飞机钣金实验报告

飞机钣金实验报告
飞机钣金实验报告

南京航空航天大学

实验报告

课程名称:飞机钣金成形技术

实验名称:飞机钣金成形综合实验

班级:0513303姓名:吴焕琦学号:051330304

实验组别:同实验者:

实验日期:2016年11月15日实验地点:15号楼

评定成绩:审阅教师:

实验一滚弯与喷丸成形实验

1实验目的要求

《飞机钣金成形技术》是飞行器制造工程专业的一门主要的专业课,为了加深学生对书本知识的理解,提高综合分析能力和动手能力,设置了综合性实验。2实验仪器,设备

两轴滚弯机超声波喷丸数控机床。

3实验方法步骤

一、板料滚弯实验

取一块细长铝合金薄板,操纵滚弯机将刚性下辊轴向下运动使之与包覆硬橡皮的上辊轴形成一段距离。将板料沿着水平方向切于下滚轴送进并贴合其表面,操纵下轴辊使之上升与上辊轴接触并嵌入橡皮中(注意此处下滚轴的行程有限制,达到行程上限便无法再向上)。启动上辊轴此时松开手,让上辊轴的摩擦力将板

料送进,同时将手放在板料掉落侧,用手接住成形后的板料。将板料与检验样板比对,若未复合成型标准,继续重复以上步骤,但注意再次成形下辊轴的送进量要大于首次的送进量。若多次成形仍无法达到标准,需用手工校形,使达到标准。二、超声波喷丸实验

加工车间的喷丸成形机床是基于一台三轴立式数控铣床改装而成。在加工之前需用夹具将其固定在加工台上。打开超声波发生器,数控程序驱动伺服系统使撞针探头在待加工表面上进行喷丸处理。

4实验的图片对比

一、板料滚弯实验

一次滚弯二次滚弯三次滚弯

二、超声喷丸实验

喷丸后的板料(侧面)喷丸后的表面喷丸试件

5实验讨论

(a)滚轮间距对板料曲率半径的影响

两滚轮相对距离较远时两滚轮相对距离合适时

两滚轮相对距离较近时

综上可知,两滚轮相对距离越近时,板料曲率半径越小,并且滚弯机只适用于弯

曲程度相对较小的情况下。

(b)板料厚度对曲率半径的影响

板料较薄时板料较厚时

分析结果可知,两滚轮间距一定时,板料厚度越厚曲率半径越大

(c)超声波喷丸成型

超声波喷丸成型采用撞针对板料表面进行高速撞击,表面因而产生了大量塑性变形,从而引起板料内部应力分布发生改变从而产生相应的弯曲成型。因而产生表面压应力,表面材料因为收放作用的放料原因。使得上表面材料内部应力的作用下产生了小程度的弯曲。超声波喷丸成型适用于薄板成型。结果如下图

实验二拉深成形实验

一实验目的

拉深成形是一种典型的冲压工艺,在计算机上完成钣金零件拉深成形的有限元仿真模拟试验后,进行拉深成形实验,实验的结果对应于计算机模拟的结果,即破裂、起皱、和合格三种情况,并于计算机模拟的结果比较,从而加深对拉深工艺的理解。

二实验内容

1、分析模具结构

2、调节压边力,压边力过大会出现什么结果;压边力过小会出现什么结果;

3、调节合适的压边力,成形合格的零件;

4、观察添加润滑剂对成形性能的影响;

5、观察合格零件的各向异性现象;

三实验材料及试验设备

1、实验材料

2、剪板机一台

3、机械手扳压力机一台

4、落料拉深复合模一套

四实验结果与分析

1材料对成形的影响

不同材料的成形性能不同,极限拉深系数也不同。实验采用两种不同的铝条料,从图一看出,上面一排的条料不论怎样改善工艺参数都无法一次成形出合格的零件。而使用另一种条料时,通过改变工艺参数的方法,成形出了合格的零件。2压边力对成形的影响

图一、二横向比较,从左到右依次是压边力不断增大。当压边力过小时,起皱现象明显。随着压边力的增大,起皱现象减弱。这时根据材料的不同力学性能会出现拉裂或者成形成功两种不同结果。

3摩擦系数对于成形效果的影响

上边一组由于材料性能原因,无法一次成形,未安排改变摩擦后的对比试验。下边一组在加大压边力到极限的条件下出现了拉裂,此时仅涂抹润滑剂减小了材料流动的摩擦力,使得拉裂现象消失。

图一

图二

飞机大战实验报告

飞机大战实验报告 专业:网络工程132班 学号:139074298 姓名:孙仁强 计算机科学与技术学院二零一六年十二月

一、软件运行所需要的软硬件环境 本系统是以Windows系统为操作平台,用Java编程语言来实现本系统所需功能的。本机器的配置如下: 处理器:CORE i7 主频:1.2Hz以上 内存:4G以上 硬盘:HHD 50G 编程语言:Java 开发环境:windows7 开发软件:Eclipse Mars 二、游戏流程 1.用户打开游戏,进入开始菜单。 2.用户点击开始游戏按钮,进入游戏界面; 3.用户通过触屏方式控制玩家飞机上下左右移动,躲避与子弹相撞; 4.游戏失败后,显示本次游戏得分,用的秒数和水平; 5.退出游戏 三、主要代码 1、准备代码设置窗口使用双缓冲使飞机不闪烁 Constant设置窗口大小 package com.ahut.准备代码; publicclass Constant { publicstaticfinalint GAME_WIDTH = 350; publicstaticfinalint GAME_HEIGHT = 600; } package com.ahut.准备代码; import java.awt.Image; import java.awt.image.BufferedImage;

import java.io.IOException; import https://www.360docs.net/doc/6310946033.html,.URL; public class GameUtil { private GameUtil () {} public static Image getImage(String path) { BufferedImage bi = null; try { URL u = GameUtil.class.getClassLoader().getResource(path); bi = javax.imageio.ImageIO.read(u); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } return bi; } } package com.ahut.准备代码; import java.awt.Frame; import java.awt.Graphics; import java.awt.Image; import java.awt.event.WindowAdapter; import java.awt.event.WindowEvent; public class MyFrame extends Frame{ public void lauchFrame() { setSize(Constant.GAME_WIDTH, Constant.GAME_HEIGHT); setLocation(100, 100); setVisible(true); new PaintThread().start(); addWindowListener(new WindowAdapter() { @Override public void windowClosing(WindowEvent e) { System.exit(0); } }); }

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩:

一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图 共射极单管放大器

最新西华大学机器人创新设计实验报告(工业机械手模拟仿真)

实验报告 (理工类) 课程名称: 机器人创新实验 课程代码: 6003199 学院(直属系): 机械学院机械设计制造系 年级/专业/班: 2010级机制3班 学生姓名: 学号: 实验总成绩: 任课教师: 李炜 开课学院: 机械工程与自动化学院 实验中心名称: 机械工程基础实验中心

一、设计题目 工业机器人设计及仿真分析 二、成员分工:(5分) 三、设计方案:(整个系统工作原理和设计)(20分) 1、功能分析 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。 本次我们小组所设计的工业机器人主要用来完成以下任务: (1)、完成工业生产上主要焊接任务; (2)、能够在上产中完成油漆、染料等喷涂工作; (3)、完成加工工件的夹持、送料与转位任务; (5)、对复杂的曲线曲面类零件加工;(机械手式数控加工机床,如英国DELCAM公司所提供的风力发电机叶片加工方案,起辅助软体为powermill,本身为DELCAM公司出品)

MFC_陨石撞飞机实验报告

.. . .. . 一、题目 陨石撞飞机综合性实验 二、中文摘要 用MFC设计一个陨石撞飞机的平面游戏:陨石不断地向下落,飞机通过上下左右键移动以躲避陨石。当陨石碰撞了飞机时,显示提示对话框,及飞机爆炸图像。确定后在碰撞位置重新开始游戏。三次碰撞后显示提示对话框,游戏结束。 三、关键词 MFC、Bitmap、timer、键盘响应(WM_KEYDOWN) 四、前言 此程序大多代码出自参考资料,一小部分代码为搜索资料并加工完成,其功能尚有不完善之处。 五、软件开发过程 (一)、新建MFC APPWizard[exe]单文档工程文件 在Visual C++中新建一个工程,命名为Plane。工程类型为:MFC AppWizard[exe]。在MFC AppWizard-Step1对话框中设置应用程序的类型,建立一个单文档工程文件,得到一个应用程序框架文件。 (二)、添加资源:、飞机位图、陨石位图、爆炸位图。 在[插入]-[资源…]选择Bitmap选项,单击[新建]即可。绘出一个飞机,ID 为(IDB_BITMAP1)、五个陨石(IDB_BITMAP2~IDB_BITMAP6)和一个炸弹位..

专业软件工程年级、班级09级8班 课程名称计算机综合性实验实验项目陨石撞飞机 实验时间2010 年 6 月20 日 实验指导老师黄荔实验评分 图(IDB_BITMAP7),如下图。 飞机位图陨石位图爆炸位图 (三)、在planeView.h头文件中声明所需变量和函数CBitmap m_plane; //声明一个CBitmap类型的飞机变量m_plane int mx,my;//表示飞机坐标 CBitmap m_bump; //爆炸位图变量 int mpx,mpy;//表示爆炸位图的坐标 int t; //爆炸次数 //声明陨石位图的成员变量为CBitmap类型的变量 CBitmap m_stone1,m_stone2,m_stone3,m_stone4,m_stone5; //声明陨石的坐标变量为int类型: int nstone1x,nstone1y; int nstone2x,nstone2y; int nstone3x,nstone3y;

模电仿真实验报告。

模拟电路仿真实验报告 张斌杰生物医学工程141班 MUltiSim软件使用 一、实验目的 1、掌握MUltiSim软件的基本操作和分析方法。 二、实验内容 1、场效应管放大电路设计与仿真 2、仪器放大器设计与仿真 3、逻辑电平信号检测电路设计与仿真 4、三极管Beta值分选电路设计与仿真 5、宽带放大电路设计与仿真 三、MUItiSim软件介绍 MUItiSim是美国国家仪器(NI)有限公司推出的以WindOWS为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用MUItiSinl交互式地搭建电路原理图,并对电路进行仿真。MUltiSiIn提炼了SPICE 仿真的复杂内容,这样工程师无需懂得深入的SPlCE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过MUItiSiIn和,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到和测试这样一个完整的综合设计流程。 实验名称:

仪器放大器设计与仿真 二、实验目的 1、 掌握仪器放大器的设计方法 2、 理解仪器放大器对共模信号的抑制能力 3、 熟悉仪器放大器的调试功能 4、 掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器,毫伏 表信 号发生器等虚拟仪器的使用 三、设计实验电路图: 四、测量实验结果: 出为差模放大为399mvo 五、实验心得: 应用MUIti S im 首先要准备好器件的PSPiCe 模型,这是最重要的,没有这个 东西免谈,当然SPiCe 高手除外。下面就可以利用MUItiSinl 的元件向导功 能制作 差模分别输入信号InW 第二条线与第三条线: 共模输入2mv 的的电压,输出为2mv 的电压。 第一条线输

大学物理仿真实验报告

大学物理仿真实验报告 姓名: 学号: 班级:

实验-----利用单摆测量重力加速度 实验目的 利用单摆来测量重力加速度 实验原理 单摆的结构参考图1单摆仪,一级近似的周期公式为 由此通过测量周期摆长求重力加速度 实验仪器 单摆仪、摆幅测量标尺、钢球、游标卡尺 实验内容 一.用误差均分原理设计一单摆装置,测量重力加速度g. 设计要求: (1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2)写出详细的推导过程,试验步骤.

(3)用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s. 二.对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计 要求. 三.自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素 的关系,试分析各项误差的大小. 四.自拟试验步骤用单摆实验验证机械能守恒定律. 实验数据 摆线长+小球直径L=91.50cm

D(平均)=(1.750+1.752+1.744+1.740+1.749+1.748)÷6=1.7 47m R=D/2=0.850cm l=L-R=91.05cm t=95.91s,周期数n=50,周期T=1.92s 所以g=9.751 2ΔT/t=0.0022,ΔL/l=0.0005,所以Δg/g=0.27%,Δg=0.026 所以: g=(9.751±0.026) 实验结论与误差分析: 结论:g=(9.751±0.026),Δg/g=0.27%<1%,所以达到设计要求。 误差分析: 1.若θ>5°(即角度过大)因为T 与θ相关,当θ越大时T也越大,所以θ偏大,测量 值比值偏小。

钣金基础知识集锦(钣金工程师必备教材)

钣金基础知识集锦 1钣金基本介绍 1.1钣金基本加工方式 按钣金件的基本加工方式,如下料、折弯、拉伸、成型、焊接。本规范阐述每一种加工 方式所要注意的工艺要求。 1.2关键技术词汇 钣金、下料、折弯、拉伸、成形、排样、最小弯曲半径、毛边、回弹、打死边、焊接 2 钣金下料 下料根据加工方式的不同,可分为普冲、数冲、剪床开料、激光切割、风割,由于加工方法的不同,下料的加工工艺性也有所不同。钣金下料方式主要为数冲和激光切割 2.1数冲是用数控冲床加工,板材厚度加工范围为冷扎板、热扎板小于或等于 3.0mm,铝板小于或等于 4.0mm,不锈钢小于或等于2.0mm 2.2冲孔有最小尺寸要求 冲孔最小尺寸与孔的形状、材料机械性能和材料厚度有关。 图2.2.1 冲孔形状示例 * 高碳钢、低碳钢对应的公司常用材料牌号列表见第7章附录A。 表1冲孔最小尺寸列表 2.3数冲的孔间距与孔边距 零件的冲孔边缘离外形的最小距离随零件与孔的形状不同有一定的限制,见图2.3.1。当冲孔

1.5t。 2.4 折弯件或拉深件冲孔时,其孔壁与工件直壁之间应保持一定的距离(图2.4.1) 图2.4.1 折弯件、拉伸件孔壁与工件直壁间的距离 2.5螺钉、螺栓的过孔和沉头座 螺钉、螺栓过孔和沉头座的结构尺寸按下表选取取。对于沉头螺钉的沉头座,如果板材太薄难以同时保证过孔d2和沉孔D,应优先保证过孔d2。 表2用于螺钉、螺栓的过孔

*要求钣材厚度t≥h。 表3用于沉头螺钉的沉头座及过孔 *要求钣材厚度t≥h。 表4用于沉头铆钉的沉头座及过孔 2.6激光切割是用激光机飞行切割加工,板材厚度加工范围为冷扎板热扎板小于或等于20.0mm, 不锈钢小于10.0mm 。其优点是加工板材厚度大,切割工件外形速度快,加工灵活.缺点是无法加工成形,网孔件不宜用此方式加工,加工成本高! 3 钣金折弯 3.1钣金折弯件的最小弯曲半径 材料弯曲时,其圆角区上,外层收到拉伸,内层则受到压缩。当材料厚度一定时,内r越小,材料的拉伸和压缩就越严重;当外层圆角的拉伸应力超过材料的极限强度时,就会产生裂缝和折断,因此,弯曲零件的结构设计,应避免过小的弯曲圆角半径。公司常用材料的最小弯曲半径见下表。

QTP测试实验报告-飞机票订票系统

QTP自动化功能测试实践 一、实验目的 1、熟悉QTP自动化功能测试流程 2、能够利用QTP进行B/S或者C/S架构程序的自动化功能测试 二、实验内容 功能测试是针对应用系统进行测试,是基于产品功能说明书,是在已知产品所应具有的功能,从用户角度来进行功能验证,以确认每个功能是否都能正常使用。本项目主要使用QuickTest对其自带的MercuryTours网站/飞机票订票系统进行功能测试,要求录制预订机票的完整过程,然后执行测试脚本并分析结果。 三、实验要求 1、独立完成; 2、提交测试脚本 3、提交测试用例说明书及缺陷报告。 四实验内容 1脚本的录制与回放测试及检查点的设置验证 脚本代码: Dialog("Login").WinEdit("Agent Name:").Check CheckPoint("Agent Name:") '验证乘客名字文本框中的值标准检查点 Dialog("Login").WinEdit("Agent Name:").Set "123456" '输入用户名 Dialog("Login").WinEdit("Password:").Set "mercury" '输入密码 Dialog("Login").WinButton("OK").Click '单击OK按钮登陆 Window("Flight Reservation").Static("Static").Check CheckPoint("Static") '检查页面中的图片元素是否加载 Window("Flight Reservation").ActiveX("MaskEdBox").Type "011218" Window("Flight Reservation").WinComboBox("Fly From:").Select "London" Window("Flight Reservation").WinComboBox("Fly To:").Select "Paris" Window("Flight Reservation").WinButton("FLIGHT").Click Window("Flight Reservation").Dialog("Flights Table").WinList("From").Select "12534 LON 08:00 AM PAR 10:00 AM AF $165.50" Window("Flight Reservation").Dialog("Flights Table").WinButton("OK").Click Window("Flight Reservation").WinEdit("Name:").Set "gcc" Window("Flight Reservation").WinEdit("Tickets:").SetSelection 0,1

大物仿真实验报告

大物仿真实验报告 大学物理仿真实验报告 实验名称:测量刚体的转动惯量 实验目的: 1.用实验方法验证刚体转动定律,并求其转动惯量; 2.观察刚体的转动惯量与质量分布的关系 3.学习作图的曲线改直法,并由作图法处理实验数据。 实验原理: 1.刚体的转动定律 具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律: M = Iβ (1) 利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。 2.应用转动定律求转动惯量 待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动。设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg –t=ma,在t时间内下落的高度为h=at2/2。刚体受到张力的力矩为Tr和轴摩擦力力矩Mf。由转动定律可得到刚体的转动运动方程:Tr - Mf = Iβ。绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到: m(g - a)r - Mf = 2hI/rt2 (2) Mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<

虚拟现实与仿真实验报告

合肥工业大学 计算机与信息学院 实验报告 课程:虚拟现实与仿真技术 专业班级:计算机科学与技术11-2班 学号: 姓名:谢云飞 实验一 一.实验名称

从3Dmax8中导出mesh并添加mesh到场景。 二.实验过程或实验程序(增加的代码及代码注解) 启动3Dmax 1.在安装有3Dmax8的计算机上,可以使用两种不同的方法来启动3Dmax8: (1)在桌面上双击“3Dmax8”图标 (2)点击“开始”菜单,在“程序”中的选择“3Dmax8” 2.观察3Dmax8主窗口的布局。3Dmax8主要由若干元素组成:菜单栏、工具栏、以及停靠在右边的命令面板和底部的各种工具窗口 使用3Dmax8建模并导出mesh 导出mesh的步骤如下: 1.启动3Dmax8 2.在停靠在右边的命令面板中,点击几何体按钮 3.选择标准几何体 4.在对象类型中选择对象(如:长方体),在“前”视口中,通过单击鼠标左键,创建出模型 5.在工具栏中单击“材质编辑器”按钮,通过上步操作,可开启“材质编辑器”对话框 6.在“材质编辑器”对话框中,点击漫反射旁方形按钮,进入到“材质/贴图浏览器” 7.在“材质/贴图浏览器”中选择位图,鼠标左键双击位图 8.弹出选择位图图像文件对话框,从本地电脑中选择一张图片 9.选择好图片,在材质编辑器对话框中,点击将材质指令给选定对象 10.点击菜单栏上的oFusion按钮,在弹出的菜单栏中选择Export Scene 11.选择文件夹并输入文件名qiu,点击保存,在弹出的对话框中勾选Copy Textures,点击Export按钮,此时mesh文件已成功导出 导出的mesh文件放入到指定位置 1.找到mesh文件,把mesh文件放到当前电脑的OgreSDK的models中,以我的电脑为例,OgerSDK放在C盘中 2.打开C盘,找到OgreSDK,打开OgreSDK,找到media,打开media文件夹,找到models,打开models文件夹,将mesh文件复制到此文件夹中 3.将导出mesh文件附带的材质文件放到OgreSDK的scripts (C:\OgreSDK\media\materials\scripts)中 4.将导出mesn文件时同时导出的图片放到OgreSDK的textures (C:\OgreSDK\media\materials\textures)中

北航飞行力学实验班飞机典型模态特性仿真实验报告(精)

航空科学与工程学院 《飞行力学实验班》课程实验飞机典型模态特性仿真 实验报告 学生姓名:姜南 学号:11051136 专业方向:飞行器设计与工程 指导教师:王维军 (2014年 6 月29日 一、实验目的 飞机运动模态是比较抽象的概念, 是课程教学中的重点和难点。本实验针对这一问题,采用计算机动态仿真和在人-机飞行仿真实验平台上的驾驶员在环仿真实验,让学生身临其境地体会飞机响应与模态特性的关系,加深对飞机运动模态特性的理解。 二、实验内容 1.纵向摸态特性实验 计算某机在某状态下的短周期运动、长周期运动的模态参数;进行时域的非实时或实时仿真实验,操纵升降舵激发长、短周期运动模态,并由结果曲线分析比较模态参数;放宽飞机静稳定性,观察典型操纵响应曲线,并通过驾驶员在环实时仿真体验飞机的模态特性变化。

2.横航向模态特性实验 计算某机在某状态下的滚转、荷兰滚、螺旋模态参数;进行时域仿真计算,操纵副翼或方向舵,激发滚转、荷兰滚等运动模态,并由结果曲线分析比较模态参数。 三、各典型模态理论计算方法及模态参数结果表 1 纵向模态纵向小扰动运动方程 0000 1 00 0e p e p e p u w e u w q p u w q X X u u X X g Z Z w w Z Z Z q q M M M M M δδδδδ δδδθθ????????-???? ????????? ? ???????????=+??????????????????? ?????????????????? A =[ X

u X ?w Z u Z w 0?g Z q 0M ?u M ?w0 M q 010] =[?0.01999980.0159027?0.0426897?0.04034850?32.2869.6279 0?0.00005547?0.001893500?0.54005010] A 的特征值方程 |λ+0.0199998?0.01590270.0426897 λ+0.0403485032.2 ?869.627900.000055470.001893500λ+0.540050 ?1λ |=0 特征根λ1,2=?0.290657205979137±1.25842158268078i λ3,4=?0.00954194402086311±0.0377636398212079i 半衰期t 1/2由公式t 1/2=? ln2λ 求得,分别为 t 1/2,1=2.38475828674173s t 1/2,3=72.6421344585972s 振荡频率ω分别为 ω1=1.25842158268078rad/s ω3=0.0377636398212079rad/s 周期T 由公式T =

物理仿真实验报告1

物理仿真实验报告1

物理仿真实验报告 受迫振动 班级应物01 姓名赵锦文 学号10093020

一、实验简介 在本实验中,我们将研究弹簧重物振动系统的运动。在这里,振动中系统除受弹性力和阻尼力作用外,另外还受到一个作正弦变化的力的作用。这种运动是一类广泛的实际运动,即一个振动着的力学体系还受到一个作周期变化的力的作用时的运动的一种简化模型。如我们将会看到的,可以使这个体系按照与施加力相同的频率振动,共振幅既取决于力的大小也取决于力的频率。当力的频率接近体系的固有振动频率时,“受迫振动”的振幅可以变得非常大,这种现象称为共振。共振现象是重要的,它普遍地存在于自然界,工程技术和物理学各领域中.共振概念具有广泛的应用,根据具体问题中共振是“利”还是“害”,再相应地进行趋利避害的处理。 两个相互耦合的简谐振子称为耦合振子,耦合振子乃是晶体中原子在其平衡位置附近振动的理想模型。 本实验目的在于研究阻尼振动和受迫振动的特性,要求学生测量弹簧重物振动系统的阻尼常数,共振频率。 二、实验原理 1.受迫振动 砝码和挂钩 弹簧 弹簧 振荡器 图13.1 受迫振动 质量M 的重物按图1放置在两个弹簧中间。静止平衡时,重物收到的合外力为0。当重物被偏离平衡位置时,系统开始振动。由于阻尼衰减(例如摩擦力),最终系统会停止振动。振动频率较低时,可以近似认为阻力与振动频率成线性关系。作用在重物上的合力: x M x Kx x x k x k F 21=--=---=ββ 其中k1, k2是弹簧的倔强系数。

K = k1+ k2是系统的等效倔强系数。 x 是重物偏离平衡位置的距离, β 是阻尼系数。 因此重物的运动方程可表示为: 22 0=++x x x ωγ 其中 γβ=M and ω02 =K M 。 在欠阻尼状态时(ωγ0>),方程解为: ) cos(22 0 φγωγ+-=-t Ae x t A, φ 由系统初始态决定。方程的解是一个幅度衰减的谐振动,如图2所示。 T 图13.2 衰减振动 振动频率是: f T = =-11202 2π ωγ (13.1) 如果重物下面的弹簧1k 由一个幅度为a 的振荡器驱动,那么这个弹簧作用于重物的力是) cos (1x t a k -ω。此时重物的运动方程为: M t a k x x x cos 212 0ωωγ= ++ . 方程的稳态解为: ) cos(4)(2 2 2 22 1θωω γωω-+-= t M a k x (13.2) 其中 )2(tan 2 201 ωωγω θ-=-。图13.3显示振动的幅度与频率的关系。

数据结构(C语言)实验报告_飞机订票系统

《数据结构》课程设计报告 一、订票系统 【需求分析】 本订票系统要能够实现航班情况的录入功能、航班的查询功能、订票功能、退票功能以及管理本系统的功能即能够修改航班信息。 具体分析如下: 1、录入功能 可以录入航班信息,如录入航班号,到达城市,起飞时间,飞机票数,票价。 2、查询功能 可以查询航班的各项信息,如可以查询起降时间,起飞抵达城市,航班票价,确定航班是否满仓,航班号。 3、订票功能 可以订票并且记录下乘客的相关信息如记录下乘客,,所订航班的航班号以及所订的票数。 4、退票功能 可以退票并且记录乘客的相关信息以及退票信息。 5、修改功能 可以根据需要由管理员对航班信息进行修改更正。 【概要设计】 1、算法设计:每个模块的算法设计说明如下: (1)录入模块: 查找单链表的链尾,在链尾插入一个“航班信息”的新结点。 (2)查询模块: 提供两种查方式:按航号和按航线查询,1代表按航号查询,2代表按航线查询。0则表示退出查询。 顺着单链表查找,如果与航班号(航线)一致,输出相关信息,否则,查询不成功。 (3)订票模块: 查找乘客要订的航班号,判断此航班是否有空位,有则输入乘客有关信息,订票成功,否则失败。 (4)退票模块: 输入要退票的乘客以及证件,查找乘客资料的链表中是否有这位乘客,有则删去此结点,并在空位加上1,无则退票失败。 (5)修改模块: 输入密码,确认是否有权限对航班信息进行修改,有则在航班信息链表中查找要修改的结点,进行修改,否则不能修改。 2.存储结构设计: (1)航班的信息:为了便于查找和修改,航班的情况存储结构采用单链表,每个元素表示一个航班的情况,包括航班号、起飞达到的时间、空座和目的的、票价以及限座七个数据项:

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告

实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共 射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 2.834 6.126 2.2040.63 3.92210k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

运动控制仿真实验报告

运动控制仿真实验报告 姓名:班级:学号: ——晶闸管三相全控桥式整流仿真实验 ——实用 Buck 变换仿真实验 晶闸管三相全控桥式整流仿真实验(大电感负载) 原理电路:

R2 晶闸管三相可控整流仿真实验2原理电路框图 输入三相交流电,额定电压380伏(相电压220伏),额定频率50Hz,星型联接。输入变压器可省略。为便于理解电路原理,要求用6只晶闸管搭建全控桥。 实验内容: 1、根据原理框图构建Matlab仿真模型。所需元件参考下表: 仿真元件库:Simulink Library Browser 示波器Simulink/sink/Scope 要观察到整个仿真时间段的结果波形必须取消对输出数据的5000点限制。 要观察波形的FFT结果时,使能保存数据到工作站。仿真结束后即可点击仿真模型左上方powergui打开FFT窗口,设定相关参数:开始时间、分析波形的周期数、基波频率、最大频率等后,点Display即可看到结果。 交流电源SimPowerSystems/Electrical Sources/AC Voltage Source 设定频率、幅值、相角,相位依次滞后120度。 晶闸管SimPowerSystems/Power Electronics/Thyristor 6脉冲触发器SimPowerSystems/Extra Library/Control Blocks/Synchronized 6-Pulse Generator 设定为50Hz,双脉冲 利用电压检测构造线电压输入。Block端输入常数0. 输出通过信号分离器分为6路信号加到晶闸管门极,分离器输出脉冲自动会按顺序从1到6排列,注意按号分配给主电路对应晶闸管。 电阻、电容、电感SimPowerSystems/Elements/Series RLC Branch 设定参数 负载切换开关SimPowerSystems/Elements/Breaker 设定动作时间 信号合成、分离Simulink/Signal Routing/Demux,Mux 电流傅立叶分解SimPowerSystems/Extra Library/Discrete Measurements/Discrete Fourier 设定输出为50Hz,基波 有效值SimPowerSystems/Extra Library/Discrete Measurements/Discrete RMS value 设定为50Hz 位移功率因数计算Simulink/User-Difined Functions/Fcn 将度转换为弧度后计算余弦

模电实验报告

模拟电子技术基础实验报告 姓名:蒋钊哲 学号:2014300446 日期:2015.12.21

实验1:单极共射放大器 实验目的: 对于单极共射放大电路,进行静态工作点与输入电阻输出电阻的测量。 实验原理: 静态工作点的测量是指在接通电源电压后放大器输入端不加信号(通过隔直电容将输入端接地)时,测量晶体管集电极电流I CQ和管压降V CEQ。其中集电极电流有两种测量方法。 直接法:将万用表传到集电极回路中。 间接法:用万用表先测出R C两端的电压,再求出R C两端的压降,根据已知的R E的阻值,计算I CQ。 输出波底失真为饱和失真,输出波顶失真为截止失真。 电压放大倍数即输出电压与输入电压之比。 输入电阻是从输入端看进去的等效电阻,输入电阻一般用间接法进行测量。 输出电阻是从输出端看进去的等效电阻,输出电阻也用间接法进行测量。 实验电路:

实验仪器: (1)双路直流稳压电源一台。 (2)函数信号发生器一台。 (3)示波器一台。 (4)毫伏表一台。 (5)万用表一台。 (6)三极管一个。 (7)电阻各种组织若干。 (8)电解电容10uF两个,100uF一个。 (9)模拟电路试验箱一个。

实验结果: 经软件模拟与实验测试,在误差允许范围内,结果基本一致。

实验2:共射放大器的幅频相频 实验目的: 测量放大电路的频率特性。 实验原理: 放大器的实际信号是由许多频率不同的谐波组成的,只有当放大器对不同频率的放大能力相同时,放大的信号才不失真。但实际上,放大器的交流放大电路含有耦合电容、旁路电容、分布电容和晶体管极间电容等电抗原件,即使得放大倍数与信号的频率有关,此关系为频率特性。 放大器的幅频特性是指放大器的电压放大倍数与输入信号的频率之间的关系。在一端频率范围内,曲线平坦,放大倍数基本不变,叫作中频区。在中频段以外的频率放大倍数都会变化,放大倍数左右下降到0.707倍时,对应的低频和高频频率分别对应下限频率和上限频率。 通频带为: f BW=f H-f L 实验电路:

计算机仿真实验报告实验

《计算机仿真》上机实验报告 姓名: 学号: 2012104021 专业:测控 班级: 12级

实验一常微分方程的求解及系统数学模型的转换一.实验目的 通过实验熟悉计算机仿真中常用到的Matlab指令的使用方法,掌握常微分方程求解指令和模型表示及转换指令,为进一步从事有关仿真设计和研究工作打下基础。 二. 实验设备 个人计算机,Matlab软件。 三. 实验准备 预习本实验有关内容(如教材第2、3、5章中的相应指令说明和例题),编写本次仿真练习题的相应程序。 四. 实验内容 1. Matlab中常微分方程求解指令的使用 题目一:请用MATLAB的ODE45算法分别求解下列二个方程。要求:1.编写出Matlab 仿真程序;2.画出方程解的图形并对图形进行简要分析;3.分析下列二个方程的关系。 1.2. 1.function fun=funl(t,x) fun=-x^2;

[t,x]=ode45('fun1',[0,20],[1]); figure(1);plot(t,x); grid 2.function fun=fun2(t,x) fun=x^2; [t,x]=ode45('fun2',[0,20],[-1]); figure(2);plot(t,x); grid

题目二:下面方程组用在人口动力学中,可以表达为单一化的捕食者-被捕食者模式(例如,狐狸和兔子)。其中1x 表示被捕食者, 2x 表示捕食者。如果被捕食者有无限的食物,并且不会出现捕食者。于是有1'1x x ,则这个式子是以指数形式增长的。大量的被捕食者将会使捕食者的数量增长;同样,越来越少的捕食者会使被捕食者的数量增长。而且,人口数量也会增长。请分别调用ODE45、ODE23算法求解下面方程组。要求编写出Matlab 仿真程序、画出方程组解的图形并对图形进行分析和比较。 1.ODE45

钣金基础

一、填空题 1、车身上常用的钢材有低碳钢、高强度钢、超高强度钢和高强度低合金钢。 2、常用的展开做图方法有平行线展开法、放射线展开法和三角线展开法等。 3、求一般位置的线段实长的方法有直角三角形法、直角梯形法、旋转法和换面法等。 4、矫正是指消除金属板材、型材的不平、不直或翘曲等缺陷的工艺。 5、对受到纵向撞击的车辆无论是间接变形还是直接变形,一般不需进行拆卸解体(更换除外),修复时只需要对内部结构件、加强件及支撑件进行牵拉,同时进行就位修复即可。 6、燃烧的三基本要素是:热量(温度)、易燃物(燃料)和氧气。 7、钣金维修中常用的工具有两类:手动工具和动力工具。 8、呼吸器种类有供气式呼吸器、滤筒式呼吸器、焊接用呼吸器和防尘呼吸器。 9、使用吹气枪工作时,压力保持在0.5MPa以下。 10、常用的整形维修方法有敲平法、吸引法、牵引法、惯性锤法。 二、判断题 1、在车身修理中其修复程度由尺寸测量决定。(T) 2、天圆地方构件常用的展开方法是三角线法。(T) 3、拉伸时与修复结构件一样,遵循“拉伸→保持→再拉伸→再保持”的原则,对褶皱和隆起区域进行校正。(T) 4、温度过高作用于车身,致使高碳钢变为低碳钢属于化学性损坏。(T) 5、汽车加工质量不好,属于结构设计上的缺陷。(F) 6、对于汽车车身的任何位置,都可以采用气割的方法切割。(F ) 7、整体式车身本身有助于抑制振动和噪声。(F ) 8、对于车架式车身,负载引起的振动通过车架传到车身,乘坐平稳。(T ) 9、可以采用退火的方法来消除加工硬化。(T) 10、金属所具有的延伸并恢复到原来形状的能力称为塑性变形。(F) 11、受弯曲或加工过部位的金属都会产生加工硬化。(T) 12、车身上的防撞挤压部件在修理中尽量不要进行切割分离。(T) 13、新板件的更换必须在相配合的板件彻底修复后才能进行。(T) 14、车辆制造商建议使用100%的CO2保护气体来焊接车身。(F) 15、直接损伤发生在碰撞点上。(T) 16、最先拉伸最后发生碰撞损坏的点。(T) 17、承载式车身允许误差通常是正负5毫米。(F) 18、所有的车身修复必须全部遵循先里后外的原则。(F) 19、减震塔测量必须在车身底部与上部对正的情况下,进行三维测量。(T) 20、车架式车身在碰撞时主要变形有五种左右弯曲、上下弯曲、扭转变形、扭曲变形和菱 形变形。(F) 三、选择题 1、汽车车身上哪一部分设计是用来吸收碰撞时的冲击能量的。(D) A乘客车厢B发动机组件C凹陷区D碰撞缓冲区 2、在一辆碰撞受损的汽车上,大部分车身金属板件的拉延是发生在(B) A直接损伤区B间接损伤区C碰撞缓冲区D顶盖板件 3、火焰矫正是采用火焰对钢材变形部位进行局部加热的矫正方法。其原理是利用了钢材的( A )的特性。PB-99 A.热胀冷缩 B.冷热温差C,收缩变形 D.热胀变形 4、强度是指金属材料在外力作用下抵抗( C )的能力。

模电PSPICE仿真实验报告

实验一晶体三极管共射放大电路 实验目的 1、 学习共射放大电路的参数选取方法。 2、 学习放大电路静态工作点的测量与调整,了解静态工作点对放大电路性能的影响。 3、 学习放大电路的电压放大倍数和最大不失真输出电压的分析方法 4、 学习放大电路数输入、输出电阻的测试方法以及频率特性的分析方法。 、实验内容 确定并调整放大电路的静态工作点。 为了稳定静态工作点,必须满足的两个条件 条件一: 条件二: I 1>>I BQ V>>V BE I I =(5~10)I B V B =3~5V R E 由 V B V BE V B 再选定 I EQ I CQ 计算出Re R b2 I I ,由 V B V B I I (5~10)I B Q 计算出 m - Vcc V B R b1 再由 V CC V B (5~10)I BQ 计算出 Ri

Time 从输出波形可以看出没有出现失真,故静态工作点设置的合适。 改变电路参数: V1 12Vdc Rc 此时得到波形为: 400mV 200mV 0V -200mV 450us 500us 75k 3k 4.372V R2 50k Q1 Q2N2222 Re 2.2k C2 T 一 6.984V 10uF 彳Ce 100uF

2.0 V -4.0V 0s 50us 100us 口V(C2:2) V(C1:1) 150us 200us 250us 300us 350us 400us 450us 500us Time 此时出现饱和失真。 当RL开路时(设RL=1MEG Q)时: V1 输出波形为:

4.0V -4.0V 出现饱和失真 二、实验心得 这个实验我做了很长时间,主要是耗在静态工作点的调试上面。按照估计算出的Rb1、Rb2、Re的值带入电路进行分析时,电路出现失真,根据其失真的情况需要不停的调 节Rb1、Rb2和Re的值是电路输出不失真。 实验二差分放大电路 -、实验目的 1、学习差分放大电路的设计方法 2、学习差分放大电路静态工作的测试和调整方法 3、学习差分放大电路差模和共模性能指标的测试方法 二、实验内容 1. 测量差分放大电路的静态工作点,并调整到合适的数值。

相关文档
最新文档