求解随机微分方程的两种数值方法

求解随机微分方程的两种数值方法
求解随机微分方程的两种数值方法

随机微分方程在物理学中的应用

科技大学 本科毕业论文 论文题目:随机微分方程在物理学中的应用院系:物理科学与技术学院 专业:应用物理 姓名:vvv 学号:0700000069 指导教师:xxx

二零一二年三月 摘要 牛顿和莱布尼兹创建了微积分学,为了描述机械动力学、天文学等领域的物理现象,建立了确定性的微分方程。确定性的微分方程在实际问题中有大量的应用。然而在研究实际物理现象的数学模型时,描述一个具体物理现象所用的一组数学方程不会是完全精确的。实际问题中不确定性因素大量存在且往往是问题的关键所在,不可忽视。由于二十世纪中叶大量的含有不确定性的实际问题的出现,以及对模型精确性要求和实际问题复杂性认识的不断提高,不确定性因素越来越多的被考虑到模型的建立中,这就在微分方程的基础上引入了随机因素,促使了随机积分的构建与发展,并在此基础上建立了随机微分方程的相关理论和方法。 随着科技的发展,随机微分方程越来越广泛地应用于模型的建立和分析中。本文针对物理学中存在随机性的特征,提取其中的数学本质,利用数学方法和策略,建立相应的随机微分方程,分析其中数学特征和数学机理,推导相关的公式和性质,通过分析来更好的理解物理学中的随机性问题。 关键词:随机微分方程;布朗运动;matlab模拟;

Abstract. Newton and Leibniz created calculus, in order to describe the mechanical dynamics, astronomy and other fields of physics, the establishment of a deterministic differential equation. Deterministic differential equations large number of practical problems in application. However, the actual physical phenomena in the study mathematical model to describe the physical phenomenon of a specific set of mathematical equations used to not be completely accurate. Practical problems of uncertainties abound and often the crux of the problem can not be ignored. Since the mid-twentieth century, a lot of uncertainty with the actual problems, and the accuracy of the model and actual problems requires understanding the complexity of continuous improvement, more and more uncertainty to the model to be considered in This is the basis of the differential equations introduced random factor

081数值计算方法—常微分方程(组)

科学计算—理论、方法 及其基于MATLAB 的程序实现与分析 微分方程(组)数值解法 §1 常微分方程初值问题的数值解法 微分方程(组)是科学研究和工程应用中最常用的数学模型之一。如揭示质点运动规律的Newton 第二定律: ()()()?????'='==0 00022x t x x t x t F dt x d m (1) 和刻画回路电流或电压变化规律的基尔霍夫回路定律等,但是,只有一些简单的和特殊的常微分方程及常微分方程组,可以求得用公式给出的所谓“解析解”或“公式解”,如一阶线性微分方程的初值问题: () ()0 0y y t f ay dt dy =+= (2) 的解为: ()()()τττd f e y e t y t t a at ?-+=00 (3) 但是,绝大多数在实际中遇到的常微分方程和常微分方程组得不到“解析解”,因此,基于如下的事实:

1、绝大多数的常微分方程和常微分方程组得不到(有限形式的)解析解; 2、实际应用中往往只需要知道常微分方程(组)的解在(人们所关心的)某些点处的函数值(可以是满足一定精度要求的近似值); 如果只需要常微分方程(组)的解在某些点处的函数值,则没有必要非得通过求得公式解,然后再计算出函数值不可,事实上,我们可以采用下面将介绍的常微分方程(组)的初值问题的数值解法,就可以达到这一目的。 一般的一阶常微分方程(组)的初值问题是指如下的一阶常微分方程(组)的定解问题: ()()0 00,y t y t t t y t F dt dy f =≤≤= (7) 其中 ()()()()???? ?? ? ??=t y t y t y t y n 21 (8) ()()()()???? ?? ? ??=y t f y t f y t f y t F n ,,,,21 (9) 常微分方程(组)的初值问题通常是对一动态过程(动态系统、动力系统)演化规律的描述,求解常微分方程(组)的初值问题就是要了解和掌握动态过程演化规律。 §1.1 常微分方程(组)的Cauch 问题数值解法概论

随机微分方程

随机微分方程在水库防洪中的应用 本学期有幸跟着袁老师学习随机微分方程这门课程,收获甚丰,感受颇多。在此之前,我从未接触过任何关于随机的概念,在听完袁老师的课程,特别是袁老师在中间穿插的讲诉随机微分方程在某些领域的实际应用案例,让我感觉在水利工程中确实有很多问题都应该通过随机这个概念来解决。在阅读过相关的一些 文献过后,发现在水库的防洪中随机微分方程可以利用的价值特别高。 水库的防洪是水利工程流域管理的重要内容,其中各环节都存在诸多的不确定性。包括水雨情信息采集中由于设备故障、通讯不畅、误码和量程不足等原因导致的信息无法获取或无法及时传达、信息错误,实时洪水预报中水文气象条件、模型结构、模型参数等导致的预报误差,调洪演算中的水库泄流和库容曲线等水力不确定性等。由于各环节的多种不确定性因素,随机性便很自然地被引入到防洪过程的分析,近年来,这方面的很多研究工作都认为洪水过程是一随机点过程,随机微分方程被引入和运用,为解决这一难题提供了有效的数学工具,以概率论和微分方程为基础的随机微分方程模型,可以对调洪过程中的随机现象和规律进行数学描述和分析,可以正确地综合各种随机输人过程和随机初始条件对泄洪风险率的影响, 为经济合理地选择大坝泄洪建筑物规模和调度运行方式, 提供科学的依据。 传统的确定性调洪演算方法,根据的是简单的水库蓄量平衡关系,建立有如下的微分方程: (1) 若令/()d d h G h ω=,并加入初始条件,则有: (2) 式中,h(t)为库水位,h 0为初始库水位,Q(t)为调洪过程任一时刻的来洪 流量,q(h,c)为相应时刻的泄洪流量,在泄洪建筑物规模确定的情况下,可表述为h 和流量系数等水力参数c 的函数,w(h)为水库的库容量。上述的各函数均

计算方法_微分方程数值解

120 第6章 常微分方程初值问题数值解法 6.1 问题的描述和基本概念 1、常微分方程初值问题 ● 一般形式 0(,)()y f x y y a y '=??=? 式中(,)f x y 已知,0()y a y =称为初值条件. ● 初值问题的数值方法和数值解 求函数()y y x =在若干离散点k x 上的近似值 (0,1,)k y k = 的方法称为初值问题的数值方法,而 称(0,1,)k y k = 为初值问题的数值解.

121 2. 建立数值解法的思想与方法 用离散化方法将初值问题化为差分方程, 然后再求解. 设节点为 011n n a x x x x +=<<<<< 距离1k k k h x x +=-称为步长. 求数值解一般是从0y 开使逐次顺序求出12,,y y . 初值问题的解法有单步法和多步法两种: ● 单步法:计算1k y +时只用到k y 一个值; ● 多步法:计算1k y +时要用1,,,k k k l y y y -- 多个值。 数值解法还有显格式和隐格式之分。

122 微分方程离散化方法主要有 数值微分法,数值积分法和Taylor 展开法 1) 数值微分法 由'()(,())k k k y x f x y x =,用数值微分的2点前差公式代替'()k y x ,得近似离散化方程 记1k k h x x +=-,做k k ,“”,得差分方程 1(,)k k k k y y f x y h +-= 即 1(,)k k k k y y hf x y +=+ (Euler 公式) 由初值条件0()y y a =及Euler 公式可求出数值解 12,,,,n y y y .Euler 公式是显式单步法.

郑州大学研究生课程数值分析复习---第八章 常微分方程数值解法

郑州大学研究生课程(2012-2013学年第一学期)数值分析 Numerical Analysis 习题课 第八章常微分方程数值解法

待求解的问题:一阶常微分方程的初值问题/* Initial-Value Problem */: ?????=∈=0 )(] ,[),(y a y b a x y x f dx dy 解的存在唯一性(“常微分方程”理论):只要f (x , y ) 在[a , b ] ×R 1 上连续,且关于y 满足Lipschitz 条件,即存在与x , y 无关的常数L 使 对任意定义在[a , b ] 上的y 1(x ) 和y 2(x ) 都成立,则上述IVP 存在唯一解。 1212|(,)(,)||| f x y f x y L y y ?≤?一、要点回顾

§8.2 欧拉(Euler)法 通常取(常数),则Euler 法的计算格式 h h x x i i i ==?+1?? ?=+=+) (),(001x y y y x hf y y i i i i i =0,1,…,n ( 8.2 )

§8.2 欧拉(Euler)法(1) 用差商近似导数 )) (,()()()()(1n n n n n n x y x hf x y x y h x y x y +=′+≈+?? ?=+=+) (),(01a y y y x hf y y n n n n 差分方程初值问题向前Euler 方法h x y x y x y n n n ) ()()(1?≈ ′+)) (,() ()(1n n n n x y x f h x y x y ≈?+))(,()(n n n x y x f x y =′

随机微分方程2种数值方法的稳定性分析_邱妍

文章编号:1009-1130(2007)04-0035-04 随机微分方程2种数值方法的稳定性分析 邱妍,朱永忠 (河海大学理学院,江苏南京210098) 摘要:给出了求解随机微分方程的2种数值方法:有限差分法和向后Milstein法,基于随机微分方程的试验方程分析讨论了2种数值方法的均方稳定性和A!稳定性,得到了相应的稳定性条件和稳定域.最后应用MatLab进行模拟演示,模拟演示结果表明,有限差分法和向后Milstein法都全局一阶强收敛于随机微分方程的求解过程,并且验证了均方稳定理论的正确性. 关键词:随机微分方程;均方稳定;A!稳定;向后Milstein法;有限差分法 中图分类号:O241.8文献标识码:A 收稿日期:2007-06-19 作者简介:邱妍(1984-),女,江苏扬州人,硕士研究生,应用数学专业. 随机微分方程是针对物理、经济等领域中的随机现象而建立的数学模型,其理论研究和实际应用均取得了丰富而又成熟的成果.但在多数情况下随机微分方程与常微分方程类似,其解析解不易求出,因此,构造有效的数值方法进行数值求解显得十分重要.近20年来,随机微分方程数值计算方法不仅作为随机分析、微分方程数值分析的交叉研究方向得到了高度重视和发展,而且在自然科学以及工程领域得到了广泛的应用,但随机变量的存在给数值方法的构造和各种性质的研究带来了一定的难度.本文中作者在Milstein法的基础上建立有限差分格式,讨论了向后Milstein法[1]和有限差分法的均方稳定性和A!稳定性. 1求解随机微分方程的2种数值方法 考虑如下标量自治初值问题: dX(t)=f(X(t))dt+g(X(t))dW(t)X(0)=X0t∈[0,T"](1) 式中:参数t表示时间;指标集T是一个有限或无限区间,通常取为实轴或实轴上的一个区间;f(X)和g(X)是区间[0,T]上的连续可测函数,分别称为偏移系数和扩散系数;W(t)为标准Wiener过程,其增量"W(t)=W(t+h)-W(t),t+h∈[0,T],若步长h充分小,则ΔW(t)的均值和方差分别为 E"W(t"# )=0,E["W(t)]"$2=h为讨论2种数值方法的均方稳定性和A!稳定性,给出式(1)的2类试验方程,即 dX(t)=!X(t)dt+"X(t)dW(t) (2)dX(t)=!X(t)dt+#dW(t) (3) 式中:!,",#是常系数. 对于求解随机微分方程的数值方法,1974年,Milstein给出了以下差分格式[2]:Xn+1=Xn+f(Xn)h+g(Xn)"Wn+12 [g′g](Xn)[("Wn)2-h]n=0,1,…(4)并证明了该方法在均方意义下的收敛阶为O(h).本文在此基础上给出了2种数值方法:第1种为向后Milstein法,即将式(4)中偏移系数变为隐式;第2种为有限差分法,即将式(4)中的微分用有限差分代替.有限差分法是十分有用的,因为在通常情况下用式(4)求解随机微分方程(1)时需要对其中的g(Xn)求导,若g(Xn)的值是由试验得出的具体数据,则无法进行求导计算,而采用有限差分法将微分转化为差分,避免 第21卷第4期2007年12月Vo1.21No.4 Dec.2007河海大学常州分校学报JOURNALOFHOHAIUNIVERSITYCHANGZHOU

随机微分方程

随机微分方程在水库防洪中的应用 本学期有幸跟着袁老师学习随机微分方程这门课程,收获甚丰,感受颇多。 在此之前,我从未接触过任何关于随机的概念,在听完袁老师的课程,特别是 袁老师在中间穿插的讲诉随机微分方程在某些领域的实际应用案例,让我感觉在水利工程中确实有很多问题都应该通过随机这个概念来解决。在阅读过相关 的一些 文献过后,发现在水库的防洪中随机微分方程可以利用的价值特别 高。 水库的防洪是水利工程流域管理的重要内容,其中各环节都存在诸多的不 确定性。包括水雨情信息采集中由于设备故障、通讯不畅、误码和量程不足等 原因导致的信息无法获取或无法及时传达、信息错误,实时洪水预报中水文气象条件、模型结构、模型参数等导致的预报误差,调洪演算中的水库泄流和库容曲线等水力不确定性等。由于各环节的多种不确定性因素,随机性便很自然地被引入到防洪过程的分析,近年来,这方面的很多研究工作都认为洪水过程 是一随机点过程,随机微分方程被引入和运用,为解决这一难题提供了有效的数 学工具,以概率论和微分方程为基础的随机微分方程模型,可以对调洪过程中的随机现象和规律进行数学描述和分析,可以正确地综合各种随机输人过程和随机初始条件对泄洪风险率的影响, 为经济合理地选择大坝泄洪建筑物规模和调度 运行方式, 提供科学的依据。 传统的确定性调洪演算方法,根据的是简单的水库蓄量平衡关系,建立有 如下的微分方程: (1) 若令,并加入初始条件,则有:/()d dh G h ω = (2) 式中,h(t)为库水位,h 0为初始库水位,Q(t)为调洪过程任一时刻的来洪 流量,q(h,c)为相应时刻的泄洪流量,在泄洪建筑物规模确定的情况下,可表

数值分析_第五章_常微分方程数值解法

图5畅2 令珔h =h λ,则y n +1=1+珔 h +12珔h 2 +16珔h 3+124 珔 h 4y n .由此可知,绝对稳定性区域在珔h =h λ复平面上满足 |1+珔 h +12珔h 2+16珔h 3+124珔h 4 |≤1的区域,也就是由曲线 1+珔h + 12珔h 2+16珔h 3+124 珔h 4=e i θ 所围成的区域.如图5畅2所示. 例22 用Euler 法求解 y ′=-5y +x ,y (x 0)=y 0,  x 0≤x ≤X . 从绝对稳定性考虑,对步长h 有何限制? 解 对于模型方程y ′=λy (λ<0为实数)这里λ=抄f 抄y =-5.由 |1+h λ|=|1-5h |<1 得到对h 的限制为:0<h <0畅4. 四、习题 1畅取步长h =0畅2,用Euler 法解初值问题 y ′=-y -x y 2 , y (0)= 1.  (0≤x ≤0畅6), 2畅用梯形公式解初值问题 y ′=8-3y ,  (1≤x ≤2),

取步长h=0畅2,小数点后至少保留5位. 3畅用改进的Euler公式计算初值问题 y′=1x y-1x y2, y(1)=0畅5,  1<x<1畅5, 取步长h=0畅1,并与精确解y(x)= x 1+x比较. 4畅写出用梯形格式的迭代算法求解初值问题 y′+y=0, y(0)=1 的计算公式,取步长h=0畅1,并求y(0畅2)的近似值,要求迭代误差不超过10-5. 5畅写出用四阶经典Runge唱Kutta法求解初值问题 y′=8-3y, y(0)=2 的计算公式,取步长h=0畅2,并计算y(0畅4)的近似值,小数点后至少保留4位. 6畅证明公式 y n+1=y n+h9(2K1+3K2+4K3). K1=f(x n,y n), K2=f x n+h2,y n+h2K1, K3=f x n+34h,y n+34h K2, 至少是三阶方法. 7畅试构造形如 y n+1=α(y n+y n-1)+h(β0f n+β1f n-1)

。随机微分方程的数值解读后感

随机微分方程的数值模拟算法的读后感 本文主要分为九个部分,对随机微分方程的数值模拟进行了介绍。这篇文章建立在MATLAB程序的基础上,主要包过随机积分、欧拉—丸山法、米尔斯坦法,强弱收敛性、线性稳定性,随机链法则。 第一部介绍了随机微分方程的应用领域,研究需要的背景知识,以及下面几部分的研究你内容和参考文献介绍。 第二部分介绍了布朗运动和计算布朗路径。首先规定了满足布朗运动的三个条件;然后用随机号码发生器通过for循环或randn(1.N)创建一维数组来模拟布朗路径;最后找出通过1000点布朗路径的函数,并与五个独立路径对比。同时也为下面的研究作铺垫。 第三部分我们验证了关于布朗运动的积分并说明了与Ito积分与斯特拉托诺维奇积分的不同点。我们通过两种黎曼和来类比的得到ito积分和斯特拉托诺维奇积分。同时也给出了他们两个的区别,最后给出精确估计随机积分的办法。 第四部分叙述了欧拉—丸山法怎样模拟随机微分方程的。首先引入自治标量的随机微分方程的积分式,通过变形,变量的重新定义得到EM法的表达式。后来通过一个在金融数学中资产价值的模型——毕苏期机定价模式的偏微分方程来进一步说明。 第五部分介绍了强弱收敛性概念,在数值上证明了欧拉—丸山的收敛区间[0.5,1]. 第六部分通过研究米尔斯坦方法来校正欧拉—丸山的收敛性,使强收敛性为1。从第一部分我们知道欧拉—丸山的收敛性为1时才起决定性作用,但是前面满足条件的值是0.5。这一部分就通过米尔斯坦高阶法用在随机增量增加修正值的办法使收敛性为1。 第七部分介绍两种不同的线性稳定性,进而强调随机分析不同与基本定积分。稳定性部分理论是依据变量趋于无穷条件子啊拟合的数值结果,这种数值方法应用于一些定性描述的问题上的,这种方法重现部分性质的能力也是可以分析的。关于稳定性的度量这里只考虑两种,均方数和渐进性。我们通过matlab编程改变参数值和步长来观察均方稳定性和渐进稳定性,最后得到参数和步长变化所对应的不同稳定性的区域。 第八部分引出并证明随机链法则。在第三部分我们发现不只是一种办法可以对随机函数的积分的扩展,这种办法有点像黎曼积分的链式法则,然后对以前的式子进行改进,然后通过matlab编程实现。 第九部分对重要结论简要的叙述。同时指出了一些不足,如没有讨论许多额外的条件,仅仅为了能产生我一定结果,没有提及到随机微分方程和有时间决定的偏微分方程之间的联系,没有注意到标量问题等。 通过这篇文章的学习使我对随机过程有了一定了解,对matlab软件有了更深的认识。同时通过查阅专业数学字典和相关文献使我对专业英文论文的阅读能力有一定的提高。我相信一个暑假的努力对我以后研究生的会有很大的帮助的。 朱园珠 2011年9月1日

倒向随机微分方程的数值方法及其误差估计(精)

倒向随机微分方程的数值方法及其误差估计 倒向随机微分方程(BSDE)是一个相对比较新的研究方向。1973年Bismut[9]研究的线性形式可以看作是著名的Girsanov定理的推广。非线性BSDE的概念是由Pardoux和Peng[60]在1990年引入的。Duffie和Epstein[28]于1992年独立引入经济模型中的随机微分效用概念,也可以看作某些特殊的BSDE的解。从那以后,关于BSDE的很多理论和应用结果得到了发展,其中包括:反射倒向随机微分方程、正倒向随机微分方程、偏微分方程与倒向随机微分方程的联系、随机控制、数理金融、非线性期望和非线性鞅论、递归效用和风险敏感效用以及随机微分几何等。在El Karoui和Mazliak[30],Ma和 Yong[5l],Yong和zhou[86]写的书以及综述论文El Karoui,Peng和Quenez[33]中,详细介绍了BSDE的理论和在数理金融和随机控制中的应用。倒向随机微分方程的存在唯一性意味着我们能够明确的解决现在应怎样去做以实现一个给定的将来目标。但是对于一个具体的倒向方程如何算出它的解来对一般情况而言仍是一个未解决的问题。在实际应用中能够显式解出的BSDE是很少见的,因此我们需要计算BSDE的数值解。相对于正向随机微分方程的数值解法,无论是从结果的丰富程度还是从算法实现的难易程度来看,BSDE都要落后很多。出现这 一问题不外乎有以下两个原因:首先,正向随机微分方程与倒向随机微分方程在结构上有本质的区别,从而倒向随机微分方程的数值方法不能完全套用正向随机微分方程已有的数值方法。其次,从应用的角度讲,正向随机微分方程考虑的是如何认识一个客观存在的随机过程,而倒向随机微分方程则主要关心在有随机干扰的环境中如何使一个系统达到预期的目标。在过去的十几年里,许多学者做出了很大的努力,在BSDE数值解法的研究中取得了一系列的成果。这些数值方法按照其求解原理可以划分为两大类:第一类方法主要通过数值求解与BSDE相对应的拟线性偏微分方程;另一类算法直接对随机问题按时间进行倒向计算。2006年,Zhao,Chen和Peng[89]提出了解BSDE的θ格式,该方法结合PDE数值解法的特点,使用随机的思想来解释高精度的差分方法,对BSDE进行时间空间离散,用Monte Carlo方法结合插值近似计算条件数学期望,在数值实验中得到了较好的结果。本文主要研究了BSDE的几种数值方法,在Zhao,Chen和Peng[89]的基础上,离散BSDE时用Gauss-Hermite积分替代Monte Carlo方法近似条件期望,并得到了θ格式的误差估计;提出了一种新的Crank-Nicolson格式并进行误差估计;对一种更高阶的Adams方法也提出了BSDE的离散格式且得到了格式的收敛误差。下面我们列出本文的主要结果。第一章:简要介绍本文中所讨论问题的背景及总体思路,介绍了BSDE,Feynman-Kac公式的基本概念,对BSDE已有的数值解法进行了简要的回顾总结。第二章:给出了BSDE(2-1)的θ格式的误差估计。证明了对一般的θ,格式一阶收敛,特别当θ=(?)时,格式二阶收敛。当 θ=1时,我们得到θ格式对(2-1)的适应解(y_t,z_t)一阶收敛。在θ=(?)的情形,我们还得到解z_t的误差估计。我们称下面两个解(?)的方程为离散 BSDE(2-1)的θ格式:对该格式的误差估计主要有下面的定理。定理2.1.假设2.1成立,令y_t和y~n分别是BSDE(2-1)和θ格式(2-12)的解,那么对足够小的时间步长Δt_n,我们有其中C是一个正常数,它仅依赖于T,φ和f导数的上界和(2-3)的解u(t,x)。定理2.3.假设2.1成立,令y~n(n=N,…,0)是θ格式(2-12)在θ=(?)时的解,y_t(0≤t≤T)是BSDE(2-1)的解,那么对足够小的时间步长Δt_n,我们有定理2.4.假设2.1成立,令(y~n,z~n)(n=N,…,0)是θ格式

偏微分方程数值解法

《偏微分方程数值解法》 课程设计 题目: 六点对称差分格式解热传导方程的初边 值问题 姓名: 王晓霜 学院: 理学院 专业: 信息与计算科学 班级: 0911012 学号: 091101218 指导老师:翟方曼 2012年12月14

日 一、题目 用六点对称差分格式计算如下热传导方程的初边值问题 222122,01,01(,0),01 (0,),(1,),01x t t u u x t t x u x e x u t e u t e t +???=<<<≤?????=≤≤??==≤≤??? 已知其精确解为 2(,)x t u x t e += 二、理论 1.考虑的问题 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauch y 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。 现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T =τ为时间步长,其中N ,M 是自然数,

求解偏微分方程三种数值方法

数值模拟偏微分方程的三种方法介绍 (有限差分方法、有限元方法、有限体积方法) I.三者简介 有限差分方法(Finite Difference Methods)是数值模拟偏微分方程最早采用的方法,至今仍被广泛使用。该方法包括区域剖分和差商代替导数两个步骤。首先将求解区域划分为差分网格,用有限个网格节点代替连续的求解区域。其次,利用Taylor级数展开等方法将偏微分方程中的导数项在网格节点上用函数值的差商代替进行离散,从而建立以网格节点上的值为未知量的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且十分成熟的数值方法。 差商代替导数后的格式称为有限差分格式,从格式的精度来考虑,有一阶格式、二阶格式和高阶格式。从差分的空间离散形式来考虑,有中心格式和迎风格式。对于瞬态方程,考虑时间方向的离散,有显格式、隐格式、交替显隐格式等。目前常见的差分格式,主要是以上几种格式的组合,不同的组合构成不同的差分格式。差分方法主要适用于结构网格,网格的大小一般根据问题模型和Courant 稳定条件来决定。 有限元方法(Finite Element Methods)的基础是虚位移原理和分片多项式插值。该方法的构造过程包括以下三个步骤。首先,利用虚位移原理得到偏微分方程的弱形式,将计算区域划分为有限个互不重叠的单元(三角形、四边形、四面体、六面体等),在每个单元上选择合适的节点作为求解函数的插值点,将偏微分方程中的变量改写成由各变量或其导数的节点值与所选用的分片插值基函数组成的线性表达式,得到微分方程的离散形式。利用插值函数的局部支集性质及数值积分可以得到未知量的代数方程组。 有限元方法有较完善的理论基础,具有求解区域灵活(复杂区域)、单元类型灵活(适于结构网格和非结构网格)、程序代码通用(数值模拟软件多数基于有限元方法)等特点。有限元方法最早应用于结构力学,随着计算机的发展已经渗透到计算物理、流体力学与电磁学等各个数值模拟领域。

(完整word版)偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ?? ?===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ? == ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

微分方程数值解法答案

包括基本概念,差分格式的构造、截断误差和稳定性,这些内容是贯穿整个教材的主线。解答问题关键在过程,能够显示出你已经掌握了书上的内容,知道了解题方法。这次考试题目的类型:20分的选择题,主要是基本概念的理解,后面有五个大题,包括差分格式的构造、截断误差和稳定性。 习题一 1. 略 2. y y x f -=),(,梯形公式:n n n n n n y h h y y y h y y )121(),(2111+-+=+- =+++,所以0122)1(01])121[()121()121(y h h y h h y h h y h h n h h n n n +--+--+-+=+-+==+-+= ,当0→h 时, x n e y -→。 同理可以证明预报-校正法收敛到微分方程的解. 3. 局部截断误差的推导同欧拉公式; 整体截断误差: ? ++++++-++≤1 ),())(,(11111n n x x n n n n n n n dx y x f x y x f R εε 11)(++-++≤n n n y x y Lh R ε,这里R R n ≤ 而111)(+++-=n n n y x y ε,所以 R Lh n n += -+εε1)1(,不妨设1

微分方程求解数值方法

微分方程求解的欧拉法、龙格-库塔法实验报告 日期:2008-6-27 一、实验目的 1.学习matlab的使用方法。 2.掌握常微分方程的几种数值解法:欧拉法,改进的欧拉法,龙格—库塔法。 3.比较各方法的数值解及误差,了解各方法的优缺点。 二、实验题目 给定的初值问题 按(1)欧拉法,步长h=0.025, h=0.1; (2)改进的欧拉法,步长h=o.o5, h=0.01; (3)四阶标准龙格—库塔法,步长h=0.1; 求在节点处的数值解及误差比较各方法的优 缺点。 三、实验原理 1.对于欧拉法: 利用Yn+1 = Yn + hf(Xn, Yn)①

Y0 = Y(X0) ②二式可以完成计算 需要将微分方程表达式和精度计算表达式作为两个函数保存在m文件里并在程序 中调用: ①微分方程(wei_fen) function z=wei_fen(x,y) z=(2/x)*y+x*x*exp(x); end ②精确解计算(jing_que) function z=jing_que(x) z=x*x*(exp(x)-exp(1)) end 2.对于改进的欧拉法: 利用Yn+1 = Yn + 1/2*K1 + 1/2*K2①n = 1, 2, 3…… K1 = hf(Xn, Yn)② K2 = hf(Xn + h, Yn + K1)③三式可以完成计算 3.对于龙格—库塔法: 利用Yn+1 = Yn + 1/6(K1 + 2K2 + 2K3 +K4)① K1 = hf(Xn, Yn)② K2 = hf(Xn + 1/2*h, Yn + 1/2*K1)③ K3 = hf(Xn + 1/2*h, Yn + 1/2*K2)④ K4 = hf(Xn + h, Yn + K3)⑤四式可以完成计算 四、实验内容

常微分方程数值解法

第三章 常微分方程数值解法 一、考核知识点: 欧拉法,改进欧拉法,龙格-库塔法,单步法的收敛性与稳定性。 二、考核要求: 1.熟练掌握用欧拉法,改进欧拉法求微分方程近似解的方法。 2.了解龙格-库塔法的基本思想;掌握用龙格-库塔法求微分方程近似解的方法。 3.了解单步法的收敛性、稳定性与绝对稳定性。 三、重、难点分析 例1 用欧拉法,预估——校正法求一阶微分方程初值问题 ? ??=-='1)0(y y x y ,在0=x (0.1)0.2近似解 解 (1)用1.0=h 欧拉法计算公式 n n n n n n x y y x y y 1.09.0)(1.01+=-+=+,1.0=n 计算得 9.01=y 82.01.01.09.09.02=?+?=y (2)用预估—校正法计算公式 1,0)(05.01.09.0)0(111)0(1=???-+-+=+=++++n y x y x y y x y y n n n n n n n n n 计算得 91.01=y ,83805.02=y 例2 已知一阶初值问题 ???=-='1 )0(5y y y 求使欧拉法绝对稳定的步长h 值。 解 由欧拉法公式 n n n n y h y h y y )51(51-=-=+ n n y h y ~)51(~1-=+

相减得 01)51()51(e h e h e n n n -==-=- 当 151≤-h 时,4.00≤

微分方程数值解法

《微分方程数值解法》 【摘要】自然界与工程技术中得很多现象,可以归结为微分方程定解问题。其中,常微分方程求解就是微分方程得重要基础内容。但就是,对于许多得微分方程,往往很难得到甚至不存在精确得解析表达式,这时候,数值解提供了一个很好得解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用得数值解法,如欧拉法、改进得欧拉法、Runge—Kutta方法、Adams预估校正法以及勒让德谱方法等,通过具体得算例,结合MA TLAB求解画图,初步给出了一般常微分方程数值解法得求解过程。同时,通过对各种方法得误差分析,让大家对各种方法得特点与适用范围有一个直观得感受。 【关键词】常微分方程数值解法MA TLAB 误差分析 引言 在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛得一门课程,不仅在数学专业,其她得理工科专业得本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还就是在方法上都获得了很大得发展.同时,由于微分方程就是描述物理、化学与生物现象得数学模型基础,且它得一些最新应用已经扩展到经济、金融预测、图像处理及其她领域在实际应用中,通过相应得微分方程模型解决具体问题,采用数值方法求得方程得近似解,使具体问题迎刃而解。 2 欧拉法与改进得欧拉法 2、1 欧拉法 2、1、1 欧拉法介绍 首先,我们考虑如下得一阶常微分方程初值问题 (21) 事实上,对于更复杂得常微分方程组或者高阶常微分方程,只需要将瞧做向量,(21)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。 欧拉方法就是解常微分方程初值问题最简单最古老得一种数值方法,其基本思路就就是把(21)中得导数项用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。 设在中取等距节点,因为在节点点上,由(21)可得: , (22) 又由差商得定义可得: (23) 所以有 (24) 用得近似值代入(24),则有计算得欧拉公式 (25) 2、1、2欧拉法误差分析

数值分析Matlab作业龙格库塔欧拉方法解二阶微分方程

Matlab 应用 使用Euler 和Rungkutta 方法解臂状摆的能量方程 背景 单摆是常见的物理模型,为了得到摆角θ的关于时间的函数,来描述单摆运动。由角动量定理我们知道 ε J M = 化简得到 0sin 22 =+θθl g dt d 在一般的应用和计算中,只考虑摆角在5度以内的小摆动,因为可以吧简化为θ,这样比较容易解。实际上这是一个解二阶常微分方程的问题。

在这里的单摆是一种特别的单摆,具有均匀的质量M 分布在长为2的臂状摆上, 使用能量法建立方程 W T = h mg ?=2J 2 1ω 化简得到 θθcos 35499.722=dt d 重力加速度取9.80665 1使用欧拉法 令dx dy z =,这样降阶就把二阶常微分方程转化为一阶微分方程组,再利用向前Euler 方法数值求解。 y(i+1)=y(i)+h*z(i); z(i+1)=z(i)+h*7.35499*cos(y(i)); y(0)=0 z(0)=0 精度随着h 的减小而更高,因为向前欧拉方法的整体截断误差与h 同阶,(因为是用了泰勒公式)所以欧拉方法的稳定区域并不大。

2.RK4-四阶龙格库塔方法 使用四级四阶经典显式Rungkutta公式 稳定性很好,RK4法是四阶方法,每步的误差是h5阶,而总积累误差为h4阶。所以比欧 拉稳定。

运行第三个程序:在一幅图中显示欧拉法和RK4法,随着截断误差的积累,欧拉法产生了 较大的误差 h=0.01 h=0.0001,仍然是开始较为稳定,逐渐误差变大

总结:RK4是很好的方法,很稳定,而且四阶是很常用的方法,因为到五阶的时候精度并没有相应提升。通过这两种方法计算出角度峰值y=3.141593,周期是1.777510。

大连理工大学高等数值分析偏微分方程数值解(双曲方程书稿)

双曲型方程的有限差分法 线性双曲型方程定解问题: (a )一阶线性双曲型方程 ()0=??+??x u x a t u (b )一阶常系数线性双曲型方程组 0=??+??x t u A u 其中A ,s 阶常数方程方阵,u 为未知向量函数。 (c )二阶线性双曲型方程(波动方程) ()022=?? ? ??????-??x u x a x t u ()x a 为非负函数 (d )二维,三维空间变量的波动方程 0222222=???? ????+??-??y u x u t u 022222222=???? ????+??+??-??z u y u x u t u §1 波动方程的差分逼近 1.1 波动方程及其特征 线性双曲型偏微方程的最简单模型是一维波动方程: (1.1) 22 222x u a t u ??=?? 其中0>a 是常数。 (1.1)可表示为:022 222=??-??x u a t u ,进一步有

0=??? ????+?????? ????-?? u x a t x a t 由于 x a t ?? ±??当a dt dx ±=时为()t x u ,的全导数 (=dt du dt dx x u t u ???+??x u a t u ??±??=),故由此定出两个方向 (1.3) a dx dt 1 ±= 解常微分方程(1.3)得到两族直线 (1.4) 1C t a x =?+ 和 2C t a x =?- 称其为特征。 特征在研究波动方程的各种定解问题时,起着非常重要的作用。 比如,我们可通过特征给出(1.1)的通解。(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。由复合函数的微分法则 2 12211C u C u x C C u x C C u x u ??+??=?????+?????=?? x C C u C u C x C C u C u C x u ????? ? ????+????+?????? ????+????=??2 212121122 2221222122 12C u C C u C C u C u ??+???+???+??= 2 2 22122122C u C C u C u ??+???+??= 同理可得 a t t a t C -=??-=??1,a t C =??2 ???? ????-??=?????+?????=??21 2211C u C u a t C C u t C C u t u

相关文档
最新文档