基于matlab多脉波整流仿真电路功率因素的分析

基于matlab多脉波整流仿真电路功率因素的分析
基于matlab多脉波整流仿真电路功率因素的分析

基于matlab多脉波整流仿真电路功率因素的分析摘要:该文基于matlab仿真平台,建立了6脉波,12脉波整流仿真电路,得出了整流电路输出电压电流波形,对波形进行了分析,得出电路随着单个周期内负载电压脉波数的增加功率因数也增大。

关键词:整流功率因数仿真

随着社会的发展,整流装置的功率在不断加大,然而功率因数不高是整流装置面临的普遍问题,因此整流装置的功率因数越来越受到重视[1]。该文基于matlab仿真平台,分析比较6脉波和12脉波整流电路的功率因数。

1 功率因数的定义

正弦电路中,电路的有功功率为P=UIcosφ。视在功率等于电压有效值与电流的乘积S=UI,即功率因数λ定义为有功功率和视在功率的比值

功率因数是由电压和电流的相位差φ决定的,其值为λ=cosφ。

全波整流滤波电路

二极管全波整流滤波电路 ①下面分两部分介绍其工作原理,即桥式整流电路与滤波电路两部分。 首先,介绍桥式整流电路,其工作原理为如下: 电路图 图10.02(a) 在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。根据图10.02(a)的电路图可知:当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。 当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。 在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。单相桥式整流电路的波形图见图10.02(b)。

下面介绍滤波电路的工作原理: (1)滤波的基本概念 滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L 应与负载串联。经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。 (2)电容滤波电路 现以单相桥式电容滤波整流电路为例来说明。电容滤波电路如图10.06所示,在负载电阻上并联了一个滤波电容C。 若电路处于正半周,二极管D1、D3导通,变压器次端电压v2给电容器C充电。此时C相当于并联在v2上,所以输出波形同v2,是正弦形。当v2到达90°时,v2开始下降。先假设二极管关断,电容C就要以指数规律向负载RL放电。指数放电起始点的放电速率很大。 在刚过90°时,正弦曲线下降的速率很慢。所以刚过90°时二极管仍然导通。在超过90°后的某个点,正弦曲线下降的速率越来越快,当刚超过指数曲线起始放电速率时,二极管关断。 所以,在t1到t2时刻,二极管导电,C充电,v C=v L按正弦规律变化;t2到t3时刻二极管关断,v C=v L按指数曲线下降,放电时间常数为R L C。通过以上分析画出波形图如下: ②讨论C和RL的大小对输出电压的影响。

并联多重12脉可控整流电路

. . 辽宁工业大学电力电子技术课程设计(论文) 题目:并联多重12脉可控整流电路(220V/200A) 院(系):电气工程学院 专业班级: 学号: 学生: 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 近些年来随着电力电子技术的快速发展,电力电子技术已广泛应用于各个领域。直流整流器是以电力电子技术为基础发展起来的。它是利用电力电子技术的基本特点以小信号输入控制很大的功率输出,放大倍数极高,这就是电力电子设备成为强、弱电之间接口的基础。利用这一特点能获得节能、环保、高效、高可靠性、安全良好的经济效益。 整流电路是将交流电能变为直流电能的一种装置,整流电路是电力电子电路中出现最早的一种。它的发展还与其他许多基础学科有着紧密的联系,如微电子技术、计算机技术、拓扑学、仿真技术、信息处理与通信技术等等。每一门学科或专业技术的重大发展和突破都为电力电子技术的发展带来了巨大的推动力。 关键词:整流电路;触发电路;保护电路;MATLAB仿真

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计容 (1) 第2章并联多重12脉整流电路设计 (3) 2.1并联多重12脉整流电路总体设计方案 (3) 2.2具体电路设计 (4) 2.2.1主电路设计 (4) 2.2.1触发电路设计 (5) 2.2.2保护电路设计 (6) 2.3元器件型号选择 (7) 2.3.1主电路参数选择 (7) 2.3.2晶闸管参数选择 (8) 2.4系统调试或仿真、数据分析 (9) 2.4.1 MATLAB仿真软件简介 (9) 2.4.2并联12脉波整流电路建模 (9) 2.4.3并联12脉波整流电路仿真波形及数据分析 (10) 第3章课程设计总结 (12) 参考文献 (13)

蔡氏混沌非线性电路的分析研究

研究生课程论文(2018-2018学年第二学期> 蔡氏混沌非线性电路的研究 研究生:***

蔡氏混沌非线性电路的研究 *** 摘要:本文介绍了非线性中的混沌现象,并从理论分析和仿真两个角度研究非线性电路中的典型混沌电路-蔡氏电路。只要改变蔡氏电路中一个元件的参数,就可产生多种类型混沌现象。利用数学软件MATLAB对蔡氏电路的非线性微分方程组进行编程仿真,就可实现双蜗卷和单蜗卷状态下的同步,并能准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB仿真 Abstract:This paper introduces the chaos phenomenon in nonlinear circuits. Chua’scircuit was a typical chaos circuit,and theoretical analysis and simulation was made to research it.Many kinds of chaos phenomenonenwould generate as long as one component parameter was altered in Chua’s circuit.On the platform of Matlab ,mathematical model of Chua’s circuit were programmed and simulatedto realize the synchronization of dual and single cochlear volume.At the same time, behavior characteristics of chaos attractor is able to be observed correctly. Key words:chaos phenomenon;Chua’S circuit;simulation 引言: 混沌是一种普遍存在的非线性现象,随着计算机的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。混沌行为是确定性因素导致的类似随机运动的行为,即一个可由确定性方程描述的非线性系统,其长期行为表现为明显的随机性和不可预测性。混沌中蕴含着有序,有序的过程中也可能出现混沌。混沌的基本特征是具有对初始条件的敏感依赖性,即初始值的微小差别经过一段时间后可以导致系统运动过程的显著差别。混沌揭示了自然界的非周期性与不可预测性问题而成为20 世纪三大重要基础

开关电源《基于MatlabSimulink的BOOST电路仿真》

基于Matlab/Simulink 的BOOST电路仿真 姓名: 学号: 班级: 时间:2010年12月7日

1引言 BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。 图1BOO ST 电路的结构 2电路的工作状态 BOO ST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断) (c) 开关状态3 (电感电流为零) 图2BOO ST 电路的工作状态

3matlab仿真分析 matlab 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。本文应用基于matlab软件对BOO ST 电路仿真, 仿真图如图3 所示,其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真图2 中开关S的通断过程。 图3BOO ST 电路的PSp ice 模型 3.1电路工作原理 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。负载侧输出电压的平均值为: (3-1) 式(3-1)中T为开关周期, 为导通时间,为关断时间。

三相半波桥式(全波)整流及六脉冲整流电路

三相半波桥式(全波)整流及六脉冲整流电路 1. 三相半波整流滤波 当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。图1所示就是三相半波整流电路原理图。在这个电路中,三相中的每一相都和单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120o 叠加,并且整流输出波形不过0点,其最低点电压 式中Up——是交流输入电压幅值。 并且在一个周期中有三个宽度为120o的整流半波。因此它的滤波电容器的容量可以比单相半波整流和单相全波整流 时的电容量都小。 图1 三相半波整流电路原理图 2. 三相桥式(全波)整流滤波 图2所示是三相桥式全波整流电路原理图。图3是它们的整流波形图。图3(a)是三相交流电压波形;图3(b)是三相半波整流电压波形图;图3(c)是三相全波整流电压波形图。在输出波形图中,N粗平直虚线是整流滤波后的平均输出电压值,虚线以下和各正弦波的交点以上(细虚线以上)的小脉动波是整流后未经滤波的输出电压波形。

图2 三相桥式全波整流电路原理图 由图1和图2可以看出,三相半波整流电路和三相桥式全波整流电路的结构是有区别的。 (1)三相半波整流电路只有三个整流二极管,而三相全波整流电路中却有六只整流二极管; (2) 三相半波整流电路需要输入电源的中线,而三相全波整流电路则不需要输入电源的中线。 由图3可以看出三相半波整流波形和三相全波整流电路则不需要输入电源的中线。 图3 三相整流的波形图 ①三相半波整流波形的脉动周期是120o而三相全波整流波形的脉动周期是60o; ②三相半波整流波形的脉动幅度和输出电压平均值:三相半波整流波形的脉动幅度是: (1) 式中U——脉动幅度电压;Up是正弦半波幅值电压,比如有效值为380V的线电压, 其半波幅值电压为: (2)

蔡氏电路MATLAB混沌仿真

蔡氏电路的Matlab混沌 仿真研究 班级: 姓名: 学号:

摘要 本文首先介绍非线性系统中的混沌现象,并从理论分析与仿真计算两个方面细致研究了非线性电路中典型混沌电路,即蔡氏电路反映出的非线性性质。通过改变蔡氏电路中元件的参数,进而产生多种类型混沌现象。最后利用软件对蔡氏电路的非线性微分方程组进行编程仿真,实现了双涡旋和单涡旋状态下的同步,并准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB仿真 Abstract This paper introduce s the chaos phenomenon in nonlinear circuits. Chua’s circuit was a typical chaos circuit, thus theoretical analysis and simulation was made to research it. Many kinds of chaos phenomenon on would generate as long as one component parameter was altered in C hua’s circuit.On the platform of Matlab, mathematical model of Chua’s circuit was programmed and simulated to acquire the synchronization of dual and single cochlear volume. Meanwhile, behavioral characteristics of chaos attractor were observed. Key words:chaos phenomenon;Chua’s circuit;Simulation

12脉波整流

https://www.360docs.net/doc/641793619.html,/view/f05a78d850e2524de5187e4 2.html 串联型12脉波二极管整流器 摘要:串联型12脉波二极管整流器是由两个相同的6脉波二极管整流器在直流输出侧串联得到的。该类型整流器一般用作中压传动系统的变频器的前端。但一般情况下,12脉波的二极管整流器的总谐波畸变率不能满足IEEE 标准。 关键词:串联型、二极管、整流器 变频调速是当今理想的调速方法之一,也是重要的节能措施。交—直—交变频方式因其优势受到越来越广泛的应用。大多数的交—直—交变流装置的前置输入部分都采用二极管整流。随着多脉波整流技术的兴起,各种大功率设备都越来越多的采用多脉波二极管整流器。 1.理论分析 假定直流滤波电容d C 足够大,从而可以忽略直流电源d V 中的纹波含量。 在任何时刻(换相过程除外),上、下两个6脉波二极管整流器中各有两个二极管导通,d i 同时经过4个二极管形成回路。由于两个6脉波二极管整流器的输出为串联连接,二次侧绕组的漏电感也可以认为是串联连接,直流电流的纹波相对较小。 输出直流电流d i 连续,且在每个供电频率周期内包含有12个脉波。变压器二次侧星形连接的绕组中的电流a i 近似为梯形波,只是在顶端有4个纹波。变压器二次侧三角形连接的绕组中的电流~ a i 和a i 的波形形状相同,只是在相位上相差 30 。 由于变压器一次侧和二次侧上面的绕组都为星形连接,折合后的电流' a i 和折 合前的电流a i 波形形状应该相同,只是幅值将减少一半(可根据两个绕组匝数比计算得到)。而二次侧三角形绕组中折合前的电流~ a i 和折合后的电流' ~ a i 波形会不 同。且一次侧电流与二次侧电流之间存在如下关系: ' ' ~ a a A i i i += 2. 仿真结果

12脉波整流电路谐波治理方案研究

12脉波整流电路谐波治理方案研究 Study on12-pulse rectifier circuit harmonic control plan 吴畏文冲刘超 WU Wei,WEN Chong,LIU Chao (广西电力职业技术学院,广西南宁市530007) (广西崇左市供电局,广西崇左市532200) (Guangxi Electric Power Institue Of V ocational Training,Nanning530007,China)(Guangxi Chongzuo Power Supply Bureau,Chongzuo532200,China) 摘要:广西崇左网区,存在着许多电解锰一类的企业,其非线性负荷在运行过程中会产生谐波,对整个网区都造成污染。通过对这类污染源的运行环境的了解,谐波的测试和分析以及仿真研究,针对电解锰行业用电特点,在各种谐波治理方式中,找出了一种性价比较高,而且企业也易于接受的治理方式,以点带面,逐步推广。 关键词谐波污染;Matlab仿真;谐波治理 [课题项目]本文是广西壮族自治区教育厅科研项目课题“电网谐波治理”的研究报告之一。 Abstract:Guangxi Chongzuo power grid area,there are many electrolytic manganese kind of enterprise,the nonlinear load in the operation process will generate harmonic wave,the power grid area are cause pollution.Through this kind of pollution sources to the operating conditions of understanding,harmonic of testing and analysis and simulation,in view of the electrolysis manganese industry consumption characteristics,in all kinds of harmonic governance mode,find out a low cost and high performance,and enterprise also easy to accept the governance mode, from point to area,and gradually promotion.

最新非线性电路课程报告-蔡氏电路的Matlab仿真研究资料

西安交通大学电气工程学院 非线性电路报告蔡氏电路的Matlab仿真研究 Administrator

蔡氏电路的Matlab仿真分析 摘要:对一种典型的产生混沌现象的电路——蔡氏混沌电路进行了分析研究。从理论分析和仿真两个角度分别研究蔡氏电路中的混沌现象。蔡氏电路是一个典型的混沌电路,只要改变其中一个元件的参数,就可产生多种类型混沌现象。在Matlab 的平台上编制相关系统对蔡氏电路进行了仿真研究。 关键词:蔡氏电路,非线性负电阻;混沌电路;吸引子

引言 随着计算机和计算科学的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。而非线性电路是混沌及混沌同步应用研究的重要途径之一,其中一个最典型的电路是三阶自治蔡氏电路。在这个电路中观察到了混沌 吸引子。蔡氏电路是能产生混沌行为最简单的自治电路,所有从三阶自治常微分方程描述的系统中得到的分岔和混沌现象都能够在蔡氏电路中通过计算机仿真和示波器观察到。经过若干年的研究及目前对它的分析,无论是在理论方面、模拟方面还是实验方面均日臻完善。在理论和实践不断取得进展时, 人们也不断开拓新的应用领域,如在通信、生理学、化学反应工程等方面不断产生新的技术构想,并有希望很快成为现实。 1混沌概念及其相关特征 1.1混沌和吸引子的定义 混沌至今没有统一的定义,但人们一致的看法是:一个确定的非线性系统,如果含有貌似噪声的有界行为,且又表现若干特性,便可称为混沌系统,此处所说的若干特性主要是如下三个方面:(1)振荡信号的功率连续分布,且可能是带状分布的,这个特征表明振荡为非周期的,也就是说明信号貌似噪声的原因。(2)在相空间,该系统的相邻近的轨道线彼此以指数规律迅速分离,从而导致对初始值得极端敏感性,这使得系统的行为长期不可预测。(3)在轨道线存在的相空间的某一特定的有界部分内,轨道线具有遍历性和混合性。遍历性是指任何一条轨道线会探访整个特定的有界部分,混合性是指初始间单关系将弥漫的动力学行为所消除。 混沌吸引子:吸引子是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它。若吸引子的轨线对初始条件高度敏感依赖,该吸引子就称为混沌吸引子。吸引子无外乎两种状态,即单个点和稳定极限环。系统的吸引子理论是关于吸引子的科学理论,它是混沌学的重要组成部分。 奇异(怪)吸引子:具有分数维结构的吸引子称为奇异吸引子。奇异吸引子是反映混沌系统运动特征的产物,也是一种混沌系统中无序稳态的运动形态。它具有自相似性,同时具有分形结构。奇异吸引子是混沌运动的主要特征之一。奇异吸引子的出现与系统中包含某种不稳定性(不同于轨道不稳定性和李雅普诺夫不稳定性)有着密切关系,它具有不同属性的内外两种方向:在奇异吸引子外的一切运动都趋向(吸引)到吸引子,属于“稳定”的方向;一切到达奇异吸引子内的运动都互相排斥,对应于“不稳定”方向。 1.2混沌的基本特征 混沌具有两个基本的特征:一是运转状态的非周期性,即混沌系统输出信号的周期为无穷大,且在功率上与纯粹噪声信号难以分辨,因而是随机信号,然而混沌系统是确定性动力学系统,本身并不包含任何随机因素的作用,其产生随机输出信号的原因完全是因为系统内部各变量之间的强非线性耦合。因此,其输出的随机信号在理论上是可以精确重复的。二是对初始条件的高度敏感性,即若存在对初始条件的任何微小的偏离(扰动),则此偏离随着系统的演化将迅速以指数率增长,使得在很短的时间内系统的状态与受扰前便失去任何的相关性,因此,混沌仅具有极为短期的预测性。混沌状态具有以下三个关键(核心)概念:即对初始条件的敏感性、分形、奇异吸引子。 2蔡氏电路与非线性负电阻的实现

12脉波整流变压器结构型式的选择

12脉波整流变压器结构型式的选择 在大型的电化学或电冶金用直流电源系统中,同相逆并联12脉波整流机组是组成24相、36相、48相整流系统的基本组成单元。12脉波整流机组主电路的连接型式有两种方案:一种是由一台整流变压器与两台整流装置整流装置组成的单机组12脉波整流电路整流电路(简称“单机组12脉波整流电路”);另一种是由置于同一油箱内的两台完全独立的整流变压器与两台整流装置组成的双机组等值12脉波整流电路(简称“等值12脉波整流电路”)。二者的连接方式。 上述两种连接方式的整流电路,对12脉波整流输出电压(电流)波形的对称性以及对网侧谐波电流谐波电流的影响是不同的,应引起设计人员和用户的注意。 1两种连接方式对谐波电流的影响 理想情况下,12脉波整流电路运行过程中,不会在网侧产生5次和7次谐波电流。但单机组12脉波整流电路,由于变压器两个阀侧绕组的输出电压和阻抗不容易做到很一致,使得运行时存在着严重的负荷分配不均的问题。需要通过晶闸管相控或饱和电抗器的励磁调节来纠正这种偏差,从而导致二个三相桥晶闸管导通的相位差不能严格地保持为30°,使得网侧仍然存在5次和7次谐波电流。 对于等值12脉波整流电路,由于变压器两个阀侧绕组的输出电压和阻抗容易做到一致,而不会破坏12脉波的对称性。 图1单机组12脉波整流电路 图2等值12脉波整流电路 2阀侧绕组之间负荷电流分配不均的问题 2.1单机组12脉波整流电路单机组12脉波整流电路,其整流变压器网侧只有一组绕组,导致两组阀侧绕组间负荷分配不均的原因是Y接和△接这两组绕组间匝比NY/N△偏离1/,彼此理想空载直流电压Udio不相等,因此,负荷分配不可能平均。整流变压器阀侧两组绕组间的匝比NY/N△值接近1/的可取整数比为4/7(偏差1.04%)、7/12(偏差1.02%)、11/19(偏差0.27%)。由此可见,将NY/N△做成11/19,可使△Udio偏差减到最小,改善电流分配不均问题。但由于变压器结构上的合理性和制造方面(变压器变比越大尤其如此)的原因,这样的匝比实际上是不容易做到的。 对于三相桥式整流电路,整流变压器阀侧绕组间匝比NY/N△=4/7时,理想空载直流电压之差△Udio=1.04%。但两组整流器的负载电流负载电流分配却相差很大。因为变压器网侧绕组的电抗X1*为各整流桥整流桥公有,对整流桥间的负载电流分配没有调节作用。负载电流分配完全取决于各组阀侧绕组电抗值X2*=XY*+X△*和阀侧连接母线的电抗XM*。(其中XY*为Y形连接绕组的电抗值,X△*为△形连接绕组的电抗值)。根据有关资料计算结果表明:当变压器二次电抗X△*=XY*=5%时, IdY=0.2928IdnId△=0.7072Idn 当变压器二次电抗X△*=XY*=10%时, IdY=0.3964IdnId△=0.6036Idn 由此可见,变压器二次电抗数值愈小,负载分配相差就愈大。有实际例子可以证明这一点。兰州有一用户采用这种单机组12脉波二极管整流电路,投运后发现,其中一整流桥直流电流达到12000A(额定值)时,另一整流桥的直流电流只有4500A。导致设备无法正常运行,后来被迫重新改造。 理论计算表明:增大整流变压器二次电抗X2*=X△*+XY*,可以部分减小负载电流分配

基于matlab的电路仿真

基于matlab的电路仿真 杨泽辉51130215 %基于matlab的电路仿真 %关键词: RC电路仿真, matlab, GUI设计 % 基于matlab的电路仿真 %功能:产生根据输入波形与电路的选择产生输出波形 close all;clear;clc; %清空 figure('position',[189 89 714 485]); %创建图形窗口,坐标(189,89),宽714,高485;Na=['输入波形[请选择]|输入波形:正弦波|',... '输入波形:方形波|输入波形:脉冲波'];%波形选择名称数组; Ns={'sin','square','pulse'}; %波形选择名称数组; R=2; % default parameters: resistance 电阻值 C=2; % default parameters: capacitance电容值 f=10; % default parameters: frequency 波形频率 TAU=R*C; tff=10; % length of time ts=1/f; % sampling length sys1=tf([1],[1,1]); % systems for integral circuit %传递函数; sys2=tf([1,0],[1,1]); % systems for differential circuit a1=axes('position',[0.1,0.6,0.3,0.3]); %创建坐标轴并获得句柄; po1=uicontrol(gcf,'style','popupmenu',... %在第一个界面的上方创建一个下拉菜单'unit','normalized','position',[0.15,0.9,0.2,0.08],... %位置 'string',Na,'fontsize',12,'callback',[]); %弹出菜单上的字符为数组Na,字体大小为12, set(po1,'callback',['KK=get(po1,''Value'');if KK>1;',... 'st=char(Ns(KK-1));[U,T]=gensig(st,R*C,tff,1/f);',... 'axes(a1);plot(T,U);ylim([min(U)-0.5,max(U)+0.5]);',... 'end;']); %pol触发事件:KK获取激发位置,st为当前触发位置的字符串,即所选择的波形类型; %[U,T],gensing,产生信号,类型为st的值,周期为R*C,持续时间为tff, %采样周期为1/f,U为所产生的信号,T为时间; %创建坐标轴al;以T为x轴,U为y轴画波形,y轴范围。。。 Ma=['电路类型[请选择]|电路类型:积分型|电路类型:微分型']; %窗口2电路类型的选择数组; a2=axes('position',[0.5,0.6,0.3,0.3]);box on; %创建坐标轴2; set(gca,'xtick',[]);set(gca,'ytick',[]); %去掉坐标轴的刻度 po2=uicontrol(gcf,'style','popupmenu',... %在第二个窗口的位置创建一个下拉菜单,同1 'unit','normalized','position',[0.55,0.9,0.2,0.08],... 'string',Ma,'fontsize',12,'callback',[]); set(po2,'callback',['KQ=get(po2,''Value'');axes(a2);',... %po2属性设置,KQ为选择的电路类型,'if KQ==1;cla;elseif KQ==2;',... %1则清除坐标轴,2画积分电路,3画微分电路 'plot(0.14+0.8i+0.02*exp(i*[0:.02:8]),''k'');hold on;',... 'plot(0.14+0.2i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot(0.84+0.2i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot(0.84+0.8i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot([0.16,0.82],[0.2,0.2],''k'');',... 'plot([0.16,0.3],[0.8,0.8],''k'');',... 'plot([3,4,4,3,3]/10,[76,76,84,84,76]/100,''k'');',... 'plot([0.4,0.82],[0.8,0.8],''k'');',... 'plot([0.6,0.6],[0.8,0.53],''k'');',... 'plot([0.6,0.6],[0.2,0.48],''k'');',... 'plot([0.55,0.65],[0.53,0.53],''k'');',... 'plot([0.55,0.65],[0.48,0.48],''k'');',... 'text(0.33,0.7,''R'');',...

蔡氏电路系统仿真平台的研究

蔡氏电路系统仿真平台的研究 齐春亮,张兴国 (兰州大学信息科学与工程学院 甘肃 兰州 730000) E-mail:jichl03@https://www.360docs.net/doc/641793619.html, 摘要:本文在对蔡氏电路进行了分析的基础上,结合实际试验中的主要现实困难,研究了蔡氏一类非线性混沌电路仿真系统的结构化设计与系统动态演示方法,通过建立结构化仿真实验平台,减轻了蔡氏电路研制者的筛选元器件的负担,同时增强了人机交互功能。 关键词:蔡氏电路,结构化,可视化仿真 1.概述 现代非线性科学是人类科学文化的重要组成部分,而混沌又是现代非线性科学的重要组成部分,混沌理论为非线性系统的研究提供了简单有效的模型。1983年,美国贝克莱(Berkeley)大学的蔡少棠教授(Leon.o.Chua)发明了蔡氏电路(Chua ’s Circuit),蔡氏电路因其简洁性和代表性而成为研究非线性电路中混沌的典范[1][2]。蔡氏电路是由电阻﹑电容和 电感及“蔡氏二极管”组成的三阶自治电路,在满足以下条件时能够产生混沌现象[3]:(a) 非线性元件不少于一个(b)线性有效电阻不少于一个(c)储能元件不少于三个。符合以上标准的最简单电路,就是混沌电路之一—典型蔡氏电路。 一个具体的典型蔡氏电路相空间的动力学方程为 ???? ??????=+==???2212221)11)211Vc L 1i )Vc (Vc C G C 1Vc (Vc C 1Vc (Vc C G Vc dt d i dt d f dt d L L 及 ))((2 1)(1111E V E V G G V G V f I C C b a C b C ??+?+== 蔡氏电路的运动形态因元件参数值的不同而有本质的不同,可以把电路元件参数值看作控制参数而使蔡氏电路工作在不同的状态。现在以其中的线性电阻R (方程中的G=1/R )为 1

24脉波整流原理

等效24脉波整流机组原理分析 整流机组是地铁直流牵引供电系统中的重要设备之一。目前,城市轨道交通多数采用等效24脉波整流机组,一般都由两台12脉波的整流变压器和与之匹配的整流器共同组成。理论上只要满足12相24 脉波整流系统的要求,组成24脉波的2台变压器的联结组可以有很多种,如Dy5/Dd0一Dy7/Dd2、Dyl l /d0一Dyl /d2等。 12脉波整流采用的整流变压器为轴向双分裂式牵引整流变压器, 变压器阀侧绕组采用d 、Y 接法;与之相匹配的单台整流器由2个三相6 脉波全波整流桥组成,其中一个整流桥接至整流变压器二次侧“Y ”型 绕组,另一个整流桥接至整流变压器二次侧“△”型绕组,两个三相整流桥并联构成6相12脉波的整流变电系统。 单台12脉波整流机组输出波形如图1 所示。 图1 单台12脉波整流机组输出波形图 两套相同的十二脉波整流机组并联工作并不会改变整流脉波数,只 有当两套机组的整流变压器网侧绕组分别移相+7.5°和﹣7.5°,并联

t i m e a n d 工作时,才能形成等效二十四脉波整流。为了实现24脉波整流,两台 整流变压器的基本联结组别可采用Dyll /Dd0和Dyl /Dd2。每个牵引变电所内并联运行的2台整流变压器原边绕组分别移相+7.5°和一7.5°,目前为了实现两台整流变压器在网侧实现±7.5°的移相,在整流变压器原边采用延边三角形接法,其相量关系图如图2和图3所示。 一次侧三角绕组联结(延边三角形) 二次侧y 结构向量关系图 二次侧D 结构向量关系图 图2 +7.5°变压器向量关系图 一次侧三角绕组联结(延边三角形) 二次侧y 结构向量关系图 二次侧D 结构向量关系图 图3 ﹣7.5°变压器向量关系图

非线性电路课程报告-蔡氏电路的Matlab仿真研究

交通大学电气工程学院 非线性电路报告蔡氏电路的Matlab仿真研究 Administrator

蔡氏电路的Matlab仿真分析 摘要:对一种典型的产生混沌现象的电路——蔡氏混沌电路进行了分析研究。从理论分析和仿真两个角度分别研究蔡氏电路中的混沌现象。蔡氏电路是一个典型的混沌电路,只要改变其中一个元件的参数,就可产生多种类型混沌现象。在Matlab 的平台上编制相关系统 对蔡氏电路进行了仿真研究。 关键词:蔡氏电路,非线性负电阻;混沌电路;吸引子

引言 随着计算机和计算科学的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。而非线性电路是混沌及混沌同步应用研究的重要途径之一,其中一个最典型的电路是三阶自治蔡氏电路。在这个电路中观察到了混沌 吸引子。蔡氏电路是能产生混沌行为最简单的自治电路,所有从三阶自治常微分方程描述的系统中得到的分岔和混沌现象都能够在蔡氏电路过计算机仿真和示波器观察到。经过若干年的研究及目前对它的分析,无论是在理论方面、模拟方面还是实验方面均日臻完善。在理论和实践不断取得进展时, 人们也不断开拓新的应用领域,如在通信、生理学、化学反应工程等方面不断产生新的技术构想,并有希望很快成为现实。 1混沌概念及其相关特征 1.1混沌和吸引子的定义 混沌至今没有统一的定义,但人们一致的看法是:一个确定的非线性系统,如果含有貌似噪声的有界行为,且又表现若干特性,便可称为混沌系统,此处所说的若干特性主要是如下三个方面:(1)振荡信号的功率连续分布,且可能是带状分布的,这个特征表明振荡为非周期的,也就是说明信号貌似噪声的原因。(2)在相空间,该系统的相邻近的轨道线彼此以指数规律迅速分离,从而导致对初始值得极端敏感性,这使得系统的行为长期不可预测。(3)在轨道线存在的相空间的某一特定的有界部分,轨道线具有遍历性和混合性。遍历性是指任何一条轨道线会探访整个特定的有界部分,混合性是指初始间单关系将弥漫的动力学行为所消除。 混沌吸引子:吸引子是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它。若吸引子的轨线对初始条件高度敏感依赖,该吸引子就称为混沌吸引子。吸引子无外乎两种状态,即单个点和稳定极限环。系统的吸引子理论是关于吸引子的科学理论,它是混沌学的重要组成部分。 奇异(怪)吸引子:具有分数维结构的吸引子称为奇异吸引子。奇异吸引子是反映混沌系统运动特征的产物,也是一种混沌系统中无序稳态的运动形态。它具有自相似性,同时具有分形结构。奇异吸引子是混沌运动的主要特征之一。奇异吸引子的出现与系统中包含某种不稳定性(不同于轨道不稳定性和雅普诺夫不稳定性)有着密切关系,它具有不同属性的外两种方向:在奇异吸引子外的一切运动都趋向(吸引)到吸引子,属于“稳定”的方向;一切到达奇异吸引子的运动都互相排斥,对应于“不稳定”方向。 1.2混沌的基本特征 混沌具有两个基本的特征:一是运转状态的非周期性,即混沌系统输出信号的周期为无穷大,且在功率上与纯粹噪声信号难以分辨,因而是随机信号,然而混沌系统是确定性动力学系统,本身并不包含任何随机因素的作用,其产生随机输出信号的原因完全是因为系统部各变量之间的强非线性耦合。因此,其输出的随机信号在理论上是可以精确重复的。二是对初始条件的高度敏感性,即若存在对初始条件的任何微小的偏离(扰动),则此偏离随着系统的演化将迅速以指数率增长,使得在很短的时间系统的状态与受扰前便失去任何的相关性,因此,混沌仅具有极为短期的预测性。混沌状态具有以下三个关键(核心)概念:即对初始条件的敏感性、分形、奇异吸引子。 2蔡氏电路与非线性负电阻的实现

十种精密全波整流电路图

十种精密全波整流电路图 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益。 图2优点是匹配电阻少,只要求R1=R2

图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计。

图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。

图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波。 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了。 图3的优势在于高输入阻抗。 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高。

12脉波整流并(575v)

西安龙海电气有限公司

12 脉波 KGPS 中频电源控制原理
KGPS 系列感应加热晶闸管变频装置是利用晶闸管将三相工频交流电能转 换为几百或几千赫的单相交流电能。具有控制方便、运行可靠、 效率高等特 点,有利于提高产品的产量和质量。本装置采用全数字控制,扫频启动方式, 无须同步变压器等,线路简单,调试方便,负载适应能力强,启动可靠。应用 于铸钢、不锈钢、合金钢的冶炼,真空冶炼,感应加热等不同场合。 1.主电路原理 1.1 整流电路原理 整流电路主要是将 50HZ 的交流电整流成直流。由 12 个晶闸管组成的 12 脉 波串联全控整流电路,输入工频电网电压 575V,控制可控硅的导通,实现输出 0~750V 连续可调的直流电压。(如图)
六相 12 脉波全控整流桥工作原理 当触发脉冲在任意控制角时,其输出直流电压为: Ud = 1.35UaCosaX2

式中:Ua = 三相进线电压 a-控制角
1.2 逆变电路原理:
该产品采用了并联逆变器,这种逆变器对负载变化适应能力强,见图(4) 所示。它的主要作用是将三相整流电压 Ud 逆变成单相 400-10KC 的中频交流电。 一般,由于功率大小、进线电压等原因,逆变可控硅的数量有,四只、八只、 十六只三种,即采用单管、串管、并管等技术。但为了分析方便,将其等效为 图(4)电路。 下面分析一下逆变器的工作过程,假设图(4)中,先是①②导通③④截止, 则直流电流 Id 经电抗器 Ld,可控硅①②流向 Lc 谐振回路,Lc 产生谐振,振荡 电压正弦波。此时电容器两端的电压极性为左正右负,如果在电容器两端电压 尚未过零时之前的某一时刻产生脉冲去触发可控硅③④,此时形成可控硅 ①②③④同时导通状态,由于可控硅③④的导通,电容器两端的电压通过可控 硅③④加在可控硅①②上使可控硅①②两端承受反压而关断,也就是说可控硅 ①②将电流换给了③④。换流以后,直流电流 Id 经电抗器 Ld、可控硅③④反向 流向 LC 谐振回路。电容器两端的电压继续按正弦规律变化,而电容器两端电压

10种全波精密整流电路

十种精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊

说明,增益均按1设计。 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容。电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益。缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离。另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0。使用时要小心单电源运放在信号很小时的非线性。而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,

相关文档
最新文档