)正弦曲线型:如简谐振动的x-t图象、简谐波的y-x图象、正弦式交变电流的e-t图象、正弦式振荡电流的i-t图象及电荷量的q-t图象等.

(3)其他型:如共振曲线的A-f图象、分子力与分子间距离的f-r图象等.

下面我们对高中物理中接触到的典型物理图象作一综合回顾,以期对物理图象有个较为

图象函数形式特例物理意义

y=c

匀速直线运动的v

-t图象

做匀速直线运动的

质点的速度是恒矢

量.

y=kx

①匀速直线运动的s

-t图象

②初速度v0=0的匀

加速直线运动的v

-t图象(若v0≠0,

则纵截距不为零)

③纯电阻电路的I-

U图象

①表示物体的位移

大小随时间线性增

大.

②表示物体的速度

大小随时间线性增

大.

③表示纯电阻电路

中I随导体两端的电

压U线性增大.

(1)利用图象解题可使解题过程更简化,思路更清晰.

利用图象法解题不仅思路清晰,而且在很多情况下可使解题过程得到简化,起到比解析法更巧妙、更灵活的独特效果.甚至在有些情况下运用解析法可能无能为力,但是运用图象法则会使你豁然开朗,如求解变力分析中的极值类问题等.

(2)利用图象描述物理过程更直观.

从物理图象上可以比较直观地观察出物理过程的动态特征.

(3)利用物理图象分析物理实验.

运用图象处理实验数据是物理实验中常用的一种方法,这是因为它除了具有简明、直观、便于比较和减少偶然误差的特点外,还可以由图象求解第三个相关物理量,尤其是无法从实验中直接得到的结论.

3.对图象意义的理解

(1)首先应明确所给的图象是什么图象,即认清图象中比纵横轴所代表的物理量及它们的“函数关系”,特别是对那些图形相似、容易混淆的图象,更要注意区分.例如振动图象与波动图象、运动学中的s-t图象和v-t图象、电磁振荡中的i-t图象和q-t图象等.

(2)要注意理解图象中的“点”、“线”、“斜率”、“截距”、“面积”的物理意义.

①点:图线上的每一个点对应研究对象的一个状态.要特别注意“起点”、“终点”、“拐点”、“交点”,它们往往对应着一个特殊状态.如有的速度图象中,拐点可能表示速度由增大(减小)变为减小(增大),即加速度的方向发生变化的时刻,而速度图线与时间轴的交点则代表速度的方向发生变化的时刻.

②线:注意观察图线是直线、曲线还是折线等,从而弄清图象所反映的两个物理量之间的关系.

③斜率:表示纵横坐标上两物理量的比值.常有一个重要的物理量与之对应,用于求解定量计算中所对应的物理量的大小以及定性分析变化的快慢.如 v -t 图象的斜率表示加速度.

④截距:表示纵横坐标两物理量在“边界”条件下物理量的大小.由此往往可得到一个很有意义的物理量.如电源的U -I 图象反映了U =E -Ir 的函数关系,两截距点分别为(0,

E )和????E r ,0.

⑤面积:有些物理图象的图线与横轴所围的面积往往代表一个物理量的大小.如v -t 图象中面积表示位移.

4.运用图象解答物理问题的步骤 (1)看清纵横坐标分别表示的物理量.

(2)看图象本身,识别两物理量的变化趋势,从而分析具体的物理过程.

(3)看两相关量的变化范围及给出的相关条件,明确图线与坐标轴的交点、图线斜率、图线与坐标轴围成的“面积”的物理意义.

四、数学归纳法

在解决某些物理过程中比较复杂的具体问题时,常从特殊情况出发,类推出一般情况下的猜想,然后用数学归纳法加以证明,从而确定我们的猜想是正确的.利用数学归纳法解题要注意书写上的规范,以便找出其中的规律.

五、微元法

利用微分思想的分析方法称为微元法.它是将研究对象(物体或物理过程)进行无限细分,再从中抽取某一微小单元进行讨论,从而找出被研究对象的变化规律的一种思想方法.微元法解题的思维过程如下.

(1)隔离选择恰当的微元作为研究对象.微元可以是一小段线段、圆弧或一小块面积,也可以是一个小体积、小质量或一小段时间等,但必须具有整体对象的基本特征.

(2)将微元模型化(如视为点电荷、质点、匀速直线运动、匀速转动等),并运用相关的物理规律求解这个微元与所求物体之间的关联.

(3)将一个微元的解答结果推广到其他微元,并充分利用各微元间的对称关系、矢量方向关系、近似极限关系等,对各微元的求解结果进行叠加,以求得整体量的合理解答.

六、三角函数法

三角函数反映了三角形的边、角之间的关系,在物理解题中有较广泛的应用.例如:讨论三个共点的平衡力组成的力的三角形时,常用正弦定理求力的大小;用函数的单调变化的临界状态来求取某个物理量的极值;用三角函数的“和积公式”将结论进行化简等.

七、数列法

凡涉及数列求解的物理问题都具有过程多、重复性强的特点,但每一个重复过程均不是原来的完全重复,而是一种变化了的重复.随着物理过程的重复,某些物理量逐步发生着前后有联系的变化.该类问题求解的基本思路为:

(1)逐个分析开始的几个物理过程;

(2)利用归纳法从中找出物理量变化的通项公式(这是解题的关键); (3)最后分析整个物理过程,应用数列特点和规律求解.

无穷数列的求和,一般是无穷递减数列,有相应的公式可用.

等差:S n =n (a 1+a n )2=na 1+n (n -1)

2d (d 为公差).

等比:S n =a 1(1-q n )

1-q

(q 为公比).

八、比例法

比例计算法可以避开与解题无关的量,直接列出已知和未知的比例式进行计算,使解题过程大为简化.应用比例法解物理题,要讨论物理公式中变量之间的比例关系,要清楚公式的物理意义和每个量在公式中的作用,以及所要讨论的比例关系是否成立.同时要注意以下几点.

(1)比例条件是否满足.物理过程中的变量往往有多个,讨论某两个量间的比例关系时要注意只有其他量为常量时才能成比例.

(2)比例是否符合物理意义.不能仅从数学关系来看物理公式中各量的比例关系,要注

意每个物理量的意义.(如不能根据R =U

I

认定电阻与电压成正比)

(3)比例是否存在.讨论某公式中两个量的比例关系时,要注意其他量是否能认为是不

变量.如果该条件不成立,比例也不能成立.(如在串联电路中,不能认为P =U 2

R

中P 与R

成反比,因为R 变化的同时,U 也随之变化而并非常量)

许多物理量都是用比值法来定义的,常称之为“比值定义”.如密度ρ=m

V

,导体的电阻

R =U I ,电容器的电容 C =Q U ,接触面间的动摩擦因数μ=f F N ,电场强度E =F

q 等.它们的共

同特征是:被定义的物理量是反映物体或物质的属性和特征的,它和定义式中相比的物理量无关.对此,学生很容易把它当做一个数学比例式来处理而忽略了其物理意义,也就是说教学中还要防止数学知识在物理应用中的负迁移.

数学是“物理学家的思想工具”,它使物理学家能“有条理地思考”并能想象出更多的东西.可以说,正是有了数学与物理学的有机结合,才使物理学日臻完善.物理学的严格定量化,使得数学方法成为物理解题中一个不可或缺的工具.

热点、重点、难点

●例1 如图8-2甲所示,一薄木板放在正方形水平桌面上,木板的两端与桌面的两端对齐,一小木块放在木板的正中间.木块和木板的质量均为m ,木块与木板之间、木板与桌面之间的动摩擦因数都为μ.现突然以一水平外力F 将薄木板抽出,要使小木块不从桌面上掉下,则水平外力F 至少应为________.(假设木板抽动过程中始终保持水平,且在竖直方向上的压力全部作用在水平桌面上)

图8-2甲

A .2μmg

B .4μmg

C .6μmg

D .8μmg

【解析】解法一 F 越大,木块与木板分离时的速度、位移越小,木块越不可能从桌面滑下.设拉力为F 0时,木块恰好能滑至桌面的边缘,再设木块与木板分离的时刻为t 1,在0~t 1 时间内有:

12·(F 0-μmg -2μmg )m ·t 12-12μgt 12=L 2 对t 1时间后木块滑行的过程,有: v 122μg =(μgt 1)22μg =L 2-12μgt 12 解得:F 0=6μmg .

解法二 F 越大,木块与木板分离时的速度、位移越小,木块越不可能从桌面滑出.若木块不从桌面滑出,则其v -t 图象如图8-2乙中OBC 所示,其中OB 的斜率为μg ,BC 的斜率为-μg ,t 1=t 2

图8-2乙

有:S △OBC =????12·μgt 12×2≤L 2

设拉力为F 时,木板的v -t 图象为图7-2乙中的直线OA ,则S △OAB =L

2

即12(v 2-v 1)·t 1=L 2

其中v 1=μgt 1,v 2=F -3μmg

m

·t 1

解得:F ≥6μmg

即拉力至少为6μmg . [答案] C

【点评】对于两物体间的多过程运动问题,在明确物理过程的基础上,画出物体各自的运动图象,这样两物体的运动特点就很明显了.利用图线与坐标轴所夹面积的关系明确物体间的位移关系,可省略一些物理量的计算,从而快速、简捷地解答问题,同类题可见专题一能力演练第3题.

●例2 如图8-3 甲所示,在竖直平面内的直角坐标系中,一个质量为m 的质点在外力F 的作用下从坐标原点O 由静止沿直线ON 斜向下运动,直线ON 与y 轴负方向成θ角(θ<π

4

),则F 的大小至少为________;若F =mg tan θ,则质点的机械能大小的变化情况是__________________________.

[2008年高考·上海物理卷]

图8-3甲

【解析】 该质点在重力和外力F 的作用下从静止开始做直线运动,说明质点做匀加速直线运动,如图8-3乙所示,当F 的方向为a 方向(垂直于ON )时,F 最小为mg sin θ;若F =mg tan θ,即F 可能为b 方向或c 方向,故除重力外的力F 对质点可能做正功,也可能做负功,所以质点的机械能增加、减少都有可能.

图8-3乙

[答案] mg sin θ 增加、减少都有可能 【点评】运用平行四边形(三角形)定则分析物体受力的变化情况(或用相似三角形比较受力)是一种常用的方法,同类题可见专题一同类拓展2和例题4.

●例3 总质量为80 kg 的跳伞运动员从离地500 m 的直升机上跳下,经过2 s 拉开绳

索开启降落伞,图8-4是跳伞过程中的v -t 图象,试根据图象求:(取g =10 m/s 2)

图8-4

(1)t =1 s 时运动员的加速度和所受阻力的大小.

(2)估算14 s 内运动员下落的高度及克服阻力做的功. (3)估算运动员从飞机上跳下到着地的总时间. [2008年高考·上海物理卷]

【解析】(1)从图象中可以看出,在t =2 s 内运动员做匀加速运动,其加速度的大小为:a =v t t =16

2

m/s 2=8 m/s 2

设此过程中运动员受到的阻力大小为f ,根据牛顿第二定律,有:mg -f =ma 得:f =m (g -a )=80×(10-8) N =160 N .

(2)v -t 图象与t 轴所包围的面积表示位移,由图象可知14 s 内该面积包含的格子为39格

所以h =39×2×2 m =156 m

根据动能定理,有:mgh -W f =1

2

m v 2

所以W f =mgh -1

2m v 2

=(80×10×156-1

2

×80×62) J

≈1.23×105

J .

(3)14 s 后运动员做匀速运动的时间为:

t ′=H -h v =500-1566

s ≈57 s

运动员从飞机上跳下到着地所需要的总时间为: t 总=t +t ′=(14+57) s ≈71 s .

[答案] (1)160 N (2)1.23×105 J (3)71 s

【点评】对于本题,应明确v -t 图象中“面积”的含义,在数小方格个数时需注意合理取舍,即大于半格的算1个,小于半格的舍去.

●例4 如图8-5甲所示,一质量m =1 kg 的木板静止在光滑水平地面上.开始时,木板右端与墙相距L =0.08 m ,一质量m =1 kg 的小物块以初速度v 0=2 m/s 滑上木板左端.木板的长度可保证物块在运动过程中不与墙接触.物块与木板之间的动摩擦因数μ=0.1,木板

与墙碰撞后以与碰撞前瞬时等大的速度反弹.取g =10 m/s 2

,求:

图8-5甲

(1)从物块滑上木板到两者达到共同速度时,木板与墙碰撞的次数及所用的时间. (2)达到共同速度时木板右端与墙之间的距离.

【解析】解法一 物块滑上木板后,在摩擦力的作用下,木板从静止开始做匀加速运动.设木板的加速度大小为a ,经历时间T 后与墙第一次碰撞,碰撞时的速度为v 1,则有:

μmg =ma

L =12aT 2

v 1=aT

可得:a =1 m/s 2,T =0.4 s ,v 1=0.4 m/s 物块与木板达到共同速度之前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的运动,因而木板与墙相碰后将返回至初态,所用时间为T .设在物块与木板达到共同速度v 之前木板共经历了n 次碰撞,则有:

v =v 0-(2nT +Δt )a =a ·Δt

式中Δt 是碰撞n 次后木板从起始位置至达到共同速度所需要的时间 上式可改写为:2v =v 0-2nTa

由于木板的速率只能在0到v 1之间,故有: 0≤v 0-2nTa ≤2v 1 解得:1.5≤n ≤2.5

由于n 是整数,故n =2 解得:v =0.2 m/s ,Δt =0.2 s

从开始到物块与木板达到共同速度所用的时间为: t =4T +Δt =1.8 s .

(2)物块与木板达到共同速度时,木板右端与墙之间的距离为:s =L -1

2

a ·Δt 2

解得:s =0.06 m

解法二 (1)物块滑上木板后,在摩擦力的作用下,木板做匀加速运动的加速度a 1=μg =1 m/s ,方向向右

物块做减速运动的加速度a 2=μg =1 m/s ,方向向左 可作出物块、木板的v -t 图象如图8-5乙所示

由图可知,木板在0.4 s 、1.2 s 时刻两次与墙碰撞,在t =1.8 s 时刻物块与木板达到共同速度.

(2)由图8-5乙可知,在t =1.8 s 时刻木板的位移为: s =1

2

×a 1×0.22=0.02 m 木板右端距墙壁的距离Δs =L -s =0.06 m .

图8-5乙

[答案] (1)1.8 s (2)0.06 m 【点评】本题的两种解题方法都是在清晰地理解物理过程的前提下巧妙地应用数学方法解析的,专题一例4中的解法二也是典型地利用图象来确定物理过程的.

●例5 图8-6所示为一个内外半径分别为R 1和R 2的圆环状均匀带电平面,其单位面积的带电量为σ.取环面中心O 为原点,以垂直于环面的轴线为x 轴.设轴上任意点P 到O 点的距离为x ,P 点的电场强度大小为E .下面给出E 的四个表达式(式中k 为静电力常量),其中只有一个是合理的.你可能不会求解此处的场强E ,但是你可以通过一定的物理分析,对下列表达式的合理性作出判断.根据你的判断,E 的合理表达式应为[2009年高考·北京理

综卷]( )

图8-6

A .E =2πkσ?

?

???

R 1x 2+R 12-R 2x 2+R 22x

B .E =2πkσ?

?

???1x 2+R 12-1x 2+R 22x C .E =2πkσ?

?

???

R 1x 2+R 12+R 2x 2

+R 22 D .E =2πkσ?

?

?

??1x 2+R 12+1x 2+R 22x 【解析】A 选项表达式可变形为:

E =2πkσ? ?????R 11+(R 1x )2-R 21+(R 2x )2,对于这一表达式,当R 1=0时,E =-2πkσR 21+(R 2x

)

2,随x 的增大,E 的绝对值增大,这与客观事实不符合,故A 错误,对于C 选项中的表达式,当x =0时,E =4πkσ,而事实由对称性知应该为E =0,故C 错误.对于D 选项,

E =2πkσ

?

?????11+(R 1x )2+11+(R 2x )2 同样E 随x 增大而增大,当x =∞时E >0,这与事实不符合,故D 错误,只有B 可能正确.

[答案] B

【点评】本例与2008年高考北京理综卷第20题相似,给出某一规律的公式,要求证它的正确性,这类试题应引起足够的重视.

●例6 如图8-7所示,一轻绳吊着一根粗细均匀的棒,棒下端离地面高为H ,上端套着一个细环.棒和环的质量均为m ,相互间的最大静摩擦力等于滑动摩擦力kmg (k >1).断开轻绳,棒和环自由下落.假设棒足够长,与地面发生碰撞时触地时间极短,无动能损失.棒在整个运动过程中始终保持竖直,空气阻力不计.求:

图8-7

(1)棒第一次与地面碰撞后弹起上升的过程中,环的加速度. (2)从断开轻绳到棒与地面第二次碰撞的瞬间,棒运动的路程s .

(3)从断开轻绳到棒和环都静止的过程中,摩擦力对环和棒做的总功W .

[2007年高考·江苏物理卷]

【解析】(1)设棒第一次上升的过程中环的加速度为a 环,由牛顿第二定律有:

a 环=kmg -mg m

=(k -1)g ,方向竖直向上.

(2)棒第一次落地前瞬间的速度大小为:v 1=2gH 设棒弹起后的加速度为a 棒,由牛顿第二定律有:

a 棒=-kmg +mg

m

=-(k +1)g

故棒第一次弹起的最大高度为:

H 1=-v 122a 棒=H

k +1

路程s =H +2H 1=k +3

k +1

H .

(3)解法一 设棒第一次弹起经过t 1时间后与环达到共同速度v 1′ 环的速度v 1′=-v 1+a 环t 1 棒的速度v 1′=v 1+a 棒t 1

解得:t 1=1k 2H

g

v 1′=-2gH

k

环的位移h 环1=-v 1t 1+1

2a 环t 12=-k +1k

2H

棒的位移h 棒1=v 1t 1+1

2a 棒t 12=k -1k

2H

x 1=h 环1-h 棒1

解得:x 1=-2H

k

棒、环一起下落至地,有:v 22-v 1′2=2gh 棒1

解得:v 2=2gH

k

同理,环第二次相对棒的位移为:

x 2=h 环2-h 棒2=-2H

k

2

……

x n =-2H k

n

故环相对棒的总位移x =x 1+x 2+…+x n =-2H

k -1

所以W =kmgx =-2kmgH

k -1

解法二 经过足够长的时间棒和环最终静止,设这一过程中它们相对滑动的总路程为l ,由能量的转化和守恒定律有:

mgH +mg (H +l )=kmgl

解得:l =2H

k -1

故摩擦力对环和棒做的总功为:

W =-kmgl =-2kmgH

k -1

[答案] (1)(k -1)g ,方向竖直向上 (2)k +3

k +1

H

(3)-

2kmgH

k -1 【点评】 ①高考压轴题中常涉及多个物体多次相互作用的问题,求解这类题往往需要应用数学的递推公式或数列求和知识.

②一对滑动摩擦力做功的总和W =-f ·s 总,s 总为相对滑动的总路程. ③对于涉及两个对象的运动过程,规定统一的正方向也很重要.

●例7 如图8-8所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l 、足够长且电阻忽略不计,导轨平面的倾角为α,条形匀强磁场的宽度为d ,磁感应强度大小为B ,方向与导轨平面垂直.长度为2d 的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“

”形装置,总质量为m ,置于导轨上.导体棒中通以大小恒为I 的电流(由

外接恒流源产生,图中未画出).线框的边长为d (d

图8-8

(1)装置从释放到开始返回的过程中,线框中产生的焦耳热Q . (2)线框第一次穿越磁场区域所需的时间t 1.

(3)经过足够长时间后,线框上边与磁场区域下边界的最大距离x m . [2009年高考·江苏物理卷]

【解析】(1)设装置由静止释放到导体棒运动到磁场下边界的过程中,作用在线框上的安培力做功为W ,由动能定理得:

mg sin α·4d +W -BIld =0 且Q =-W

解得:Q =4mgd sin α-BIld .

(2)设线框刚离开磁场下边界时的速度为v 1,则接着向下运动2d ,由动能定理得:mg sin

α·2d -BIld =0-1

2

m v 12

线框在穿越磁场中运动时受到的合力F =mg sin α-F ′ 感应电动势E =Bd v

感应电流I ′=E

R

安培力F ′=BI ′d

由牛顿第二定律,在t 到(t +Δt )时间内,有Δv =F

m

Δt

则 Δv =∑[g sin α-B 2d 2v

mR ]Δt

有v 1=gt 1sin α-2B 2d 3

mR

解得:t 1=2m (BIld -2mgd sin α)+

2B 2d 3

R

mg sin α

(3)经过足够长时间后,线框在磁场下边界与最大距离x m 之间往复运动,由动能定理得: mg sin α·x m -BIl (x m -d )=0

解得:x m=BIld

BIl-mg sin α

.[答案] (1)4mgd sin α-BIld

(2)2m(BIld-2mgd sin α)+

2B2d3

R

mg sin α

(3)BIld

BIl-mg sin α

能力演练

一、选择题(10×4分)

1.图示是用来监测在核电站工作的人员受到辐射情况的胸章,通过照相底片被射线感光的区域,可以判断工作人员受到何种辐射.当胸章上1 mm铝片和3 mm铝片下的照相底片被感光,而铅片下的照相底片未被感光时,则工作人员可能受到了辐射的射线是()

A.α和βB.α和γ

C.β和γD.α、β和γ

【解析】α粒子的穿透能力很弱,一张普通的纸就能把它挡住,题中无法说明辐射中不含α射线,能穿透1 mm、3 mm铝片而不能穿透5 mm铅片的是β射线,若存在γ射线,则5 mm 厚的铅片也能被穿透,故A正确.

[答案] A

2.在电磁波发射技术中,使电磁波随各种信号而改变的技术叫调制,调制分调幅和调频两种.在图甲中有A、B两幅图.在收音机电路中天线接收下来的电信号既有高频成分又有低频成分,经放大后送到下一级,需要把高频成分和低频成分分开,只让低频成分输入下一级,如果采用如图乙所示的电路,图乙中虚线框a和b内只用一个电容器或电感器.以下关于电磁波的发射和接收的说法中,正确的是()

A.在电磁波的发射技术中,甲图中A是调幅波

B.在电磁波的发射技术中,甲图中B是调幅波

C.在图乙中a是电容器,用来通高频阻低频,b是电感器,用来阻高频通低频

D.在图乙中a是电感器,用来阻交流通直流,b是电容器,用来阻高频通低频

【解析】A图象中高频振荡的振幅随信号而变,为调幅波,B图象中高频振荡的频率随信号而变,为调频波,A正确,检波电路的作用为通低频阻高频,故a为电容较小的高频旁路电容器,b为高频扼流圈,C正确.

[答案] AC

3.如图所示,绝热汽缸固定在水平地面上,汽缸内用绝热活塞封闭着一定质量的理想气体,开始时活塞静止在图示位置,现用力使活塞缓慢向右移动一段距离,则在此过程中()

A .外界对汽缸内气体做正功

B .缸内气体的内能减小

C .缸内气体在单位时间内作用于活塞单位面积冲量增大

D .在单位时间内缸内气体分子与活塞碰撞的次数增加

【解析】体积膨胀,气体对外做功,内能减小,温度降低,选项A 错误、B 正确,由体积增大,温度降低知单位时间内气体对活塞的碰撞次数减少,压强减小,选项C 、D 错误.

[答案] B

4.两物体甲和乙在同一直线上运动,它们在0~0.4 s 时间内的v -t 图象如图所示.若仅在两物体之间存在相互作用,则物体甲与乙的质量之比和图中时间t 1分别为[2009年高考·全国理综卷Ⅱ]( )

A .1

3和0.30 s

B .3和0.30 s

C .1

3

和0.28 s

D .3和0.28 s

【解析】根据图象的特点可知甲做匀加速运动,乙做匀减速运动,根据a =Δv

Δt

,得两物

体加速度大小的关系为3a 甲=a 乙,根据牛顿第二定律有F m 甲=13·F

m 乙,得m 甲m 乙

=3,由a 乙=10 m/s 2

=10.4-t 1

,可解得t 1=0.3 s ,B 正确. [答案] B

5.某物体的v -t 图象如图所示,在下列给出的两段时间内,合外力的功和冲量都相同的是( )

A .0~t 1和t 2~t 4

B .t 1~t 2和t 3~t 4

C .0~t 2和t 2~t 4

D .0~t 1和t 3~t 4

【解析】0~t 1合外力做功为1

2m v 20

,合外力冲量为m v 0,t 2~t 4合外力做功和合外力冲量

都为0,A 错误;t 3~t 4时间内合外力做功为-12

m v 2

0,合外力冲量为m v 0,t 1~t 2合外力做功

为-12m v 20

,合外力的冲量-m v 0,0~t 2时间内,合外力做功和合外力冲量都为0.故C 正确.

[答案] C

6.一列简谐横波沿x 轴正向传播,t =0时刻波形如图所示,从图示时刻起经0.5 s 时间处于x =2的质点P 刚好第二次出现波峰,下列说法正确的是( )

A .t =0时刻,P 质点的速度方向指向y 轴正方向

B .Q 质点开始振动时,P 质点正在波峰

C .t =0.5 s 时刻,质点P 的加速度方向指向y 轴正方向

D .t =0.5 s 时刻,Q 质点第一次出现波峰

【解析】t 0=0时刻P 质点正向上振动,A 正确.又由题意知,t =0.5 s =5

4

T ,得T =0.4

s ,PQ =8 m =2λ,故Q 开始振动时P 处于平衡位置向上振动,B 错误.t =0.5 s 时刻,P 的

位移为正,加速度方向为负,C 错误;经过t =0.5 s ,波传播s =v t =4

0.4

×0.5=5 m ,Q 正处

于波峰,D 正确.

[答案] AD

7.如图所示,把一个带电小球A 固定在光滑的水平绝缘桌面上,在桌面的另一处放置带电小球B .现给小球B 一个垂直AB 连线方向的速度v 0,使其在水平桌面上运动,则下列说法中正确的是( )

A .若A 、

B 带同种电荷,B 球一定做速度增大的曲线运动 B .若A 、B 带同种电荷,B 球一定做加速度增大的曲线运动

C .若A 、B 带同种电荷,B 球一定向电势较低处运动

D .若A 、B 带异种电荷,B 球可能做速度和加速度大小都不变的曲线运动

【解析】若A 、B 带同种电荷,库仑力对B 球做正功,B 球做速度增大的曲线运动,B

的电势能减小,又由于AB 间距增大,故B 的加速度减小,若A 、B 为异种电荷,当m v 02r =kq A q B

r

2

时,B 球做匀速圆周运动,速度和加速度的大小都不变,D 正确.

[答案] AD

8.某一空间存在着磁感应强度为B 且大小不变、方向随时间t 做周期性变化的匀强磁场(如图甲所示),规定垂直纸面向里的磁场方向为正.为了使静止于该磁场中的带正电的粒子能按a →b →c →d →e →f 的顺序做横“∞”字曲线运动(即如图乙所示的轨迹),下列办法可行的是(粒子只受磁场力的作用,其他力不计)( )

A .若粒子的初始位置在a 处,在t =3T

8时给粒子一个沿切线方向水平向右的初速度

B .若粒子的初始位置在f 处,在t =T

2时给粒子一个沿切线方向竖直向下的初速度

C .若粒子的初始位置在e 处,在t =11

8T 时给粒子一个沿切线方向水平向左的初速度

D .若粒子的初始位置在b 处,在t =T

2

时给粒子一个沿切线方向竖直向上的初速度

【解析】要使粒子的运动轨迹如图乙所示,粒子做圆周运动的轨迹的周期应为T 0=

2πm

qB

=T

2

,结合左手定则可知,选项A 、D 正确. [答案] AD

9.水力采煤是利用高速水流冲击煤层而进行的,煤层受到3.6×106 N/m 2的压强冲击即可破碎,若水流沿水平方向冲击煤层,不考虑水的反向溅射作用,则冲击煤层的水流速度至少应为( )

A .30 m/s

B .40 m/s

C .45 m/s

D .60 m/s

【解析】建立如图所示模型,设水柱面积为S ,由动量定理:

F ·Δt =0-(ρS ·v 0·Δt )×(-v 0)

可得压强:p =F S =ρv 2

故使煤层破碎的速度至少应为v 0=

p

ρ

=60 m/s . [答案] D

10.如图甲所示,传送带通过滑道将长为L 、质量为m 的匀质物块以初速度v 0向右送上水平台面,物块前端在台面上滑动s 距离停下来.已知滑道上的摩擦不计,物块与台面间的动摩擦因数为μ而且s >L ,则物块的初速度v 0为( )

A .2μgL

B .2μgs -μgL

C .2μgs

D .2μgs +μgL

【解析】

物块位移在由0增大到L 的过程中,对台面的压力随位移由0均匀的增加至mg ,故整个过的摩擦力的大小随位移变化的图象如图乙所示,图中梯形“面积”即为物块克服摩擦力所做的功.

由动能定理得:12μmg (s -L +s )=1

2

m v 02

可解得v 0=2μgs -μgL . [答案] B

二、非选择题(共60分)

11.(6分)某实验小组拟用如图甲所示的装置研究滑块的运动.实验器材有滑块、钩码、

纸带、米尺、带滑轮的木板以及由漏斗和细线组成的单摆等.实验中,滑块在钩码的作用下拖动纸带做匀加速直线运动,同时单摆沿垂直于纸带运动的方向摆动,漏斗漏出的有色液体在纸带上留下的痕迹记录了漏斗在不同时刻的位置.[2008年高考·重庆理综卷]

(1)在图乙中,从________纸带可看出滑块的加速度和速度的方向一致.

(2)用该方法测量滑块加速度的误差主要来源有:____________________、____________________.(写出2个即可)

【解析】要使速度和加速度的方向相同,则必须选纸带B,因为B中相等的时间内纸带运动的距离越来越大.

[答案] (1)B(2分)

(2)摆长测量漏斗的重心变化(或液体痕迹偏粗、阻力变化等)(每空2分)

12.(9分)用高电阻放电法测电容的实验,是通过对高阻值电阻放电的方法,测出电容器的充电电压为U时,所带的电荷量为Q,从而再求出待测电容器的电容C.某同学的实验情况如下:

A.按图甲所示的电路连接好实验电路;

B.接通开关S,调节电阻箱R的阻值,使小量程电流表的指针偏转接近满刻度,记下这时电流表的示数I0=490 μA 及电压表的示数U0=6.2 V,I0和U0分别是电容器放电的初始电流和电压;

C.断开开关S,同时开始计时,每隔5 s或10 s测一次电流I的值,将测得数据填入预先设计的表格中,根据表格中的数据(10组)在以时间t为横坐标、电流I为纵坐标的坐标纸上描点,即图乙中用“×”表示的点.

(1)实验中,电阻箱所用的阻值R=________Ω.

(2)试根据上述实验结果,在图乙中作出电容器放电的I-t图象.

(3)经估算,该电容器两端的电压为U0时所带的电荷量Q0约为______C;该电容器的电容C约为______F.

【解析】由ΔQ=I·Δt知,电荷量为I-t图象与坐标轴所包围的面积,计面积时可数格数(四舍五入).

[答案] (1)1.3×104(3分)(2)用平滑曲线连接(2分)

(3)(8.0~9.0)×10-3(1.29~1.45)×10-3(每空2分)

13.(10分)质量为60 kg的消防队员从一根竖直的轻绳上由静止滑下,经2.5 s落地.轻绳受到的拉力变化情况如图甲所示,取g=10 m/s2.在消防队员下滑的过程中

(1)其最大速度和落地速度各是多大?

(2)在图乙中画出其v-t图象.

(3)其克服摩擦力做的功是多少?

【解析】(1)设该队员先在t 1=1 s 的时间内以加速度a 1匀加速下滑,然后在t 2=1.5 s 的时间内以加速度a 2匀减速下滑

第1 s 内由牛顿第二定律得: mg -F 1=ma 1 (1分) 最大速度v m =a 1t 1 (1分)

代入数据解得:v m =4 m/s (1分) 后1.5 s 内由牛顿第二定律得: F 2-mg =ma 2

该队员落地时的速度v =v m -a 2t 2 (1分) 代入数据解得:v =1 m/s . (2)图象如图丙所示. (2分)

(3)该队员在第1 s 内下滑的高度h 1=1

2

a 1t 12 (1分)

该队员在后1.5 s 内下滑的高度h 2=v m t 2-1

2

a 2t 22 (1分)

由动能定理得:

mg (h 1+h 2)-W f =1

2

m v 2 (1分)

代入数据解得:W f =3420 J . (1分)

[答案] (1)最大速度为4 m/s ,落地速度为1 m/s (2)如图丙所示 (3)3420 J

14.(11分)A 、B 两小球由柔软的细线相连,线长L =6 m ,现将A 、B 球先后以相同的初速度v 0=4.5 m/s 从同一地点水平抛出(先A 、后B ),相隔时间t 0=0.8 s .取g =10 m/s 2,问:

(1)B 球抛出后经过多长时间细线刚好被拉直?(线拉直时,两球都未落地) (2)细线刚被拉直时,A 、B 两球的水平位移(相对抛出点)各为多大? 【解析】(1)A 球先抛出,0.8 s 时间内

水平位移s 0=v 0t 0=4.5×0.8 m =3.6 m (1分)

竖直位移:h 0=12gt 2=1

2

×10×0.82 m =3.2 m (1分)

A 、

B 球都抛出后,若A 球以B 球为参照物,则水平方向相对速度为:v ABx =0,竖直方向上A 相对B 的速度为:

v ABy =gt 0=8 m/s (1分)

设B 球抛出后经过时间t 线被拉直,则有:

(h 0+v ABy ·t )2+s 02=L 2

(2分) 解得:t =0.2 s . (1分)

(2)至线拉直A 球运动的总时间: t A =t 0+t =1 s (2分)

故A 球的水平位移s A =v 0t A =4.5 m (2分) B 球的水平位移s B =v 0t =0.9 m (1分) [答案] (1)0.2 s (2)4.5 m 0.9 m

15.(12分)光滑平行的金属导轨MN 和PQ 的间距L =1.0 m ,它们与水平面之间的夹角α=30°,匀强磁场的磁感应强度B =2.0 T ,方向垂直于导轨平面向上,M 、P 间连接有阻值R =2.0 Ω 的电阻,其他电阻不计,质量m =2.0 kg 的金属杆ab 垂直于导轨放置,如图甲所示.用恒力F 沿导轨平面向上拉金属杆ab ,使其由静止开始运动,其v -t 图象如图乙所示.取

g =10 m/s 2

,设导轨足够长.

(1)求恒力F 的大小.

(2)金属杆的速度为2.0 m/s 时,加速度为多大?

(3)根据v -t 图象估算在前0.8 s 内电阻上产生的热量.

【解析】(1)由图乙知,杆运动的最大速度v m =4 m/s (2分) 此时有:F =mg sin α+F 安

=mg sin α+B 2L 2v m

R

(1分)

代入数据得:F =18 N . (1分)

(2)对杆进行受力分析,如图丙所示,由牛顿第二定律可得:

F -F 安-mg sin α=ma (1分)

a =F -B 2L 2v R

-mg sin α

m

代入数据得:a =2.0 m/s 2. (1分)

(3)由图乙可知,0.8 s 末金属杆的速度v 1=2.2 m/s (1分)

前 0.8 s 内图线与t 轴所包围的小方格的个数约为27,面积为27×0.2×0.2=1.08,即前0.8 s 内金属杆的位移为:

s =1.08 m (2分)

由能的转化与守恒定律得:

Q =Fs -mgs sin α-1

2

m v 12 (2分)

代入数据得:Q =3.80 J . (1分)

[答案] (1)18 N (2)2.0 m/s 2 (3)3.80 J

16.(12分)为研究静电除尘,有人设计了一个盒状容器,容器侧面是绝缘的透明有机玻璃,它的上下底面是面积S =0.04 m 2的金属板,间距L =0.05 m ,当连接到U =2500 V 的高压电源正负两极时,能在两金属板间产生一个匀强电场,如图所示.现把一定量均匀分布的烟尘颗粒密闭在容器内,每1 m 3 有烟尘颗粒1×1013个,假设这些颗粒都处于静止状态,

每个颗粒的带电荷量q =+1.0×10-17 C ,质量m =2.0×10-

15 kg ,不考虑烟尘颗粒之间的相互作用和空气阻力,并忽略烟尘颗粒所受的重力.问合上开关后:

(1)经过多长时间烟尘颗粒可以被全部吸附? (2)除尘过程中电场力对烟尘颗粒共做了多少功?

(3)经过多长时间容器中烟尘颗粒的总动能达到最大?

【解析】(1)由题意可知,只要位于上板表面的烟尘能被吸附到下板,烟尘即被认为全

部吸收.设经过时间t 烟尘颗粒可以被全部吸附,烟尘所受的电场力F =qU

L

(1分)

L =12at 2=12·F m t 2=qUt 2

2mL

(2分)

得:t =2m

qU

L =0.02 s . (1分)

(2)由于板间烟尘颗粒均匀分布,可以认为烟尘的质心位于板间中点位置,因此,除尘过程中电场力对烟尘所做的总功为:

W =12

NSLqU =2.5×10-

4 J . (3分)

(3)设烟尘颗粒下落的距离为x ,则板内烟尘的总动能为:

E k =12m v 2·NS (L -x )=qU L x ·NS (L -x ) (1分)

当x =L

2时,E k 达最大 (1分)

又x =1

2

at 12 (1分)

所以t 1=2x a =m

qU

L =0.014 s . (2分)

[答案] (1)0.02 s (2)2.5×10-

4 J (3)0.014 s

数学知识在物理中的应用

高中物理中数学知识的应用

如图讨论绳子变长时,绳子的拉力和墙面的支持力如何变化?解析法: θ cos 2G F =如果绳子变长,θ角减小,θcos 变大,F 2减小;θtan 1 G F =,θ角减小,θtan 减小,F 1减小。此题图解法较容易在此省略。在力(速度、加速度)的合成与分解问 题中正弦、余弦、正切函数知识用的很多。 (2)正弦定理应用实例: 如图所示一挡板和一斜面夹住一球,挡板饶底端逆时针旋转直到水平,讨论挡板和斜面对球的弹力如何变化?此题图解法较容易在此省略。

解析法:βθαsin sin sin 12F F G == α θ sin sin 2G F = 因为θ不变α从锐角变成90 大再变小,所以F 2先变小后变大; () ()θβθβθβ βθβαβοcos cot sin sin sin 180sin sin sin sin 1-= =+= --== G G G G F β角从钝角变为零的过程中,βcot 一直变大,所以F 1一直变小。 (用到了正弦定理、诱导公式、两角和的正弦函数这种解法理论性较强。 ) (3)化θθcos sin b a +为一个角的正弦应用实例 如图所示物体匀速前进时,当拉力与水平方向夹角为多少度时最省力?动摩擦因数设为μ。 解答:匀速运动合力为零()θμθsin cos F G F -= ()() θβμμθβθβμμθμμθμμμθ μθμ++= ++= ??? ? ??++++= += sin 1sin cos cos sin 1sin 1cos 111sin cos 22222G G G G F 所以当θβ+为直角时F 最小,也就是当1 1 arcsin 2 2 2 +-= -= μπ βπ θ时F 最小。 5.组合应用实例 如图所示一群处于第四能级的原子,能发出几种频率的光子?这个还可以用一个一个查数的办法解决,如果是从第五能级开始向低能级跃迁问可以发出几种频率的光子就很难一个一个地数了。 利用组合知识很容易解决,处于第四能级有623 42 4=?==! C N 种 处于第五能级有10! 24 5!3!2!52 5=?=?= =C N 种 6.平面几何(1)三角形相似应用实例 例题1:如图所示当小球沿着光滑圆柱缓慢上升时,讨论绳子的拉力 和支持力如何变化? 由三角形相似可得 l T h G R N ==可以N 不变T 减小。 例题2:(2013新课标)水平桌面上有两个玩具车A 和B ,两者用一轻质 橡皮筋相连,在橡皮绳上有一红色标记R 。在初始时橡皮筋处于拉直状态,A 、B 和R 分别位于直角坐标系中的(0,l 2),(0,l -)和(0,0)点。已 知A 从静止开始沿y 轴正向做加速度大小为a 的匀加速运动:B 平行于x 轴朝x 轴正向匀速运动。两车此

数学物理方法 (2)

数学物理方法 课程类别校级优秀□省级优质√省级精品□国家精品□项目主持人李高翔 课程建设主要成员陈义成、王恩科、吴少平、刘峰数学物理方法是理科院校物理类学生的一门重要基础课,该课程所涉内容,不仅为其后续课程所必需,而且也为理论和实际研究工作广为应用。因此,本课程教学质量的优劣,将直接影响到学生对后续课程的学习效果,以及对学生分析问题和解决问题的能力的培养。数学物理方法是物理专业师生公认的一门“难教、难学、难懂”的课程,为了将其变为一门“易教、易学、易懂”的课程,我们对该课程的课程体系、内容设置、教学方法等方面进行了改革和建设,具体做法如下: 一、师资队伍建设 优化组合的教师队伍,是提高教学质量的根本保证。本课程师资队伍为老、中、青三结合,其中45岁以下教师全部具有博士学位,均具有高级职称。课程原责任教师汪德新教授以身作则,有计划地对青年教师进行传、帮、带,经常组织青年教师观摩老教师的课堂教学、参与数学物理方法教材编写的讨论;青年教师主动向老教师学习、请教,努力提高自身素质和教学水平。现在该课程已拥有一支以中青年教师为主的教师队伍。同时,系领导对该课程教师队伍的建设一直比较重视,有意识地安排青年教师讲授相关的后续课程,例如,本课程现责任教师李高翔教授为物理系本科生和函授生多次主讲过《电动力学》、《量子力学》、《热力学与统计物理》等课程,使得他们熟知本门课程与后续专业课程的连带关系,因此在教学中能合理取舍、突出重点,并能将枯燥的数学结果转化为具体的物理结论,有利于提高学生的学习兴趣。培养学生独立分析问题和解决问题能力的一个重要前提是教师应该具有较强的科研能力,该课程的任课教师都是活跃在国际前沿的学术带头人或学术骨干,近5年来,他们承担国家自然科学基金项目共8项,在国内外重要学术刊物上发表科研论文60余篇,并将科研成果注入教学中。此外,本课程大多数教师有多次出国合作研究的经历,并且在学校教务处和外事处的支持下,吴少平副教授参加了由国家留学基金委员会组织的赴英“双语教学研修项目”,为本课程双语教学的开展打下了良好的基础。 二、教学内容 数学物理方法是联系高等数学和物理专业课程的重要桥梁,本课程的重要任务是教会学生如何把各种物理问题翻译成数学的定解问题,并掌握求解定解问题的多种方法。本门课程的基本教学内容主要包括复变函数论、数学物理方程两部分。与国内流行的教材和教学内容相比,在讲解数理方程的定解问题时,本门课程教学内容的特色之一是按解法分类而不按方程的类型分类,这样,可以避免同一方法的多次重复介绍;特色之二是把线性常微分方程的级数解法和特殊函数置于复变函数论之后、数学物理方程之前,一方面可将这些内容作为复变函数理论的一个直接应用,使学生进一步巩固已学的相关知识,另一方面可使正交曲线坐标系中分离变量法的叙述更加流畅,并通过与直角坐标系中分

数学在各方面的的应用

附录三关于数学在理科中应用的调查报告 我们对理科中物理、化学、计算机基础中数学知识的应用进行了相关的调查。调查过程中翻阅了大量的相关资料,并询问了不少相关的专家,现将结果公布如下: 一、物理学中的数学知识 数学是物理学的基础和工具。离开了数学,物理学几乎寸步难行。现行大学物理系的数学教材几乎囊括了所有高等数学的基础知识。理论物理和实验物理都必需具备相当高深的数学知识。 理论物理中所应用的数学知识有:空间及其拓朴、映射、实分析、群论、线性代数、方阵代数、微分流形和张量、黎曼流行、李导数、李群、矢量分析、积分变换(包括傅里叶变换和拉普拉斯变换)、偏微分方程、复变函数、球函数、柱函数、函数、格林函数、贝塞尔函数、勒让德多项式等。 实验物理中所应用的数学知识呈主要集中在概率统计学中。包括一维、多维随机变量及其分布、概率分布、大数定律、中心极限定理、参数估计、极大似然法等。其中概率分布包括伯努力分布、泊松分布、伽马分布、分布、t分布、F分布等。 从上可以看出,上述数学知识对物理专业来讲,必需了解,且有的需要深入了解。比如群论、空间及拓朴、积分变换、偏微分方程、概率分布、参数估计等。工科和理科、师范类和非师范类、物理专业和非物理专业、其物理学习中所应用的数学知识也有范围和程度上的变化。工科就没有理科要求高,物理专业中所涉及的数学知识也比非物理专业所学物理课本上的数学知识丰富的多。 二、化学中的数学知识 初等化学只是简单介绍物质的组成、结构、性质、变化及合成。除了相应的计算外,与数学的联系没有物理学那么紧密。高等化学需要更深入的研究物质,因此需要相应的高等数学知识为基础。下面我们就化学理论和化学实验两种课程来讨论。 化学理论中所应用的数学知识有:级数及其应用、幂级数与Taylor展开式、Fourier级数、Forbemus方法、Bessel方程、Euler-Maclaurh加法公式、String公式、有限差分、矩阵、一阶偏微分方程、二阶偏微分方程、常微分方程(包括一阶、二阶、线性、联立)、特殊函数(包括贝尔函数和勒让德多项式)积分变换、初步群论等。 化学实验中所应用的数学知识有:随机事件及其概率、随机变量的数字特征、随机分量及其分布、大数定理、中心极限定理、参数估计等。 从上面可以看出,化学中的数学知识主要应用于计算,因此大部分是一些数学公式和方程,并没有更深一步理论推导及逻辑思维、形象思维的要求。所以,化学专业中数学知识的要求不高,只限于了解并会套公式而已。

数学方法在物理学中的应用一)

数学方法在物理学中的应用(一) 物理学中的数学方法是物理思维和数学思维高度融合的产物,借助数学方法可使一些复杂的物理问题显示出明显的规律性,能达到打通关卡、快速简捷地解决问题的目的。高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上都是一个将物理问题转化为数学问题,然后经过求解再次还原为物理结论的过程。复习中应加强基本的运算能力的培养,同时要注意三角函数的运用,对于图象的运用要重视从图象中获取信息能力的培养与训练。在解决带电粒子运动的问题时,要注意几何知识、参数方程等数学方法的应用。在解决力学问题时,要注意极值法、微元法、数列法、分类讨论法等数学方法的应用。 一、极值法 数学中求极值的方法很多,物理极值问题中常用的极值法有:三角函数极值法、二次函数极值法、一元二次方程的判别式法等。 1.利用三角函数求极值 y =acos θ+bsin θ = ( + ) 令sin φ= ,cos φ= 则有:y = (sin φcos θ+cos φsin θ) =sin (φ+θ) 所以当φ+θ=π2 时,y 有最大值,且y max =. 典例:在倾角θ= 30°的斜面上,放置一个重量为200 N 的物体,物体与斜面间的动摩擦因数为μ= 3 3,要使物体沿斜面匀速向上移动,所加的力至少要多大?方向如何?

【解析】设所加的外力F 与斜面夹角为α,物体受力情况如图所示。 由于物体做匀速直线运动,根据共点力的平衡条件,有 F cos α- mg sin θ-f = 0 N +F sin α - mg cos θ = 0 而f =μN 解得:F =α μαθμθsin cos cos (sin ++mg 因为θ已知,故分子为定值,分母是变量为α的三角函数 y=cos + = ( cos + sin ) = (sin cos + cos sin ) = sin(+ ) 其中 sin = ,cos = ,即 tan = 。 当+ = 90 时,即 = 90 - 时,y 取最大值 。 F 最小值为 ,由于 = ,即 tan = ,所以 = 60。 带入数据得 Fmin = 100 N,此时 = 30 。 【名师点睛】根据对物体的受力情况分析,然后根据物理规律写出相关物理量的方程,解出所求量的表达式,进而结合三角函数的公式求极值,这是利用三角函数求极值的常用方法,这也是数学中方程思想和函数思想在物理解题中的重要应用。 2.利用二次函数求极值 二次函数:y =ax 2+bx +c =a (x 2+b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 2 4a (其中a 、b 、c 为实常数),当x =-b 2a 时,有极值y m =4ac -b 24a (若二次项系数a >0,y 有极小值;若a <0,y 有极大值)。 典例:在“十”字交叉互通的两条水平直行道路上,分别有甲、乙两辆汽车运动,以“十”字中心为原点,沿直道建立xOy 坐标系。在t = 0 时刻,甲车坐标为(1,0),以速度v 0=k m/s 沿 -x 轴方向做匀速直线运

考研数学之物理应用分析

Born To Win 人生也许就是要学会愚忠。选我所爱,爱我所选。 考研数学之物理应用分析 数学一和数学二的学生对物理应用这一块掌握的比较薄弱。物理应用不是数学一和数学二的常考点,但是一旦考了,学生往往都不会。2015年数学二的考研真题出了一道与物理应用有关的大题。这是个拉分题,很多同学都不会。所以希望大家能够对物理应用有足够的重视,特别是那些立志上名校,希望数学给力的学生。下面,跨考教育数学教研室的向喆老师就来和大家分享物理应用分析的学习方法。 一.明确知识框架 有句古语:知己知彼,百战不殆。物理应用可以说是比较难的知识点,所以大家就应该明了考研都考了那些物理应用。首先,只有数学一和数学二才考物理应用。然后,物理应用分布在导数应用,定积分应用,微分方程应用中,其中物理应用在定积分中考查的最多。最后,有关的物理知识的储备。比如说速率,做功,压强,压力等。 二.掌握学习方法 大家在明白了物理应用的体系后,就应该掌握相应的学习方法。首先是导数中的物理应用。通过对历年真题的研究,我发现导数的物理应用主要体现在对导数物理意义的理解,即速率。然后是定积分中的物理应用。这是考查的重点。主要包括:变力做功(变力对质点沿直线做功和克服重力做功);液体静压力;质心及形心。这三个部分求解的核心思想是微元法:分割,近似,求和,取极限。大家应该把定积分的定义即曲边梯形面积是怎么求得掌握。接着,大家就应该把这三部分的微元法思想推一遍,从而熟练掌握本质的含义。其中克服重力做功问题已经在真题中出现过。最后是微分方程中的物理应用。通过历年考题分析,我发现微分方程中的物理应用主要考察的是牛顿第二定律。据此联系了位移与速率;重力,浮力及阻力与加速度关系。总之,在学习这部分知识时候,应该有一些基本的思想。比如说:微元法思想,牛顿第二定律,压强及压力,位移与速率等。 三.熟练掌握题型 大家在明白了知识体系以及学习方法后就应该通过做题来巩固。不过现在出现了一个问题:数学一和数学二的同学有很多都不是学物理的。所以有必要对基本的物理知识进行回顾。大家可以参考下高中的物理课本就够了。针对做题,题目不求多,关键是把真题搞懂。大家可以看下从1989年到2014年的真题,找到其中的物理应用部分,然后仔细的思考下,做一下,总结题型,体会下思想方法。 总之:物理应用部分是高等数学中一个难点,虽不是热点问题,但是往往冷不丁的在真题中出现,它是制约着大家能否拿高分的瓶颈。所以,大家应该掌握物理应用的知识体系,学习方法及该做哪些题目。 文章来源:跨考教育

数学物理方法学习心得

竭诚为您提供优质文档/双击可除数学物理方法学习心得 篇一:数学物理方程的感想 数学物理方程的感想 通过对数学物理方程一学期的学习,我深深的感受到数学的伟大与博大精深。 当应用数学发展到一定高度时,就会变得越来越难懂,越来越抽象,没有多少实际的例子来说明;物理正好也要利用数学来进行解释和公式推导,所以就出现了数学物理方法。刚开始到结束这门课程都成了我的一大问题。很难理解它的真正意义(含义),做题不致从何入手,学起来越来越费劲。让我很是绞尽脑汁。 后来由于老师耐心的指导与帮助下我开始有了点理解。用数学物理方法来解释一些物理现象,列出微分方程,当然这些微分方程是以物理的理论列出来的,如果不借助于物理方法,数学也没有什么好办法来用于教学和实践,而物理的理论也借助于数学方法来列出方程,解出未知的参数。这就是数学物理方法的根本实质所在。真正要学好数学物理方程

不仅要数学好物理也不能够太差。 接下来我想先对数学物理方程做一个简单的介绍与解 释说明。数学物理方程——描述许多自然现象的数学形式都可以是偏微分方程式 特别是很多重要的物理力学及工程过程的基本规律的 数学描述都是偏微分方程,例如流体力学、电磁学的基本定律都是如此。这些反映物理及工程过程的规律的偏微分方程人们对偏微分方程的研究,从微分学产生后不久就开始了。例如,18世纪初期及对弦线的横向振动研究,其后,对热传导理论的研究,以及和对流体力学、对位函数的研究,都获得相应的数学物理方程信其有效的解法。到19世纪中叶,进一步从个别方程的深入研究逐渐形成了偏微分的一般理论,如方程的分类、特征理论等,这便是经典的偏微分方程理论的范畴。 然而到了20世纪随着科学技术的不断发展,在科学实践中提出了数学物理方程的新问题,电子计算机的出现为数学物理方程的研究成果提供了强有力的实现手段。又因为数学的其他分支(如泛函分析、拓扑学、群论、微分几何等等)也有了迅速发 展,为深入研究偏微分方程提供了有力的工具。因而,20世纪关于数学物理方程的研究有了前所未有的发展,这些发展呈如下特点和趋势:

物理方法在数学解题中的应用

龙源期刊网 https://www.360docs.net/doc/4616703385.html, 物理方法在数学解题中的应用 作者:李光才 来源:《考试周刊》2013年第01期 摘要:数学方法和物理有着不解之缘.用数学方法去解物理问题似乎理所当然(因为数学是工具),但是反过来用物理方法去解数学问题(它有时巧妙与简洁),也许不太为人们所重视.本文谈谈物理方法在解数学问题中的应用. 关键词:物理方法数学问题应用 早在两千多年以前,古希腊学者阿基米德就曾用物体的平衡定律解一些几何问题,数学家庞加莱也说过:物理学不仅给数学工作者一个解题的机会,而且帮助我们发现解题的方法,其方式有二:它引导我们预测解答及提示适合的论证方法. 我们首先来看物理方法在解几何问题上的应用. 例1:如图,G是△ABC的重心,l是△ABC外一直线,若自A﹑B﹑C﹑G各向l作垂 线,垂足分别是A′﹑B′﹑C′﹑G′,则AA′+BB′+CC′=3GG′. 这个问题直接用几何方法可以证明,只是稍嫌麻烦(还要作辅助线),但若从力学的角度考虑,结论几乎是显然的. 证明:今在A﹑B﹑C各置一个单位质点,则整个质点系质量为3单位,且重心恰好在G. 若重力方向视为与l垂直方向,则质点组{A,B,C}对l的力矩为:l·AA′+l·BB′+l·CC′,它恰好等于质心G(质量为3个单位)对于l的力矩,而这个力矩正好是3GG′. 例2:三个乡村要联合办一所小学,其中甲村有50名,乙村庄有学生70名,丙村有学生90名.问这所学校办在什么地方可以使学生所走路程总和最小? 这个问题从数学的角度出发属于求函数的极值问题,现在我们用物理的方法来解决. 解:如图,在一块木板上画好三个村位置,然后在标有三村位置的点处各钻一孔,再把三条系在一起的绳子分别穿过三个孔,绳子下段各挂有重量比是5:7:9的三个重物,当它们平衡时,绳子结点所在位置,即为所求学校的位置.(利用位能最小原理) 最后我们来看一个求三角函数的例子. 例3:求sin18°的值.

《高等数学》知识在物理学中的应用举例

《高等数学》知识在物理学中的应用举例 一 导数与微分的应用 分析 利用导数与微分的概念与运算,可解决求变化率的问题。求物体的运动速度、加速度的问题是典型的求变化率问题。在求解这类问题时,应结合问题的物理意义,明确是在对哪个变量求变化率。在此基础上,灵活运用各类导数和微分公式解决具体问题。 例 1 如图,曲柄,r OA =以均匀角速度ω饶定点O 转动.此曲柄借连杆AB 使滑块B 沿直线Ox 运动.求连杆上C 点的轨道方程及速度.设,a CB AC == ,?=∠AOB .ψ=∠ABO y 解 1) 如图,点C 的坐标为: ψ?cos cos a r x +=, (1) .sin ψa y = (2) 由三角形的正弦定理,有 ,sin 2sin ? ψa r = o x 故得 .2sin 2sin r y r a == ψ? (3) 由(1)得 r y a x r a x 2 2cos cos --= -=ψ? (4) 由,1cos sin )4()3(2222=+=+??得 ,12422 222222=---++r y a x y a x r y 化简整理,得C 点的轨道方程为: .)3()(422222222r a y x y a x -++=- 2) 要求C 点的速度,首先对(1),(2)分别求导,得 ,sin cos 2cos sin ψψ?ω?ωr r x --=' ,2 cos ? ωr y =' 其中.?ω'=

又因为,sin 2sin ψ?a r = 对该式两边分别求导,得 .cos 2cos ψ ? ωψa r = ' 所以C 点的速度 2 2 y x V '+'=4 cos )sin cos 2cos sin (2222 ?ωψψ?ω?ωr r r + --= .)sin(cos sin 4cos cos 22ψ?ψ??ψ ω ++= r 例2 若一矿山升降机作加速度运动时,其加速度为),2sin 1(T t c a π-=式中c 及 T 为常数,已知升降机的初速度为零,试求运动开始t 秒后升降机的速度及其所走过的路程. 解: 由题设及加速度的微分形式dt dv a = ,有 ,)2sin 1(dt T t c dv π-= 对等式两边同时积分 ? ?-=v t dt T t c dv 0 ,)2sin 1(π 得: ,2cos 2D T t T c ct v ++=ππ 其中D 为常数. 由初始条件:,0,0==t v 得,2c T D π - =于是 )].12(cos 2[-+ =T t T t c v ππ 又因为,dt ds v = 得 ,)]12(cos 2[dt T t T t c ds -+ =ππ 对等式两边同时积分,可得: )].2sin 2(221[2t T t T T t c s -+=πππ

物理学中的逻辑.

物理学中逻辑 内容提要 本文探讨了形式逻辑,经典物理学逻辑,近代物理学逻辑。认为近代物理学的两大柱石即相对论和量子力学在理论完备性和可靠性存在问题。 李鑫2017年6月28日 目录 1形式逻辑 2经典物理学逻辑 2.1牛顿的理论体系 2.2经典电磁学理论体系 3近代物理学逻辑 3.1相对论 3.2量子力学

1形式逻辑 形式逻辑研究的推理中的前提和结论之间的关系,是由作为前提和结论的命题的逻辑形式决定的,而命题的逻辑形式(简称命题形式)的逻辑性质则是由逻辑常项决定的。要弄清逻辑常项的性质,系统地揭示推理规律,就要通过建立逻辑演算,进行元逻辑的研究。研究元逻辑的方法是形式化的公理方法。 形式逻辑的规则:同一律、矛盾律、排中律和理由充足律。这四条规律要求思维必须具备确定性、无矛盾性、一贯性和论证性。 形式逻辑是人们思维的法则,人的思维要把握全貌,辩证分析, 2经典物理学逻辑 2.1牛顿的理论体系 牛顿的理论体系包括牛顿绝对时空观、牛顿动力学三定律和牛顿万有引力规律。 牛顿的绝对时空观念认为空间三维坐标架是绝对静止的,空间坐标表示事件发生的地点和区域的大小,时间是永恒均匀流逝的,时间表示事件发生的先后次序和过程的久暂。 牛顿的动力学三定律包括惯性定律、作用力与质量和加速度乘积成正比和作用力和反作用大小相等,方向相反。 牛顿万有引力定律是引力作用力与质量乘积成正比,和距离平方成反比。 牛顿认为空间是空虚的,作用力是瞬时超距的。校时信号传播速度是无限大,各地的时钟都指向同一时刻,事件发生的同时性是绝对的。 Newton把他的力学理论命名为《自然哲学的数学原理》,可见牛顿对哲学和逻辑学重视。牛顿理论体系自成系统,符合形式逻辑。 牛顿的理论被后来的物理学家拉格朗日和哈密顿等人发展成理论力学。 2.2经典电磁学理论体系 19世纪中叶,描述电磁现象的基本实验规律:库仑定律、毕-萨-拉定律、安培定律、欧姆定律、法拉第电磁感应定律等已经先后提出,建立统一电磁理论的课题摆在了物理学家面前。J.C。Maxwell审查了当时已知的全部电磁学定律、定理的基础,提取了其中带有普遍意义的内容,提出了有旋电场的概念和位移电流的假设,揭示了电磁场的内在联系和相互依存,完成了建立电磁场理论的关键性突破。1865年Maxwell建立了包括电荷守恒定律、介质方程以及电磁场方程在内的完备方程组。麦克斯韦方程组关于电磁波等的预言在三十年后为德国物理学家H.-R.Hertz的实验所证实,证明了位移电流假设和电磁场理论的正确性。它是物理学继牛顿力学之后的又一伟大成就。荷兰物理学家H.-A.Lorentz于1895年提出了著名的洛伦兹力公式,完善了经典电磁理论。经典电磁理论被包括在经典电动力学理论体系之中。 经典理论力学和电动力学是人类认识自然界的两大丰碑,是形式逻辑典范。 3近代物理学逻辑 3.1相对论 1905年9月,德国《物理学年鉴》发表了爱因斯坦的《论动体的电动力学》,这篇论文包含了狭义相对论的基本思想和基本内容。[2]狭义相对论两个基本假设是物理规律在所有惯性系中都具有相同的形式和光速不变原理。光速不变原理有确定函义:第一,光在真空传播

数学物理方法课程教学大纲

《数学物理方法》课程教学大纲 (供物理专业试用) 课程编码:140612090 学时:64 学分:4 开课学期:第五学期 课程类型:专业必修课 先修课程:《力学》、《热学》、《电磁学》、《光学》、《高等数学》 教学手段:(板演) 一、课程性质、任务 1.《数学物理方法》是物理教育专业本科的一门重要的基础课,它是前期课程《高等数学》的延伸,为后继开设的《电动力学》、《量子力学》和《电子技术》等课程提供必需的数学理论知识和计算工具。本课程在本科物理教育专业中占有重要的地位,本专业学生必须掌握它们的基本内容,否则对后继课的学习将会带来很大困难。在物理教育专业的所有课程中,本课程是相对难学的一门课,学生应以认真的态度来学好本课程。 2.本课程的主要内容包括复变函数、傅立叶级数、数学物理方程、特殊函数等。理论力学中常用的变分法,量子力学中用到的群论以及现代物理中用到的非线性微分方程理论等,虽然也属于《数学物理方法》的内容,但在本大纲中不作要求。可以在后续的选修课中加以介绍。 3.《数学物理方法》既是一门数学课程,又是一门物理课程。注重逻辑推理和具有一定的系统性和严谨性。但是,它与其它的数学课有所不同。本课程内容有很深广的物理背景,实用性很强。因此,在这门课的教学过程中,不能单纯地追求理论上的完美、严谨,而忽视其应用。学生在学习时,不必过分地追求一些定理的严格证明、复杂公式的精确推导,更不能死记硬背,而应重视其应用技巧和处理方法。

4.本课程的内容是几代数学家与物理学家进行长期创造性研究的成果,几乎处处都闪耀创新精神的光芒。教师应当提示学生注意在概念建立、定理提出的过程中所用的创新思维方法,在课堂教学中应尽可能地体现历史上的创造过程,提高学生的创造性思维能力。二、课程基本内容及课时分配 第一篇复数函数论 第一章复变函数(10) 教学内容: §1.1.复数与复数运算。复平面,复数的表示式,共轭复数,无穷远点,复数的四则运算,复数的幂和根式运算,复数的极限运算。 §1.2.复变函数。复变函数的概念,开、闭区域,几种常见的复变函数,复变函数的连续性。 §1.3.导数。导数,导数的运算,科希—里曼方程。 §1.4.解析函数。解析函数的概念,正交曲线族,调和函数。 §1.5.平面标量场。稳定场,标量场,复势。 第二章复变函数的积分(7) 教学内容: §2.1.复数函数的积分,路积分及其与实变函数曲线积分的联系。 §2.2.科希定理。科希定理的内容和应用,孤立奇点,单通区域,复通区域,回路积分。 §2.3.不定积分*。原函数。 §2.4.科希公式。科希公式的导出,高阶导数的积分表达式。(模数原理及刘维定理不作要求) 第三章幂级数展开(9) 教学内容:

高中物理解题中涉及的数学知识

高中物理解题中涉及的数学知识 物理和数学是联系最密切的两门学科。运用数学工具解决物理问题的能力,是中学物理教学的最基本的要求。高中物理中用到的数学方法有:方程函数的思维方法,不等式法,极限的思维方法,数形结合法,参数的思维方法,统计及近似的思维方法,矢量分析法,比例法,递推归纳法,等等。现就“力学”与“电磁学”中常用数学知识进行归纳。 Ⅰ.力学部分:静力学、运动学、动力学、万有引力、功和能量与几何、代数知识相结合,从而增大题目难度,更注重求极值的方法。 Ⅱ.电磁学部分:电磁学中的平衡、加速、偏转及能量与圆的知识、三角函数,正余弦定理、相似三角形的对应比、扇形面积、二次函数求极值(配方法或公式法)、均值不等式 、正余弦函数、积化和差、和差积化、半角倍角公式、直线方程(斜率,截距)、对称性、)sin(cos sin 22?θθθ++=+b a b a a b =?tan 、数学归纳法及数学作图等联系在一起。 第一章 解三角形 三角函数 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,则有2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 变形公式: ::sin :sin :sin a b c C =A B ; 2、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 3、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:222 cos 2b c a bc +-A = 4、均值定理: 若0a >,0b >,则a b +≥,即2 a b +≥ ()2 0,02a b ab a b +??≤>> ??? ; 2 a b +称为正数a 、b a 、b 的几何平均数. 5、均值定理的应用:设x 、y 都为正数,则有 ⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值 2 4 s . ⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值 1、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α= . 2、弧度制与角度制的换算公式:2360π= ,1180 π = . 3、若扇形的圆心角为()α α为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=, 2C r l =+,2112 2 S lr r α==. 4、角三角函数的基本关系:()221sin cos 1αα+=;()sin 2tan cos α αα =. 5、函数的诱导公式:

数学思想在高中物理中的应用

数学思想在高中物理中的应用 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢众所周知,物理学的发展离不开数学,数学是物理学发展的根基,并且很多物理问题的解决是数学方法和物理思想巧妙结合的产物。打好数学基础要从高中做起,培养学生的数学思想,创新能力,更好的与大学课程接轨,更早的把高中生带到物理殿堂。下面以一题为例说明一下数学思想在物理中的应用:【例一】如图所示,一根一段封闭的玻璃管,长L=96厘米内有一段h1=20厘米的水银柱,当温度为27摄氏度,开口端竖直向上时,被封闭气柱h2=60厘米,温度至少多少度,水银才能从管中全部溢出?解:首先使温度升高为T0以至水银柱上升16厘米,水银与管口平齐,此过程是线性变化。温度继续升高,水银溢出,此过程不再是线性关系。设温度为T时,剩余水银柱长h,对任意位置的平衡态列

方程:(76+ h1)×60/300=(76+h) ×(96-h)/ T 整理得:T=(-h2+20h+7296)/h的变化范围0——20,可以看出温度T是h的二次函数,此问题转化为在定义域内求T 的取值范围,若Tminmax,只有当温度T 大于等于Tmax 才能使水银柱全部溢出,经计算所求值Tmax = 。只有通过二次函数极值法,才能从根上把本体解决。加强数学思想的渗透是新教材新的一个体现,比如:“探索弹簧振子周期与那些因素有关”,“探索弹簧弹力与伸长的关系”。在实际教学过程中应该引起高度重视并加以扩展。大学物理课程与高中物理课程跨度较大,难点在于运用数学手段探索性研究物理问题的方法,另外微积分思想比较难以理解,为了与大学物理课程更好的接轨,在高中阶段对学生进行微积分思想的渗透也是非常必要的。因此在高中物理教学过程中应抓住有利时机渗透微元思想,为学好微积分奠定良好的基础。渗透的内容应该有两方面:一是变化率,二是无限小变化

物理学中的数学

物理学中的数学 物理学中的数学,这是一个论述范围十分宽广的话题。我是数学系的,学的是纯数学,可我对物理学从小就有着莫大的兴趣,至今对他仍是念念不忘,时刻关注着它的发展。所以,对于物理学中的数学这一话题,也有着浅浅的思考和感悟。物理学和数学是我一生最为感兴趣的学科,鉴于此,我想写一篇关于它们之间的论述,一点也许不着边际的泛泛之谈,以泄自己心头之爱。 数学对于整个自然科学(甚至社会科学也可以算在内)的重要性,我想任何语言都是无法言明的。上帝是数学家,唯一能够描述的语言是数学,这句话却一点也没错。往小一点说,如果没有数学,也就没有今天的现代科技。当然,现在要说的仅仅是物理学中的数学。 事实胜于雄辩,真实的历史往往能反映这一点。所以我们将跟随物理学这一门学科的发展历程,穿过历史的层层迷雾,从中我们可以发现,物理学的建立与发展应用了哪些数学工具,而数学又是如何对物理产生重要影响和推动的,从中我们也可以看到,整个的物理学大厦是如何建立在这些简洁优美的数学法则之上的。 近代物理学都沿袭了希腊古典科学的血统,延续着古希腊式的精神文明。古希腊人从以思辨为主的哲学逐渐地发展出了众多分支学科,其中最重要的分支就是数学和物理学。从很多的事例我们可以看出,古希腊那些有才学的人,当时对数学是非常之重视,例如,毕达哥拉斯学派曾提出了一个重要的理念,数即万物,光从字面意思理解,这句话是很有问题的,但从世界是按照数学逻辑运转的角度看的话,这句话是对于当时是很有前瞻性的,但不管如何,他们还是隐约地发现了数学逻辑在物质运转所诠释的作用。又一个例子,柏拉图在自己新开设的柏拉图学园的门口立了一块牌子:不懂数学者不得入内。以此种种表明他们对数学非常之看重。古希腊的百科全书式学者,亚里士多德,从日常的观察实践,凭借经验总结出万物运行的一套理论,虽然现在看来有些显得非常之荒谬和幼稚,但这至少是人类认识世界和改造世界的一个起始,是物理学的雏形。 伽利略,这位近代物理学之父,创造出了数学推理与实验相结合的科学传统,这是历史上数学与物理学第一次的大融合。数学推导加上物理实验,此后一直是科学发现的一把神器,合称双剑,后来,牛顿利用这把神器大刀阔斧地建立了他的经典物理学,人类也有史以来第一次建立起了整个物理世界的体系(牛顿很幸运,因为机会只有一次),万物毕恭毕敬地遵守着这些法则(laws)运转。这次帮助牛顿建立起的经典物理学大厦的数学工具就是它自己独自发明的流数和反流数(微积分)。今天,我们仍可以回顾那一段令人激动的历史,“1685年牛顿应用微积分证明了,地球吸外部物体时,恰像全部的质量集中在球心(球对称)一样。”其实这是发现万有引力定律很关键的一步,胡克就因为不懂微积分而与发现万有引力定律而无缘。有了万有引力定律,以后再利用数学上的微积分则可以随时计算出各行星的运行轨道(各类双曲线形)。这是多么美妙的一件事,上帝运行这个宇宙的法则和奥秘终于被发现了,有了牛顿,一切都光明了。 分析力学,牛顿力学的另一种表述,或者说是它的推广和严格化,不过这次登场的主要是数学家。其实可以看出,很多时候,数学家和物理学家是互通的,所谓数理不分家,以前的科学家动不动就是数学家兼物理学家,后面还有什么家家的,真的是牛人一个,不过自彭加莱以后,就再也没有这样的通才了(知识爆炸的今天,任何一个小领域都能吞噬一个人一辈子的时间)。18世纪的数学家们创立了分析力学,以先进的数学工具重新表述了牛顿力学体系,用独特的数学形式重新刷新了整个力学系统。数学家欧拉所发明的变分法(其实后来拉格朗日也独自发明了变分法,之间还有他们两人之间的一段小故事)则直接孕育了力学中的最小作用原理。其实上帝在创造宇宙必定是按照这个原理进行的,因为这是最为经济和实惠的创造方式。“分析力学最终的成就是拉格朗日方程。由虚功原理和达朗贝尔原理,可以得到所谓的力学普遍方程,在此基础上,拉格朗日进一步引进了广义坐标,广义速度和广义

数学物理方法教学大纲-上海交通大学致远学院

致远学院课程教学大纲 一、课程基本信息 课程代码:MA131 课程名称(中文):数学物理方法 课程名称(英文):Mathematical physics 学分/学时:38/2 课程讨论时数(小时):0 课程实验数(小时):0 开课时间:秋 课程类别:本科生学位课 开课院系:理学院物理系 任课教师(姓名/工号):周栋焯/10696 预修课程:数学分析,高等代数,复变函数,常微分方程,偏微分方程 面向专业:理学院数学系、物理系以及“理工结合类”学生 二、课程内容简介 本课程是针对高年级的数学系或者物理系开设的,一般的情况下,授课内容包含复变函数、数学物理方程、积分变换以及特殊函数等。由于致远学院的学生上本课之前已经修完了复变函数,偏微分方程等课程,因此该课程仅简单回顾一下复变函数、傅里叶变换以及三类典型的数学物理方程的导出等内容,然后介绍球坐标与柱坐标下得到的特殊函数满足的常微分方程以及相应的幂级数解法和本征值问题,重点介绍特殊函数及其相关性质,为学习电动力学、量子力学等课程打下基础,同时系统介绍张量分析与计算,为学习弹性体力学、流体力学等课程打下基础,最后介绍格林函数及其相关求解方法,如果时间允许的话,再补充一些渐进分析的相关理论。 三、教学内容安排与学习要求 第一部分复变函数与积分变换(简单回顾)(2学时) 1.1 复变函数的基本概念 1.2 解析函数和复变函数的微分 1.3 复变函数的积分 1.4 幂级数和罗朗级数

1.5 残数定理及应用 1.6 傅里叶变换与 函数 1.7 傅里叶级数与傅里叶积分 第二部分数学物理方程(8学时) 2.1 三类典型数学物理方程的导出 2.2 变量分离法与傅里叶展开法 2.3 球坐标与柱坐标下特殊函数常微分方程 2.4 常微分方程的级数解法(常点与正则奇点)2.4 斯托姆-刘维尔本征值问题 第三部分特殊函数(12学时) 3.1 勒让德函数的相关性质 3.2 连带勒让德函数 3.3 一般球函数 3.4 三类柱函数 3.5 柱函数的相关性质 3.6 贝塞尔方程与虚宗量贝塞尔方程 3.7 球贝塞尔方程 3.8 柱函数与球函数的应用 第四部分张量分析(10学时) 4.1 张量的记法 4.2 坐标变换与倒易坐标系 4.3 一般张量的定义 4.3 协变张量与逆变张量 4.4 黎曼空间以及度量张量、共轭度量张量 4.5 不同坐标系下张量表示 4.6 张量的协变导数与物质导数 第五部分格林函数法(6学时) 5.1含时与不含时的格林函数 5.2镜像电荷法与冲量定理法求格林函数

数学在各学科中的作用

数学在各学科中的作用 当今世界的科技每时每刻都在飞速地发展,物理,化学,生物,建筑,信息技术等等各式各样的学科无一不在现代生活中展现着他们的魅力,,然而,在所有这些学科的背后,还有一门科学在支撑着它们,那就是数学。数学有一种独特的抽象性,正是因为数学抽象,其结论应用十分广泛。数字由许许多多事物抽象而来,它不代表任何意义,也正是因为它不代表任何意义,所以它可以应用在任何地方。2+3=5不仅适用于人,也适用于书、本、笔等等。 在数学中,同一个方程式完全可能代表着互不相干的事物的某种相同规律。同一个拉普拉斯方程可能代表许多不同的物理现象。某种生物种类群体的数量变化可能与市场某种商品的价格涨落满足同一数学模型。数学在其它学科中有特殊的地位与作用。数学是各门科学的语言。物理定律及原理都是用数学语言描述的,数学在力学与物理学中的地位与作用是人所共知的。 物理学应该是应用数学最多的学科之一,数学公式使描述物理现象变得简单而一般。动力学中最基本的概念——加速度的定义本质上就是一个导数,缺少了导数的概念,又怎么会有加速度的定义呢?解决理想的运动学问题会用到微分方程的概念,微分方程的理论使解决复杂的运动问题变得可能。数学的功底也是一个优秀的物理学家所必备的,在此,我们不妨举两位大物理学家的例子。法拉弟是一位伟大的实验物理学家,他通过实验发现了电场、磁场、电力线、磁力线、电与磁的对称关系等,但他数学功底不够(相对来说),不能把他的实验结果上升为理论(没有可操作性)。而另一位电磁学的大师麦克斯韦确有很好的数学功底,他用微分方程和向量代数等数学方法,完整地揭示上述现象,并于1862年发表了划时代的论文《论物理的力线》,使得这些理论有了广泛的应用。今天的无线广播、电视、雷达通讯,遥控等,都是以它为基础的。所以说,如果没有数学的发展,物理学也难有突破。物理学和数学就像一对亲密无间的伙伴,永远密不可分。而物理学,正是数学在实际学科中应用的最好体现。 信息科学是二十世纪才发展起来的一门科学,我们如今的生活已经处处融入了这门科学。计算机帮我们解决了以往难以解决的复杂问题,互联网让世界变得越来越小,数字通信技术让人与人之间变得很近。而信息科学的基础就是数学,没有布尔代数,如何会有电子系统中0和1编码段?没有矩阵理论,如何解决复杂的工程建设规划问题?没有数学中许许多多的算法,又如何在计算机上展现出美妙的图案?可以这样比喻,信息科学正是在数学的肥沃土壤中长出的一朵美丽娇艳的花。我们作为北邮的大学生,应该充分认识到这一点,注重打好我们自己的良好数学功底,为以后的深造作好准备。 当然,不仅仅是理科才会用到数学,就连艺术也离不开数学。15世纪欧洲文艺复兴时期,绘画艺术之所以能有惊人的发展,正是得益于数学的分支——几何学的进步。一幅画要想逼真生动的展现现实世界,就要用到投影和几何学的原理。达芬奇是文艺复兴时期的代表人物,他不仅是一位画家,也是一位几何学家,发明家和梦想家。它的每一幅作品无一不是建立在严谨的投影规则之上的,也正因为此,他的画才那样细腻,那样准确,那样迷人。此外,雕塑,徽标设计,建筑等等都离不开数学,2006年德国世界杯的徽标就是由几个外切圆组成的笑脸构成的。 数学是美的,因为他融入了生活,融入了世界的每一个角落。马克思曾说“只有当一门学科应用了数学之后,它才成为了一门真正的科学”。每一门科学中都体现着数学的价值,在人类即将写下的历史中,数学仍将不断地发展,随之而来的,就是科学和社会的进步。

高中物理力学学习中数学方法的应用策略研究

高中物理力学学习中数学方法的应用策略研究 摘要:物理是学生高中学习中的重点科目,也是一大难点科目,随着物理知识 难度性的增加,学生学习过程中面临着越来越多的困难,一旦没有良好的学习方 法和解题思路,很容易打击学习物理的自信心和积极性,影响学习兴趣,造成学 习效率低下,物理成绩难以提升。数学方法作为一种有效的解题方法在学习高中 物理力学知识中有重要应用作用,能够促进思维发展,降低学习难度。本文阐述 了数学方法在高中物理力学学习中的应用作用,并提出了一些具体的应用策略, 以期为高中生物理力学知识的学习进步提供一点参考意见。 关键词:数学方法;高中物理;力学;应用策略 高中物理力学知识与数学知识之间存在着一定的相通性,我们在学习物理 力学知识以及解题过程中,科学合理的运用数学方法能够加深对物理概念和现象 的理解,全面掌握物理知识点之间的联系,将抽象的知识具体化,复杂的问题简 单化,攻克物理学习中的难关。因此,研究高中物理力学学习中数学方法的应用 策略对高中生的物理学习有重要现实意义。 一、数学方法在高中物理力学学习中的应用作用 (一)加深对物理知识的理解 高中物理力学知识相较于初中物理知识难度性更大,导致我们学生在理解 物理知识时很难深刻掌握,不能熟练的运用物理知识解答物理问题,经常面对物 理力学题目没有解答思路,影响了解题效率和准确性[1]。在学习物理力学知识时,应用数学方法能够获取解题灵感,拓展解题思路,在分析题目过程中,应用数学 思维掌握题目中力学特征,更好的理解各个物理量之间的联系,采取有效的数学 方式简化解题步骤,降低解题难度。 (二)借助数学知识验证结果 在学习物理力学知识时,很多学生反映不能理解教学内容,无法保证解题 答案的准确性。借助数学知识能够有效解决这些问题,由于力学知识和数学知识 有一定的相同性,我们可以利用学习过的数学知识将力学题目模型化,将难以分 析理解的物理难点变成数学知识点,获得题目答案。除此以外,为了保证答案的 准确性,可以利用数学思维和数学方式验证结果,这一过程不仅能够强化对数学 知识的理解和应用,还能够提高解题水平[2]。 (三)应用数学知识推导物理公式 一直以来,物理力学公式的学习和应用都是我们高中物理学习中的难点所在。在攻克这一难关上,我们可以应用数学知识推导出物理公式。比如,在学习“直线运动”这部分物理知识时,可以利用三角法和代数法明确直线运动的轨迹和 规律,借助数学知识中适量运算方式分析直线运动中的速度与位移,总结二者的 分解与合成过程,推导出速度和位移的物理公式。不仅如此,我们还可以将推导 出来的物理公式进行更深层次的关系式推导,利用数学知识降低接受新知识、掌 握新公式的难度,促进对物理公式的吸收消化,让物理公式不再是我们学习中难 以攀登的高山,而是变得简单清晰起来。 二、高中物理力学学习中数学方法的具体应用策略 (一)数形结合方法 我们在数学学习中,为了挖掘出题目中的隐藏条件,提升解题效率经常使

相关文档
最新文档