湍流式高效穿水冷却器在轧钢生产线上的应用

湍流式高效穿水冷却器在轧钢生产线上的应用
湍流式高效穿水冷却器在轧钢生产线上的应用

循环水冷却器

化工原理课程设计————循环水冷却器设计 学院:化工学院 专业班级:高分子061班 姓名:李猛 学号: 2006016050 指导教师:徐功娣 时间:2009年6月25-30日

目录 1 设计任务书 (1) 2 设计摘要 (2) 3 主要物性参数表 (4) 4 工艺计算 (5) 4.1 确定设计方案 (5) 4.1.1 选择换热器的类型 (5) 4.1.2 计算热负荷和冷却水流量 (5) 4.1.3 计算两流体的平均温差,确定管程数 (6) 4.1.4 工艺结构尺寸 (6) 4.2 核算总传热系数 (8) 4.2.1 管程对流传热系数Ai (8) (9) 4.2.2 壳程流体传热系数 o 4.2.3 计算总传热系数K0 (10) 4.3 核算压强降 (12) 4.3.1 管程压强降 (12) 4.3.2 壳程压强降校核 (13) 5 设备参数的计算 (16) 5.1 确定换热器的代号 (16) 5.1.1 换热器的代号 (16) 5.1.2 确定方法 (16) D (16) 5.2 计算壳体内径 i 5.3 管根数及排列要求 (16) 5.4 计算换热器壳体壁厚 (17) 5.4.1 选适宜的壳体材料 (17) 5.4.2 该钢板的主要工艺参数性能 (17) 5.4.3 壁厚的计算 (17)

5.5 选择换热器的封头 (19) 5.6 选择容器法兰 (20) 5.6.1 选择法兰的型式 (20) 5.6.2 确定法兰相关尺寸 (20) 5.6.3 选用法兰并确定其标记 (21) 5.7 选择管法兰和接管 (22) 5.7.1 热流体进出口接管 (22) 5.7.2 冷流体进出口接管 (22) 5.7.3 选择管法兰 (23) 5.8 选择管箱 (23) 5.9 折流档板的设计 (24) 5.10 支座的选用 (24) 5.11 拉杆的选用和设置 (25) 5.11.1 拉杆的选用 (25) 5.11.2 拉杆的设置 (26) 5.12 确定管板尺寸 (26) 5.13 垫片的选用 (27) 5.13.1 设备法兰用垫片 (27) 5.13.2 管法兰用垫片 (28) 6 数据汇总 (29) 7 总结评述 (30) 8 参考文献 (32) 9 主要符号说明 (33) 10 附表 (35)

循环水管理规定

循环水使用指导书 1.目的 为确保公司循环水稳定运行,循环水新系统、新设备及新管线投用前正确的处理,确保设备的换热效率和使用年限,保障公司的循环水安全使用,特制订循环水使用指导书。 2.适用范围 本文件适用于宁波万华工业园各循环水用户的使用及操作参考。 3.换热器投用前的操作注意事项 新的冷却水换热设备及管线使用前需要进行预处理,根据实际情况制做预处理方案,对其进行冲洗、预膜、钝化等处理后,再投入使用,否则会有结垢或者腐蚀的风险,具体步骤见清洗预膜方案。 4.循环水换热器投用后的运行参考 4.1管程换热器,循环冷却水管程流速不宜小于0.9m/s;壳程换热器,循环冷却水壳程流速小于0.3m/s时,当换热器流速过低时,会导致循环水内的污泥沉积,从而加速腐蚀速率,必要时应采取防腐涂层、反向冲洗等措施; 4.2设备传热面冷却水侧壁温不高于70度; 4.3短期停车时不要关闭换热器阀门,以免形成死水,会有积沉腐蚀的风险,若停车时间超过一周以上,需要将换热器进出水阀门关闭,将换热器内的水放空,必要时采用氮气保护,开车时对换热器进行循环水冲刷排放; 4.4不同材质换热器性能比较

当物料泄漏至循环水后,会对循环水水质造成影响,容易滋生微生物等,加速循环水系统的腐蚀速率;所以当发生物料泄漏至循环水后,泄漏装置确认泄漏点,并告知所在循环水系统运行部门泄漏物质及泄漏量,循环水系统关注冷却水水质影响,并联系水处理公司至现场查找原因。 确认泄露后,循环水系统运行部门加强循环水水质监控,联系水处理公司提供技术支持,换热设备循环水侧打开后可联系水处理公司做换热器定检报告。 6. 换热器的检修维护说明 6.1检修期间,必要时需用高压水枪对换热器(石墨换热器不能使用水枪冲洗)进行冲洗,物理剥除存在的锈瘤; 6.2管板、管口是最易发生腐蚀的地方,宁波水质很软,腐蚀压力极大,必要时需要对管板涂防腐漆。 6.3封头、管板处水流较缓,易发生颗粒物粘附沉积,引起垢下腐蚀,必要时可以涂防锈漆。 6.4装置开车后进行清洗预膜后再投入使用; 7.循环水系统清洗预膜方案 预处理目的 所有的冷却水系统应在开工前清洗并预膜,一个良好的预处理方案可以延长设备使用寿命和最大程度的发挥生产能力。 清洗预膜方案与操作详见附件 清洗预膜.doc

冷冻水流量计算

标准冷冻水流量=制冷量(KW)*0.86/5(度温差) 冷却水流量=(制冷量+机组输入功率)(KW)*0.86/5(度温差) 水流量计算 1、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量 L(m3/h)= [Q(kW)/(4.5~5)℃x1.163]X(1.15~1.2) 2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。如果考虑了同时使用率,建议用如下公式进行计算。公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。 L(m3/h)= Q(kW)/(4.5~5)℃x1.163 3、冷却水补水量一般1为冷却水循环水量的1~1.6%. 1 水侧变流量对冷水机组性能的影响 在传统的空调水系统设计中,通过冷水机组的冷冻水和冷却水的流量基本保持不变。认为只有维持定流量,才能确保盘管的换热效果,流量减小时,在换热盘管表面可能会出现层流状态,降低换热效果;同时,流量过小时,蒸发器还会出现冻结的危险,当流速小于一定值时,水中若含有腐蚀性物质,会对盘管造成腐蚀。随着控制技术的发展,冷水机组的控制系统越来越先进。目前,不同类型的冷水机组均能实现冷量的自动调节。冷水机组能量调节功能的进步使得其水侧变流量设计成为可能,同时也凸显水泵应改变以不变应万变之策,而应以变应变。事实上,目前,多数冷水机组允许蒸发器流量在额定流量的50%~100%以内变化。 当蒸发器采用变流量运行时,其流量随着用户负荷的变化而变化,当用户负荷变小时,蒸发器的冷冻水流量变小,冷水机组的控制系统根据实际需冷量减小制冷剂流量,导致蒸发器盘管内制冷剂流速偏离了最佳流速值,冷水机组制冷系统的整体性能降低。衡量蒸发器变流量运行能否节能的标准不单是冷冻水泵运行时节能多少,而还应考虑蒸发器变流量运行造成冷水机组COP值下降而损失的能耗,再考虑变流量运行的负荷时间频度。 由于控制技术的进步,控制系统可以保证压缩机始终在高效区运转,使得冷水机组蒸发器变流量时的性能不会下降很多。冷水机组蒸发器变流量对其制冷性能的影响程度与压缩机类型和制冷剂变流量的方式有关。文献3从热力学角度对此进行了分析,认为即使冷冻水流量减至60%,冷水机组的COP的下降幅度也不超过10%。 冷却水进出口温差变大时,虽然可以减小冷却水泵的运行费用,然而,为了保证冷凝器内的热交换,冷凝温度必然要高于冷却水的出口温度,并且冷凝温度与冷却水出口温度也要求有一低限。所以,要想加大冷却水的进出口温差,就必须提高冷却水出口温度(通常冷却水进口温度基本上是定值),这又将引起冷凝温度的增加,降低了冷水机组的COP值。与蒸发器变流量相比,冷凝器变流量运行对冷凝温度的影响较大,故导致冷水机组COP的变化较大,在给冷却水泵安装变频器时,应详细分析冷却水变流量对冷水机组性能的影响,确定方案的可行性。

化工原理课程设计(循环水冷却器设计说明书)

齐齐哈尔大学 化工原理课程设计 题目循环水冷却器的设计 学院化学与化学工程学院 专业班级制药工程 学生姓名夏天 指导教师吕君 成绩 2016年 07月 01日 目录

摘要.......................................................................................错误!未定义书签。Abstract..........................................................................................错误!未定义书签。第1章绪论 (1) 1.1设计题目:循环水冷却器的设计 (1) 1.2设计日任务及操作条件 (1) 1.3厂址:齐齐哈尔地区 (1) 第2章主要物性参数表 (1) 第3章工艺计算 (2) 3.1确定设计方案 (2) 3.2核算总传热系数 (4) 3.3核算压强降 (6) 第4章设备参数的计算 (8) 4.1确定换热器的代号 (8) 4.2计算壳体内径DⅠ (9) 4.3管根数及排列要求 (9) 4.4计算换热器壳体的壁厚 (9) 4.5选择换热器的封头 (11) 4.6选择容器法兰 (11) 4.7选择管法兰和接管 (13) 4.8选择管箱 (14) 4.9折流挡板的设计 (15) 4.10支座选用 (16) 4.11拉杆的选用和设置 (16) 4.12垫片的使用 (18) 总结评述 (20) 参考文献 (21) 主要符号说明 (22)

附表1 (24) 附表2 (25) 致谢 (26)

循环水冷却知识汇总

循环水冷却知识汇总 问:给排水循环水冷却塔是什么? 答:干式冷却塔干式冷却难的热水在散热翅管内流动,靠与管外空气的温差,形成接触传热而冷却。所以干式冷却塔的特点是:①没有水的蒸发损失,也无风吹和排污损失,所以干式冷却塔适合于缺水地区,如我国的北方地区。因为没有蒸发,所以也没有但空气从冷却塔出口排出所造成的污染。②水的冷却靠接触传热,冷却极限为空气的干球温度效率低,冷却水温高。③需要大量的金属管(铝管或钢管),因此造价为同容量湿式塔的4~6倍。因干式冷却塔有后两点不利因素,所以在有条件的地区,应尽量采用湿塔。干塔可以用自然通风,也可以用机械通风。以火电厂常用的干式冷却塔为例,分为间接冷却和直接冷却两类。间接冷却是指用冷却塔中冷却后的水,送往凝汽器中冷却由汽轮机井出的乏汽。直接冷却是指不用凝汽器,将汽轮机排出的乏汽,用管道引人冷却塔直接冷却,变为凝结水,用水泵送回锅炉重复使用。海勒(Heller)系统间接空冷干式自然通风冷却塔。它的特点是使用喷射式凝汽器,汽轮机排出的乏汽与从冷却塔来的冷水,在凝汽器内直接混合,因此端差很小。混合后的水,约2%送回锅炉,其余的水送到冷却塔冷却。因冷却水和锅炉水为同一种水,所以对水质要求高。另外一个特点是,经冷却塔冷却后的水仍有较大的余压,在送人凝汽器以前,先用小型水轮发电机口收能量。它的散热器放在塔简的外边,类似湿式横流塔。散热器也可以像湿式逆流塔一样放在塔筒里面,但为了排走散热器中的水,散热器不是完全水平布置,而有一定的坡度。另外一种间接空冷塔,使用表面式凝汽器,乏汽和冷却水互不相混。散热器用翅片管或螺纹管,材质为钢或铝。管断面为椭圆形或圆形。直接空冷塔从汽轮机排出的乏汽,通过管道直接送入冷却塔内的散热管,用风机通风冷却成凝结水,不要凝汽器,所以称直接空冷。因为是将蒸汽直接送人散热管,而不像间接空冷送人冷却塔的是热水、因蒸汽体积比水大得多,所以送汽管特别粗,直径约为间接空冷的三倍多。另外,输汽管道不能漏汽,不然就会直接影响汽轮机真空,降低出力。干湿式冷却塔这种塔为湿式塔和干式塔的结合,干部在上、湿部在下。也有的塔四面进风,相对两边为湿部;另外两边为干部。采用这种塔的目的,部分是为了省水,但大多数是为了消除从塔出口排出的饱和空气的凝结,因而造成塔周围的污染。从塔下部湿段排出的湿空气,在同塔周围的冷空气接触后,即变成过饱和的空气而凝结,形成雾,造成污染。塔上部用干段,则由塔下部湿段排出的饱和湿空气,流经干段时,会被加热而变成不饱和的空气,因而出塔后不会凝结。喷流式冷却塔。为美国

循环冷却水培训教材

循环xx培训教材 工业生产过程中,往往会产生大量热量,使生产设备或半成品(气体或液体)温度升高,必须及时冷却,以免影响生产的正常运行和产品质量。因水的热容量大,水是吸收和传递热量的良好介质,常用来冷却生产设备和产品。冷却水系统一般可分为直流水系统和循环水系统。 水通过换热器后即排放的称直流系统。若厂区附近水源充足且直接排放而不影响水体时,可采用直流系统。 循环冷却水系统又分为封闭式循环冷却水系统和敞开式循环冷却水系统。 冷却水在完全封闭的、由换热器和管路构成的系统中进行循环时称密闭式循环系统。在密闭式循环系统中,冷却水所吸收的热量一般借空气进行冷却,在水的循环过程中除渗漏外并无其它水量损失,也无排污所引起的环境问题,系统中含盐量及所加药剂几乎保持不变,故水质处理较单纯。但密闭式循环冷却水存在严重的腐蚀剂腐蚀产物问题。密闭式循环系统一般只用于小水量或缺水地区。 冷水流入换热器将热流体冷却,水温升高后,利用其余压流入冷却塔内进行冷却,冷却后的水再用水泵送入换热器循环使用,此系统称为敞开式循环冷却水系统。这种敞开式循环冷却水,由于在循环过程中要蒸发掉一部分水,还要排出一定的浓缩水,故要补充一定的新鲜水(通常称为补水),以维持循环水中的含盐量或某一离子含量在一定值上。 敞开式循环冷却水系统是应用最广泛的系统,也是水质处理技术最复杂的系统。 一水的冷却原理 循环水的冷却是通过水与空气接触,由蒸发散热、接触散热和辐射散热三个过程共同作用的结果。 1蒸发散热水在冷却设备中形成大小水滴或极薄水膜,扩大与其空气的接触面积和俄延长接触时间,使部分水蒸发,水气从水中带走气化所需的热量,从而使水冷却。

循环水冷却器设计

循环水冷却器设计 [摘要]:传热过程是化工生产过程中存在的及其普遍的过程,实现这一过程的换热设备种类繁多,是不可缺少的工艺设备之一。由于使用条件不同,换热设备可以有各种各样的型式和结构。其中以管壳式换热器应用更为广泛。现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中仍处于主导地位。 循环水冷却器是换热设备中的一种,是企业生产中的重要设备。它的作用是通过温度相对较低的水来把其他设备所产生的热量带走,从而使设备部分的温度保持在一个生产所需要的水平,使设备正常工作。因此,循环水冷却器的设计对企业的生产是很重要的,它很可能影响企业的经济损失,对其的设计具有很强的实际意义。 本设计是对管壳式换热器中固定管板式换热器的研究。固定管板式换热器属于管壳式换热器的一种,是利用间壁使高温流体和低温流体进行对流传热从而实现物料间的热量传递。在本设计中以GB 150-2011《压力容器》、GB 151-1999《管壳式换热器》等标准和《固定式压力容器安全技术监察规程》为依据,并参考《换热器设计手册》,首先通过方案的论证,确定物料的物性参数,再结合工作条件,选定换热器的形式。根据设计任务,完成对换热面积、总换热系数等工艺参数的确定,同时进行换热面积、壁温和压力降的核算。再根据工艺参数进行机械设计,机械设计主要包括对筒体、管箱、管板、折流板、封头、换热管、鞍座及其它零部件,如拉杆、定距管等的计算和选型等,并进行必要的强度核算,最后运用AutoCAD绘制固定管板式换热器的装配图及零部件图,并编写说明书。 [关键词]:换热器、换热面积、管板、换热管。

闭式循环冷却水系统

第三章闭式循环冷却水系统 第一节闭式冷却水系统投运前的检查与操作 3.1.1 检修工作已结束,所有工作票终结,系统完好、现场整洁。 3.1.2 闭式冷却水泵与电机对轮连接完好,地脚螺栓坚固,联轴器防护罩完整牢固,电机接线良好,接地线连接完好。 3.1.3 热工各种表计齐全完整,并投入运行,确证热工保护投入运行。 3.1.4 闭式冷却水系统电动门送电,气动门控制气源送上,压缩空气压力不低于0.5MPa,各阀门开关正常。 3.1.5 关闭闭式冷却水系统所有放水门,开启闭式冷却水系统所有放空气门,系统各用户阀门根据具体情况投入。 3.1.6 开启膨胀水箱出口门及两台闭式冷却水泵入口门。 3.1.7 检查辅机冷却水系统已投入运行20分钟以上,投入一台闭式冷却水冷却器,另一台闭式冷却水冷却器备用。闭式冷却水冷却器投入时先投开式冷却水侧,再投闭式冷却水侧。 3.1.8 检查除盐水正常,凝结水补水系统已准备好。 3.1.9 开启除盐水向膨胀水箱补水门,闭式冷却水系统开始注水。 3.1.10 闭式冷却水系统各空气门见水后关闭。 3.1.11 膨胀水箱水位补至 1000—1600mm,投入膨胀水箱补水调门自动。 3.1.12 按规定进行闭式冷却水泵联锁试验合格。 3.1.13 闭式冷却水泵电机测绝缘合格后送电。 3.1.14 检查闭式冷却水泵出口电动门关闭。 3.1.15 检查投入部分闭式冷却水用户。 3.1.16 通知化学准备化验闭式冷却水水质。 第二节闭式冷却水系统的报警、联锁与保护 3.2.1 报警条件 1. 闭式膨胀水箱水位≤1000mm, 水位低报警, 联开补水调门; ≥1600mm, 联关补水调门; ≥1800mm,水位高报警。 2. 闭式循环水冷却器出口母管压力≤0.35MPa 报警,延时3s 联启备用泵。 3. 闭式循环水冷却器出口母管温度≥38℃报警。 4. 闭式循环泵电机线圈温度≥110℃报警。 5. 闭式循环泵电机轴承温度≥75℃报警,≥80℃延时3s 跳泵。 6. 闭式循环泵轴承温度≥75℃报警,≥80℃延时3s 跳泵。 7. 闭冷水膨胀水箱液位≤200,延时5s跳泵; 8. 闭式循环冷却水泵运行且出口电动门关,延时5S跳泵; 9. 闭式循环冷却水泵运行且入口电动门关,延时3S跳泵。 3.2.2 闭式冷却水泵允许启的条件: 1. 电机各相线圈温度低于110℃;

空调冷却循环水系统存在的问题及解决方案

时间:2008年9月22日 一、中央空调冷却循环水系统的组成 中央空调冷却循环水系统主要由冷却塔、制冷机、冷凝器、循环水泵、控制阀门及相应管路组成。运行温度一般为30℃—40℃.敞开式运行。 二、冷却循环水系统设计规范及物理场水处理水质标准 1.《中华人民共和国国家标准工业循环冷却水处理设计规范》GB50050-951)1)冷却循环水系统中微生物控制指标 异养菌< 5×105 个/ml 2次/周 真菌< 10 个/ml 1次/周 硫酸盐还原菌< 50 个/ml 1次/月 铁细菌< 100 个/ml 1次/月 2)冷却循环水系统腐蚀速率 ★碳钢换热器管壁的腐蚀速度小于0.125 mm/a ★铜合金和不锈钢的腐蚀速度小于0.005 mm/a 3)冷却循环水系统污垢热阻

★敞开式:水侧管壁的年污垢热阻值为: 2×10-4 —4×10-4 m2hc/kcal ★密封式:水侧管壁的年污垢热阻值为: 1×10-4 m2hc/kcal 4)冷却循环水系统中粘泥量 <4 ml/m3 (生物过滤网法)1次/天 <1 ml/m3 (碘化钾法)1次/天 三、冷却循环水系统存在的问题 冷却循环水系统主要存在的问题是水垢、腐蚀、菌藻及污垢所形成的复合垢,影响制冷机冷凝器的换热效率及水质控制问题。 由于冷却循环水是一个敞开式的循环系统,水温一般在30℃-40℃之间,在系统正常运行时,由于受天气和环境的影响,空气中的灰尘、杂质和悬浮物通过冷却塔进入系统中,在冷凝器内沉积下来,形成污垢,影响机组的换热效率。 由于冷却循环水是一个敞开式的循环水系统,高温的冷却水通过冷却塔不断的向大气中蒸发,导致冷却水浓缩。在进入换热器热交换过程中,使水中的钙镁离子大量析出,形成水垢(CaCO3,MgCO3)粘附在热换器表面影响换热效果。

风冷却器设计说明(1)

立管式风冷却器的设计说明 白酒蒸馏就是把在发酵过程中形成的酒精成分加以浓缩并把它从酒醅中提取出来,使成品酒具有一定的酒度,同时把发酵产生的香味物质挥发浓缩并蒸入 酒中,使成品酒形成独特的风格,通过蒸馏还可以排除有害杂质,保证白酒符合卫生要求。 传统工艺酿酒设备主要有:甑桶、过汽管、冷却器(水冷)、接酒桶。蒸馏工艺分为上甑、接酒、拉尾、出糟等工序。 一、风冷却器的应用: 冷却器是白酒出酒的最后一道工序,不仅要讲究冷却效果,同时还要讲究出酒的产量、质量,传统冷却方法都是采用水冷却,一是由于水资源的日益匮乏,同时随着人们对环境保护的日益重视,对排放的要求越来越高,这样水冷却的运行费用会越来越高,产品成本也越来越高。二是如果采用循环水,则冷却后水温逐步提高,水冷却的效果越来越低,产量得不到保证,同时维护成本也较高,这样势必会逐渐淘汰水冷却。为适应市场需要,我公司发明了卧式风冷却器,由于卧式风冷却器的冷却效果比水冷好,不仅产酒量高,而且节能减排,所以在苏酒系列厂家中广泛使用,并取得了较好的业绩。 二、立管式风冷却器的设计理念: 我公司为了将风冷却器向更多白酒厂家推广,在2012年9月与贵州茅台酒股份有限公司进行了初步接触,并做了技术上的交流,通过了解,茅台酒的口味、质量的要求与苏酒有很大的不同,茅台酒为酱香型,出酒温度相对较高(达35℃左右),并且出酒层次要求也比较高,这样卧式风冷却器就难以适应贵公司的生产要求。在茅台公司领导、技术人员的大力支持、帮助下,我公司技术人员通过反复调研认证,抛弃了原先的卧式结构形式,发明了新颖的立管式风冷却器,这一新的设计思路突破了设计上的瓶颈,解决了蒸馏时白酒的留酒、层次不清(酒头、酒干、酒梢相互干扰)、质量不高、一级酒出酒少等问题。我公司于2012年10月初立即组织生产了2台样机给茅台公司试用,通过一段时间的试用,立管式风冷却器不仅产酒量大大提高,同时由于出酒层次分明,一级酒的产量得到了有效保证,这样立管式风冷却器的适用范围将更加广阔,市场前景也更加光明。 三、立管式风冷却器的结构及特点: 风冷冷却器由进风室、出风室、消声器、换热管(带翅片)、风机(变频电机)、外框架、预热系统、控制系统等组成。具体结构及特点如下: 1、立管式风冷器是我公司从原卧式风冷冷却器基础上进一步的改造延伸。它具有保持酒的传统风味;对出酒口的温度实现可控(适用范围广);酒在酿造过程的层次清晰,无一点酒液残留 2、由于使用立管式,所以管中酒液残留少,便于使用后的清洗维护。 3、使用风冷冷却器后大大提高冷却效率,可以使生产所需的时间降低一倍以上。 4、选用多叶片,低噪音风机,使风机的噪音降低到60 dB(A) 5、采用丹佛斯变频器,使风机的风量可调可控,以适应不同季节不同环境温度下的使用要求。

冷冻水流量计算

标准冷冻水流量=制冷量(KW)*5(度温差) 冷却水流量=(制冷量+机组输入功率)(KW)*5(度温差) 水流量计算 1、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量 L(m3/h)= [Q(kW)/(~5)℃]X~ 2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。如果考虑了同时使用率,建议用如下公式进行计算。公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。 L(m3/h)= Q(kW)/(~5)℃ 3、冷却水补水量一般1为冷却水循环水量的1~%. 1 水侧变流量对冷水机组性能的影响 在传统的空调水系统设计中,通过冷水机组的冷冻水和冷却水的流量基本保持不变。认为只有维持定流量,才能确保盘管的换热效果,流量减小时,在换热盘管表面可能会出现层流状态,降低换热效果;同时,流量过小时,蒸发器还会出现冻结的危险,当流速小于一定值时,水中若含有腐蚀性物质,会对盘管造成腐蚀。随着控制技术的发展,冷水机组的控制系统越来越先进。目前,不同类型的冷水机组均能实现冷量的自动调节。冷水机组能量调节功能的进步使得其水侧变流量设计成为可能,同时也凸显水泵应改变以不变应万变之策,而应以变应变。事实上,目前,多数冷水机组允许蒸发器流量在额定流量的50%~100%以内变化。 当蒸发器采用变流量运行时,其流量随着用户负荷的变化而变化,当用户负荷变小时,蒸发器的冷冻水流量变小,冷水机组的控制系统根据实际需冷量减小制冷剂流量,导致蒸发器盘管内制冷剂流速偏离了最佳流速值,冷水机组制冷系统的整体性能降低。衡量蒸发器变流量运行能否节能的标准不单是冷冻水泵运行时节能多少,而还应考虑蒸发器变流量运行造成冷水机组COP值下降而损失的能耗,再考虑变流量运行的负荷时间频度。 由于控制技术的进步,控制系统可以保证压缩机始终在高效区运转,使得冷水机组蒸发器变流量时的性能不会下降很多。冷水机组蒸发器变流量对其制冷性能的影响程度与压缩机类型和制冷剂变流量的方式有关。文献3从热力学角度对此进行了分析,认为即使冷冻水流量减至60%,冷水机组的COP的下降幅度也不超过10%。 冷却水进出口温差变大时,虽然可以减小冷却水泵的运行费用,然而,为了保证冷凝器内的热交换,冷凝温度必然要高于冷却水的出口温度,并且冷凝温度与冷却水出口温度也要求有一低限。所以,要想加大冷却水的进出口温差,就必须提高冷却水出口温度(通常冷却水进口温度基本上是定值),这又将引起冷凝温度的增加,降低了冷水机组的COP值。与蒸发器变流量相比,冷凝器变流量运行对冷凝温度的影响较大,故导致冷水机组COP的变化较大,在给冷却水泵安装变频器时,应详细分析冷却水变流量对冷水机组性能的影响,确定方案的可行性。

循环水冷却器

化工原理课程设计 ————循环水冷却器设计 学院:化工学院 专业班级:高分子061班 姓名:李猛 学号: 2006016050 指导教师:徐功娣 时间:2009年6月25-30日 目录 1 设计任务书1 2 设计摘要2 3 主要物性参数表4 4 工艺计算5 4.1 确定设计方案5 4.1.1 选择换热器的类型5 4.1.2 计算热负荷和冷却水流量5 4.1.3 计算两流体的平均温差,确定管程数6 4.1.4 工艺结构尺寸6 4.2 核算总传热系数8 4.2.1 管程对流传热系数Ai8 4.2.2 壳程流体传热系数9

4.2.3 计算总传热系数K010 4.3 核算压强降12 4.3.1 管程压强降12 4.3.2 壳程压强降校核13 5 设备参数的计算16 5.1 确定换热器的代号16 5.1.1 换热器的代号16 5.1.2 确定方法16 5.2 计算壳体内径16 5.3 管根数及排列要求16 5.4 计算换热器壳体壁厚17 5.4.1 选适宜的壳体材料17 5.4.2 该钢板的主要工艺参数性能17 5.4.3 壁厚的计算17 5.5 选择换热器的封头19 5.6 选择容器法兰20 5.6.1 选择法兰的型式20 5.6.2 确定法兰相关尺寸20 5.6.3 选用法兰并确定其标记21 5.7 选择管法兰和接管22 5.7.1 热流体进出口接管22

5.7.2 冷流体进出口接管22 5.7.3 选择管法兰23 5.8 选择管箱23 5.9 折流档板的设计24 5.10 支座的选用24 5.11 拉杆的选用和设置25 5.11.1 拉杆的选用25 5.11.2 拉杆的设置26 5.12 确定管板尺寸26 5.13 垫片的选用27 5.13.1 设备法兰用垫片27 5.13.2 管法兰用垫片28 6 数据汇总29 7 总结评述30 8 参考文献32 9 主要符号说明33 10 附表35

闭式循环水冷却器

你知道拼装式板式换热器在辐射供冷暖中的应用吗? 辐射供冷暖空调系统在欧洲和北美已有多年的使用和发展历史,与传统对流式空调系统不同的是,辐射供冷暖空调系统中,辐射换热量占总热交换量的50%以上,属于低温辐射传热为主的空调系统,其工作原理是夏季向辐射末端内输入18℃左右的冷水,形成冷辐射面;冬季则向辐射末端提供45℃左右的热水,形成热辐射面,依靠辐射面与人体、家具以及围护结构其余表面的辐射热交换进行降温(供暖)。若冷热源提供的冷热水温度过低或过高,不能满足辐射末端温度要求时,通常采用板式换热器或其他方法(如混水等)使冷(热)媒水温度达到系统设计要求。 在辐射供冷中的应用 辐射供冷时,辐射末端内冷水温度不宜过低,否则在辐射表面处易产生凝结水,造成结露现象.通常,采用控制辐射末端冷水进水温度的方法,使辐射板表面温度高于空气露点温度1~2℃,以防止结露.辐射供冷系统使用的冷水温度(16~18℃)通常高于常规空调系统(7℃),较高的冷水温度为蒸发冷却等天然冷源的使用提供了选择[6-8],但也使得常规的冷水机组产生的冷冻水(供回水温度为7/12℃)不能直接满足辐射供冷系统对对冷水温度的要求,通常可采用混水的方法得到辐射供冷所需的高温冷水,但为了防止冷水直接通入显热换热末端(特别是毛细管)后在换热器内表面产生水垢而堵塞,也可采用高效板式换热器将冷水机组产生的冷水进行逆流换热后再送入显热末端.辐射供冷时显热末端常用的进口水温为16~18℃,回水温度一般为21~23℃。 在辐射供暖中的应用 板式换热器在低温辐射供热中的应用分为水-水换热工况和汽-水换热工况2种.当采用蒸汽为热源时,蒸汽须采用低压饱和蒸汽,工程中常用的压力为:表压0.3MPa或者表压0.4MPa,此时的蒸汽温度分别为144℃和152℃.当采用热水为热源时,所采用的热水供回水温度一般为95/70℃.辐射供暖时,供给辐射末端的热水温度也不宜过高,一般不超过60℃,其主要原因是: 1、由于辐射面积较大,水温无需太高即可达到室温设计要求; 2、人体舒适要求地面温度不能过高; 3、较高水温下,辐射供暖常用的塑料管材寿命大大降低.根据建筑保温及居住者的不同要求,地面温度通常控制在24~30℃范围内,温度过高影响舒适性,造成不必要的浪费;温度过低则达不到采暖要求.

循环水冷却器

化工原理课程设计 设计题目: 循环水冷却器设计 设计时间:2013.6.23-2013.7.1 设计班级:食安班 设计者: 学号: 2010 指导教师: 设计成绩:

目录 1 设计任务书 (3) 2 设计摘要 (4) 3 主要物性参数表 (5) 3.1循环水 (5) 3.2冷却水 (5) 4 估算传热面积 (5) 4.1 换热器的热负荷 (5) 4.2 平均传热温差 (5) 4.3 冷却水用量 (6) 4.4 传热面积 (6) 5 工程结构尺寸 (6) 5.1 管径和管程流速 (4) 5.3 平均传热温差校正及壳程数 (5) 5.4传热管排列和分程方法 (5) 5.5 壳体内径 (5) 5.6 折流板 (6) 5.7 附件 (8) 5.8 接管 (8) 6 换热器的核算 (9) 6.1传热能力核算 (9) 6.1.1管城传热膜系数 (9) 6.1.2污垢热阻和管壁热阻 (9) 6.1.3壳程对流传热膜系数 (10) 6.1.4总传热系数K (10) 6.1.5传热面积 (11) 6.2换热器内流动的流动阻力 (11) 6.2.1管程流动阻力 (11) 6.2.2壳程阻力 (12) 7换热器主要结构尺寸和计算结果表 (12) 8 设备参数计算 (14) 8.1壳体壁厚 (14) 8.2接管法兰 (14) 8.3设备法兰 (14) 8.4封头管箱 (14) 8.5设备法兰垫片 (14) 8.6管法兰用垫片 (14) 8.7管板 (15) 8.8支垫 (15) 8.9设备参数总表 (15) 9 学习心得 (16)

10参考文献 (17) 11重要符号说明 (18)

工业循环冷却水系统处理的重要性

工业循环冷却水系统处理的重要性 循环水的使用及水处理的重要性 用水来冷却工艺介质的系统,我们称作冷却水系统,通常可分为以下两种类型:直流冷却水系统和循环冷却水系统。其中,循环冷却水系统目前已被广泛地应用于各行各业之中,比如,石油化工、电力、冶金、医药、纺织、机械、电子等等传统工业企业中的工艺用循环冷却水系统,及各楼宇的中央空调用循环冷却水系统。 最早使用的是直流冷却水系统,冷却水仅仅通过换热设备一次,用过后水就被排放掉。这种系统虽然投资少、操作简便,但它的用水量却很大,冷却水的操作费用也大,不符合节约使用水资源的要求,目前基本都改成了循环冷却水系统(除了海水中还在使用的直流冷却水系统),即冷却水用过后不立即排放掉,而是收回循环再用。从直流水系统到循环水系统,水资源的节约非常可观,例如:一个年产30万吨的合成氨工厂,如采用直流水系统,每小时用水量约25000T,而改成循环水系统,并以3倍的浓缩倍数运行,则每小时耗水量只需约550T。 冷却水循环后遇到什么问题? 腐蚀:冷却水在循环使用中,水在冷却塔内和空气充分接触,使水中的溶解氧得到补充,所以循环水中溶解氧总是饱和的,水中溶解氧是造成金属电化学腐蚀的主要原因,这是冷却水循 环后易带来的问题之一。 结垢:水在运行中蒸发(尤其是在冷却塔的环境中),使循环水中含盐量逐渐增加,加上水中二氧化碳在塔中解析逸散,使水中碳酸钙或其它盐类在传热面上结垢析出的倾向增加,这是问题之二。 生物污垢:冷却水和空气接触,吸收了空气中大量的灰尘、泥沙、微生物及其孢子,使系统的污泥增加;冷却塔内的光照、适宜的温度、充足的氧和养分都有利于细菌和藻类的生长,从而使系统粘泥增加,在换热器内沉积下来,造成了粘泥的危害,这是水循环使用后易带来的问题之三。 冷却水循环后,冷却水补充水量可大幅度降低,节约了用水,这是我们所希望的。但水循环后突出的腐蚀、结垢和生物污垢等问题如不解决,生产装置的长周期、满负荷、安全稳定运行是难以保证的,那么采用循环水后所期望的经济、技术效益不仅不能充分发挥,而且将给企业带来许多危害——严重的沉积物的附着、设备腐蚀和微生物的大量滋生,由此形成的黏泥污垢堵塞管道或各种材料及设备严重受损等问题,会威胁和破坏工厂的安全生产;而由于各种沉积物使换热设备的水流阻力加大,水泵及相关设备的能耗大幅增加,传热效率降低,从而降低产品品质或生产效率,这一切都可能造成极大的经济损失,例如:电厂出现此类问题,必然使凝汽器凝结水的温度升高、真空度下降,严重影响汽轮机的出力和电厂的发电量,并且大幅增加能耗(有一个经验数值:发电机组真空度每下降1%,多耗燃料原油0.8%)。 所以,必须要选择一种科学合理、全面有效且经济实用的循环冷却水处理方案,使上述问题得到妥善解决或改善,水处理就是通过水质处理的办法来解决以上问题。如能真正做好水处理,不但能保证保质保量、安全生产,而且还能通过大幅降低能耗、节约材料、节约用水来降低生产成本,直接创造可观的经济效益,例如在电厂,就可以提高汽轮机凝汽器的真空度,一般可提高7~8%,提高汽轮机的功率,提高电负荷5~6%,增加发电能力;如应用在低压锅炉炉内处理,不但可将水处理运行费用从仅使用炉外处理方式时的0.5元/吨降到0.3元/吨左右,而且据统计,可使每台2t?h-1的锅炉节煤约5%;现代工业一般水冷换热器在未进行水处理时的寿命为2年左右,经水处理后的寿命可达7~8年,检修费和检修工作量可降低90%,一个小型化工厂由此节约的检修费即可达50万元。 科学合理且全面完整的化学水处理方案

油码头消防冷却水量的计算方法正式样本

文件编号:TP-AR-L4545 There Are Certain Management Mechanisms And Methods In The Management Of Organizations, And The Provisions Are Binding On The Personnel Within The Jurisdiction, Which Should Be Observed By Each Party. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 油码头消防冷却水量的 计算方法正式样本

油码头消防冷却水量的计算方法正 式样本 使用注意:该操作规程资料可用在组织/机构/单位管理上,形成一定的管理机制和管理原则、管理方法以及管理机构设置的规范,条款对管辖范围内人员具有约束力需各自遵守。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 在《装卸油品码头防火设计规范》(JTJ237-99) 中,对油码头消防冷却水量作了具体规定,并提出冷 却范围的计算公式,但对式中的几个参数,尤其是对 油船最大舱纵向长度、最大舱面积的确定方法未作规 定。经分析,笔者给出了这2个参数的计算方法,供 参考。 1 消防冷却水量 冷却水量的大小直接与冷却范围密切相关, JTJ237-99中第6.2.7.1款规定冷却范围为:

F=3LB-fmax 式中:F—冷却范围(m2); B—最大船宽(m); L—最大舱的纵向长度(m); fmax—最大舱面积(m2)。 计算式中B、L、fmax3个要素,B一般可以查询到,而L及fmax的数据难于查询到,L及fmax的数据往往随设计人员掌握资料的多少而变化,常带有盲目性和随意性。因此造成消防冷却水量的计算值可能因人而异,数据相差很大,希望在规范中应列出各个吨级油船的L及fmax参考数据,供设计人员及消防审核部门参考。以保证同一等级、同一规格的油码头消防设计的规范性和同一性。为此目的,笔者试图找出油码头消防冷却水量大致可遵循的一个法则,例如停靠油船的规格分级按《海港总平面设计规范》

循环水冷却器设计

目录 设计目录 (1) 一设计任务书 (3) 二物性参数的确定 (4) 三设计方案的确定 (4) 1选择换热器的类型 (4) 2流程安排 (5) 四估算传热面积 (5) 1换热器的热负荷 (5) 2平均传热温差 (6) 3传热面积 (6) 五工程结构尺寸 (7) 1管径和管内的流速 (7) 2管程数和传热管数 (7) 3平均传热温差校正及壳程数 (7) 4传热管排列和分程方法 (8) 5管体内径 (8) 6折流板 (8) 7其它附件 (9) 8接管 (9) 六换热器的核算 (9) 1传热能力的核算 (9)

①管程传热膜系数 (9) ②污垢热住和关闭热阻 (10) ③壳程对流传热膜系数α (10) ④总传热系数K (11) ⑤传热面积裕度 (11) 2换热器内流体的流动阻力 (12) 校核①管程流体的阻力 ②壳程流体的阻力 七换热器的主要工艺结构尺寸和计算结果表 (13) 八设备参数的计算 (14) 1壳体壁厚 (14) 2接管法兰 (15) 3设备法兰 (15) 4封头管箱 (15) 5设备法兰用垫片 (15) 6管法兰用垫片 (16) 7管板 (16) 8支垫 (16) 9设备参数总表 (16) 九参考文献 (17) 十学习体会与收获 (18) 十一重要符号说明 (20)

一. 设计任务书 化工原理课程设计任务书 专业过程装备与控制工程 班级 姓名设计题目循环水冷却器设计 设计条件1设备处理量74T/h 2循环水入口温度55 摄氏度出口温度40摄氏度 3冷却水入口温度20 摄氏度出口温度40摄氏度 4常压冷却热损失5% 5两侧污垢的热阻0.00017(m2℃)/W 6初设k= 900W/(m℃) 设计要求 1设计满足以上条件的换热器并写出设计说明 2根据所选换热器患处设备装配图 指导教师 二计算物性参数 1、定性温度下两流体的物性参数

冷却水循环系统

腹有诗书气自华 冷却水循环系统的用途、定义和如何选购 实验室仪器解决方案 2018/8/16 在讨论如何正确选择冷却水循环系统品牌之前,我们需要知道冷却水循环系统的定义和用途。 定义:冷水机也叫冷却水循环机、冷却循环水机、循环冷却器、冷却水循环系统、冷却水循环装置、冷却水循环器等。原理是:事先向机内水箱注入一定量的水(根据不同的温度,低温也会注入酒精、高温注入硅油),通过冷水机制冷系统将水冷却,再由水泵将低温冷却水送入需冷却的设备,冷水机冷冻水将热量带走后温度升高再回流到水箱,达到冷却的作用。 用途:冷却水循环系统在工业领域适用塑料工业的注塑和吹塑成型,金属加工切削油,焊接设备, 压铸 和机加工,化学加工,制药制定,食品和饮料加工,造纸,水泥加工,真空系统,X 射线衍射,电力供应和发电站,分析设备,半导体,压缩空气和气体冷却。它们还用于冷却高热能,如核磁共振成像仪和激光专门的工程项目,并在医院,宾馆和校园。实验室领域适用与化学反应釜、发酵罐、旋转蒸发器、电子显微镜、阿贝折先仪、蒸发皿、生物制药反应器等实验设备配套使用。也用于原子吸收(AAS ),热量计,CCM 相机,珀尔帖法冷却,通用的实验室设备的冷却,核磁共振(NMR ),试验工场,半导体行业,光谱仪 / 暖化试剂、常规实验室应用程序、 大肠杆菌测定、样本解冻,细菌检查, 微生物检测、细胞培养。 在我们了解冷却水循环系统 的基本信息后,需要知道自己的实际需求,例如温度范围、

尺寸大小,根据这两个基本需求,基本上每个品牌商都可以推荐自己的合适型号。除了以上两个基本需求以外,根据我在行业多年市场、销售与售后的经验,可以建议其他一些额外的特点与功能,这样用户在挑选品牌时可以稍微有些针对性: -根据实际需求,选择合适大小的制冷量(制冷功率); -有的配套设备会对循环压力和流量会有要求; -可以选配外置温度感应器,可以更加精确的控温; -温度警报警报系统:冷却水循环系统少则用几个小时,多则几个月连续运行,一旦机器出现意外故障,发生超高温或者超低温状态都会出现,所以好的品牌在腔体内部都会至少安装1个限温保护功能和低液位警报功能; -制冷系统:国内大部分厂家为了追求利润,能够使用国内配件的尽量使用国产配件,例如焊接铜管的焊料采购低价劣质,导致制冷剂经常泄露,压缩机也选用便宜品牌或者选用低制冷量的压缩机,低温很难稳定,等; -漏电与短路保护功能:设备一旦漏电或者短路都会造成意想不到的危害,一定要重视厂家的生产经验; 在对如何选择合适的冷却水循环系统品牌问题上,主要分为两大类:国产品牌、国外品牌。因为国产品牌与国外品牌的价格差距非常大,另外国产品牌的价格也层次不齐,一般便宜的几千块钱,贵的也只有几万,进口品牌便宜的也要在几万左右,贵的都要到十万以上,在了解这个行情之后,就可以根据自己的预算时选择国产品牌还是进口品牌,下面分别介绍一下各自的优势: 国产品牌主要还是价格的优势: -价格实惠; -后期维修成本低; 进口品牌主要是性能优势: -温度精确,满足要求高的客户(国产品牌温度的精度普遍比较差); -故障率低,哪怕连续工作数月也很少出现故障; -产品工艺好,看上去上档次,提高企业形象 在了解上述基本信息之后,在自己综合考虑之时,同时还需要看自己行业用的最多的冷却水循环系统品牌是哪个,因为不同的品牌在不同的行业市场占有率也是不一样的,因为行业标杆企业使用某个型号,导致大多数同行也会继续选择这个品牌,不仅参数测试结果更有信服力,而且企业形象也会随之提升。 下面展示比较畅销的冷却水循环系统品牌参数,供大家参考: 腹有诗书气自华

冷冻水循环系统

● 冷冻水循环系统 该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。 ● 冷却水循环部分 该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。 ● 主机 主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下: 首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使其达到较低温度。最后,蒸发器中气化后的冷媒又变成了低压气体,重新

进入了压缩机,如此循环往复。 中央空调原理简介:中央空调原理包括: 一、中央空调制冷原理:有压缩式、吸收 式等,这里不再细述;二、中央空调系统 原理:有风系统工作原理、水系统工作原 理、盘管系统工作原理等,简单介绍如下: 1、中央空调原理的新风系统工作:室外 的新鲜空气受到风处理机的吸引进入风 柜,并经过过滤降温除湿后由风道送入每 个房间,这时的新风不能满足室内的热湿 负荷,仅能满足室内所需的新风量,随着 室内风机盘管处理室内空气热湿负荷的 同时,多余出来的空气通过回风机按阀门 的开启比例一部分排出室外,一部分返回 到进风口处以便再次循环利用。如图:2、 中央空调原理的盘管系统工作:室内的 风机盘管工作时吸入一部分由风柜处理 后的新风,再吸入一部分室内未处理的空 气经过工艺处理后,由风口送出能够吸收 室内余热余湿的冷空气,使室内温度湿度 达到所需要的标准,如此循环工作。如图: 3、中央空调原理的风管积尘原因:室外 空气经中央空调处理时,由于大多数粗精 效过滤网仅能过滤3um以上的悬浮颗粒 物,其微细颗粒物则随风直接进入风管, 而风管内表面实际粗糙度远远高于微细 颗粒物的大小,因此,这些微细的颗粒物 随着空气与风管内壁相互碰撞摩擦产生 静电吸附越积越多,从而导致风管内壁的 粗糙度越来越大,灰尘粘附加速进行,如 此长年累月形成较厚积尘。 顶 21

相关文档
最新文档