飞机装配连接技术 实验报告

飞机装配连接技术 实验报告
飞机装配连接技术 实验报告

一、填空

1.飞机装配连接技术的方法有(铆接)、(胶接)、(螺栓连接)、

(焊接)、(过盈连接)。

2.普通铆接的过程为(定孔位)、(工件定位)、(工件夹紧)、(制

铆钉孔)、(制沉头窝)、(放铆钉)、(铆接)。

3.锤铆存在的问题有:a:(铆接质量不稳定)、b:(铆接变形大)、、

c:(劳动强度大、噪音大、振动大)、d:(生产率低下)等。

4.密封铆接的形式有(缝内密封)、(缝外密封)、(表面密封)、

(紧固件自身密封)。

二、简答题

1.简述普通铆接的优缺点。

优点:工艺设备简单,抗震,耐冲击,且牢固可靠;

缺点:结构一般较为笨重,被联接件上由于制有钉孔,强度受

到较大削弱。

2.简述铆接方式中正铆的优缺点。

优点:铆接表面质量好。

缺点:大的顶铁力,铆枪在工件内部。顶铁较重,劳动强度

大,受结构通路限制。

3. 简述铆接方式中反铆的优点。

顶铁力小,常用于骨架铆接。顶铁重量轻,受结构通路限制

较少。

5.简述用铆枪铆接时存在的问题。

a.铆接质量不稳定

b.铆接变形大

c.劳动强度大、噪音大、振动大、劳动条件差

d.劳动生产率低下

6.简述特种铆接中的单面铆接形式及缺点。

a.普通抽芯铆钉铆接

缺点:①.芯杆受振动载荷时易脱落;

②.受拉时,只有钉套受拉力,抗拉强度低。

b.鼓包型抽芯铆钉铆接

缺点:钉套在孔中提前失稳形成鼓包,对于孔壁施加的预

应力不足。

b.拉丝型抽芯铆钉铆接

缺点:芯杆与孔能产生干涉配合,存在内应力。

飞机大战实验报告

飞机大战实验报告 专业:网络工程132班 学号:139074298 姓名:孙仁强 计算机科学与技术学院二零一六年十二月

一、软件运行所需要的软硬件环境 本系统是以Windows系统为操作平台,用Java编程语言来实现本系统所需功能的。本机器的配置如下: 处理器:CORE i7 主频:1.2Hz以上 内存:4G以上 硬盘:HHD 50G 编程语言:Java 开发环境:windows7 开发软件:Eclipse Mars 二、游戏流程 1.用户打开游戏,进入开始菜单。 2.用户点击开始游戏按钮,进入游戏界面; 3.用户通过触屏方式控制玩家飞机上下左右移动,躲避与子弹相撞; 4.游戏失败后,显示本次游戏得分,用的秒数和水平; 5.退出游戏 三、主要代码 1、准备代码设置窗口使用双缓冲使飞机不闪烁 Constant设置窗口大小 package com.ahut.准备代码; publicclass Constant { publicstaticfinalint GAME_WIDTH = 350; publicstaticfinalint GAME_HEIGHT = 600; } package com.ahut.准备代码; import java.awt.Image; import java.awt.image.BufferedImage;

import java.io.IOException; import https://www.360docs.net/doc/3c851453.html,.URL; public class GameUtil { private GameUtil () {} public static Image getImage(String path) { BufferedImage bi = null; try { URL u = GameUtil.class.getClassLoader().getResource(path); bi = javax.imageio.ImageIO.read(u); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } return bi; } } package com.ahut.准备代码; import java.awt.Frame; import java.awt.Graphics; import java.awt.Image; import java.awt.event.WindowAdapter; import java.awt.event.WindowEvent; public class MyFrame extends Frame{ public void lauchFrame() { setSize(Constant.GAME_WIDTH, Constant.GAME_HEIGHT); setLocation(100, 100); setVisible(true); new PaintThread().start(); addWindowListener(new WindowAdapter() { @Override public void windowClosing(WindowEvent e) { System.exit(0); } }); }

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩:

一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图 共射极单管放大器

现代飞机装配技术知识点.培训讲学

《现代飞机装配技术》知识点总结 南京航空航天大学 第一章 1、飞行器数字化和传统制造的最大区别特点 (1改模拟量传递为数字量传递。 (2把串行工作模式变为并行工作模式。 带来的必然结果是缩短产品研制周期,提高产品质量,降低研制成本。 2、 MBD 的定义,其数据集应包括的内容,采用的技术意义。 MBD 技术定义 :用集成的三维实体模型来完整表达产品定义信息,详细规定了三维实体模型中产品定义、公差标注准则和工艺信息的表达方法。 数据集包括的内容 :相关设计数据、实体模型、零件坐标系统、三维标注尺寸、公差和注释工程注释、材料要求、其它定义数据及要求。 技术意义:1. 改双数据源定义为单源定义,定义数据统一 2. 提高了工程质量 3. 减少了零件设计准备时间 4.电子化的存储和传递 , 协调性好 5.减少成本 6.易于向下兼容 (派生出平面信息 3、国外飞机数字化技术发展的三个主要历程: 部件数字样机阶段 1986—— 1992 全机数字样机阶段 1990—— 1995 数字化生产方式阶段 1996—— 2003 4、飞机结构的特点

零件多、尺寸大、刚度小、外形复杂、结构复杂、精度要求高、其装配具有与一般机械产品不同的技术和特点。 5、什么是飞机装配,发展历程? 根据尺寸协调原则, 将飞机零件或组件按照设计和技术要求进行组合、连接形成更高一级的装配件或整机的过程。 自动化装配 6、飞机数字化制造的三个主要内容 CAD 、 CAM 、 CAPP 第二章 1、产品数字建模的发展过程中提出的产品信息模型有哪三种概念? 面向几何的产品信息模型 (geometry- oriented product model 面向特征的产品信息模型 (feature- oriented product model 集成产品信息模型 IPIM(integrated product information model 2、物料清单(BOM 的定义,企业三种主要的 BOM 表, EBOM 、 PBOM 、MBOM BOM 定义 :又称为产品结构表或产品结构树;在 ERP 系统中,物料一词有着广泛的含义,它是所有与生产有关的物料的统称。 EBOM 设计确定零部件的关系 PBOM 工艺工艺规划、加工归属计划分工表 MBOM 制造主要按照装配顺序流程来确定

飞机装配设计课程设计说明书

9911839隔框的装配型架设计 学院:航空航天工程学部 专业:飞行器制造工程 班级: 1434030302 学号: 143403030226 姓名:高越 指导教师:王巍 沈阳航空航天大学 2018年1月

摘要 飞机装配型架主要由:骨架、定位件、夹紧件和辅助设备组成。其主要功用是保证产品准确度和互换性,改善劳动条件、提高装配工作生产效率,降低生产成本。型架设计的主要内容有:型架设计基准选择;装配对象在型架中的放置状态;选择工件的定位基准,确定主要定位件的形式及其布置,尺寸公差的选择;工件的出架方式;型架的安装方法;型架结构形式的确定;骨架刚度验算;骨架支撑与地基估算;考虑温度对型架准确度的影响。本文针对9911839隔框的相关结构特点,进行工艺分析,结合装配使用要求对该隔框进行了装配型架的设计,主要包括对两种形式加强筋的定位与夹紧,对缘条与腹板的定位与夹紧等,并对所设计型架的工艺特性进行简要的阐述与分析。 关键词: CATIA、型架、定位件、夹紧件、骨架

目录 第1章引言 (1) 第2章装配件工艺分析 (3) 2.1 工艺分离面的选择 (3) 2.2 9911839隔框结构分析 (5) 第3章装配型架及其零件设计 (6) 3.1 装配型架的功用及技术要求 (6) 3.2 产品的放置状态 (7) 3.3 产品的出架方式 (7) 3.4 骨架的设计 (7) 3.5 定位件与夹紧件的设计 (9) 3.6 温度对型架准确度的影响 (12) 第4章型架的安装 (14) 4.1 安装方法的选择 (14) 4.2 标准样件安装方法优缺点 (14) 4.3 型架的安装过程 (14) 4.4 型架总装图 (15) 第5章创建二维工程图 (16) 总结 (17) 参考文献 (18)

MFC_陨石撞飞机实验报告

.. . .. . 一、题目 陨石撞飞机综合性实验 二、中文摘要 用MFC设计一个陨石撞飞机的平面游戏:陨石不断地向下落,飞机通过上下左右键移动以躲避陨石。当陨石碰撞了飞机时,显示提示对话框,及飞机爆炸图像。确定后在碰撞位置重新开始游戏。三次碰撞后显示提示对话框,游戏结束。 三、关键词 MFC、Bitmap、timer、键盘响应(WM_KEYDOWN) 四、前言 此程序大多代码出自参考资料,一小部分代码为搜索资料并加工完成,其功能尚有不完善之处。 五、软件开发过程 (一)、新建MFC APPWizard[exe]单文档工程文件 在Visual C++中新建一个工程,命名为Plane。工程类型为:MFC AppWizard[exe]。在MFC AppWizard-Step1对话框中设置应用程序的类型,建立一个单文档工程文件,得到一个应用程序框架文件。 (二)、添加资源:、飞机位图、陨石位图、爆炸位图。 在[插入]-[资源…]选择Bitmap选项,单击[新建]即可。绘出一个飞机,ID 为(IDB_BITMAP1)、五个陨石(IDB_BITMAP2~IDB_BITMAP6)和一个炸弹位..

专业软件工程年级、班级09级8班 课程名称计算机综合性实验实验项目陨石撞飞机 实验时间2010 年 6 月20 日 实验指导老师黄荔实验评分 图(IDB_BITMAP7),如下图。 飞机位图陨石位图爆炸位图 (三)、在planeView.h头文件中声明所需变量和函数CBitmap m_plane; //声明一个CBitmap类型的飞机变量m_plane int mx,my;//表示飞机坐标 CBitmap m_bump; //爆炸位图变量 int mpx,mpy;//表示爆炸位图的坐标 int t; //爆炸次数 //声明陨石位图的成员变量为CBitmap类型的变量 CBitmap m_stone1,m_stone2,m_stone3,m_stone4,m_stone5; //声明陨石的坐标变量为int类型: int nstone1x,nstone1y; int nstone2x,nstone2y; int nstone3x,nstone3y;

骑士飞行棋实训报告

山东理工大学计算机学院 实训报告 《DOS界面开发基础实训》 班级 姓名 学号 指导教师 二○一二年七月五日 实训任务书及成绩评定 课题名称骑士飞行棋 Ⅰ、题目的目的和要求: 1、设计目的 本实训是实践性教学环节之一,旨在锻炼学生的实践操作能力和综合应用能力,希望通过案例实践,帮助学生掌握DOS界面的开发和应用,具备熟练使用C语言开发界面、感受游戏开发过程等。 2.要求学生掌握: (1)、C语言的规范、结构和标记。 (2)、数组、链表的定义和使用。 (3)、C语言的程序设计基础、面向对象编程、操作、事件处理和特效,感受游戏的开发过程等 (4)、综合应用各种前台技术开发DOS页面。 2、设计题目要求: 第一部分 游戏端首页 (1)角色的分配及及游戏规则: 游戏规则和传统的飞行棋一样,支持两人对战 采用100格小型游戏棋盘 游戏规则:对战双方轮流掷骰子控制自己的骑兵前进或后退,在游戏棋盘上设置有关卡普通 地雷 暂停 时空隧道

幸运轮盘(提供两种运气:交换位置和轰炸) 棋盘上的关卡只在骑兵第一次移动遇到时有效 (2)棋盘示例: 第二部分:游戏过程 (1)地图显示思路: 将对战地图划分成4个部分分别显示 奇数行:顺序输出地图数组中代号对应图像 右竖行:先输出空格,再输出数组中代号对应图像 偶数行:逆序输出地图数组中代号对应图像 (2)游戏进行中的界面 第三部分:游戏结束,玩家胜负已分 Ⅱ、设计进度及完成情况 日期内容 分析所给题目,初步划分侧重点,并初步制定流程 对所给题目进行详细的研究并细读有关资料 做出所给题目,讨论研究并调试检查错误, 对所给题目进行综合考虑,并进行再次修改 答辩,思考老师的评价 Ⅲ、系统实现--主要功能代码 void Welcome() { printf("※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※\n"); printf("操 2.孙权 3.刘备 \n"); printf("请玩家1选择角色:");个玩家轮流掷骰子,如果上轮走到暂停关卡,停掷一次\n\n"); printf("2.若玩家走到幸运轮盘,则和对方交换位置或者对方后退6步\n\n"); printf("3.若玩家走到某格,而对方也在此格,则对方退回原点\n\n"); printf("4.若遇到地雷后退6步\n\n"); printf("5.若遇到暂停则此玩家下一回合停止掷骰子\n\n"); printf("6.若遇到时空隧道再前进10步\n\n");

模电仿真实验报告。

模拟电路仿真实验报告 张斌杰生物医学工程141班 MUltiSim软件使用 一、实验目的 1、掌握MUltiSim软件的基本操作和分析方法。 二、实验内容 1、场效应管放大电路设计与仿真 2、仪器放大器设计与仿真 3、逻辑电平信号检测电路设计与仿真 4、三极管Beta值分选电路设计与仿真 5、宽带放大电路设计与仿真 三、MUItiSim软件介绍 MUItiSim是美国国家仪器(NI)有限公司推出的以WindOWS为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用MUItiSinl交互式地搭建电路原理图,并对电路进行仿真。MUltiSiIn提炼了SPICE 仿真的复杂内容,这样工程师无需懂得深入的SPlCE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过MUItiSiIn和,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到和测试这样一个完整的综合设计流程。 实验名称:

仪器放大器设计与仿真 二、实验目的 1、 掌握仪器放大器的设计方法 2、 理解仪器放大器对共模信号的抑制能力 3、 熟悉仪器放大器的调试功能 4、 掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器,毫伏 表信 号发生器等虚拟仪器的使用 三、设计实验电路图: 四、测量实验结果: 出为差模放大为399mvo 五、实验心得: 应用MUIti S im 首先要准备好器件的PSPiCe 模型,这是最重要的,没有这个 东西免谈,当然SPiCe 高手除外。下面就可以利用MUItiSinl 的元件向导功 能制作 差模分别输入信号InW 第二条线与第三条线: 共模输入2mv 的的电压,输出为2mv 的电压。 第一条线输

飞机装配中大尺寸测量场的建立与优化技术研究

飞机装配中大尺寸测量场的建立与优化技术研究 摘要:本文分析了面向飞机装配的大尺寸测量场的组成要素与构建价值,在此基础上,从装配坐标系的建立、激光跟踪仪转站原理、参数定义、算法几方面入手,着重阐述了激光跟踪仪转站这一大尺寸测量场的构建优化技术。 关键词:飞机装配;大尺寸测量场;激光跟踪仪转站 引言:在实际的飞机装配过程中,想要完成飞机部件上所有关键特征量的测量,就必须要确保复数的激光跟踪仪同时运行。在激光跟踪仪转站技术的支持下,可以完成大尺寸测量场的建立,并保证其覆盖整个飞机装配空间。依托大尺寸测量场,能够实现飞机部件之间的定位、装配与对接,在落实飞机装配中有着极高的构建与优化价值。 一、飞机装配中大尺寸测量场的构建分析 (一)大尺寸测量场的组成要素 大尺寸测量场主要包含数字化测量设备、数字化定位设备、飞机部件以及多种装配工装等等,而这些设备与工装均具备其独特的坐标系。当前,普遍将这些坐标系划分为四种类型,即部件坐标系、装配坐标系、设备坐标系、测量坐标系[1]。其中,部件坐标系主要指飞机装配部件的位置;装配坐标系主要指存在与整个装配空间内部的基准坐标系;设备坐标系主要指存在于装配现场中的设备、工装位置,包括机床、机器人、定位设备等等;测量坐标系主要指飞机装配时各个激光跟踪仪的坐标系。 对于存在于飞机装配现场内的多个激光跟踪仪而言,其位置可以根据工况与需求的不同进行调整。此时,若是某一激光跟踪仪的位置发生变化,则测量坐标系相对于装配坐标系更为独立。实践中,笔者提前在飞机装配现场的地面(装配平台也可以)上设置在增强的系统参考点,以此维护激光跟踪仪测量坐标系与装配坐标系之间的相对关系。 (二)大尺寸测量场的重要作用 1.推动飞机装配系统数字化、集成化 面向飞机装配的数字化系统中,不同的设备具有独自的坐标系。此时,若是不设定一个统一的坐标系基准,则会导致各个设备之间的姿态、位置难以有效关联,最终造成不同设备无法协同工作。而通过建立大尺寸测量场就能够避免上述问题的发生,可以确保所有设备均在装配坐标系内完成定位,构建起不同设备之间的相对运动关系与相对几何关系,最终实现飞机系统的数字化与集成化,并达成协同运行的目标。 2.实现对飞机装配系统的数字化定位 在实际的飞机装配中,其过程具有较高的复杂性,传统方法由于成本较高、操作繁琐的原因已经不再适用。而通过构建大尺寸测量场,促使飞机的数字化装配成为现实,提升了定位的准确性与快捷性,并使得自动化代替大多人工操作,降低了装配成本。 二、飞机装配中大尺寸测量场的优化技术探究 (一)装配坐标系的建立 在飞机装配现场中,装配坐标系在测量值的确定中占据着基础性地位,也是多种设备位姿、装配部件位姿的基础内容。从理论上来看,装配坐标系的方向、位置均可以在增强的系统参考点上展开确认,以此了解增强的系统参考点在装配

QTP测试实验报告-飞机票订票系统

QTP自动化功能测试实践 一、实验目的 1、熟悉QTP自动化功能测试流程 2、能够利用QTP进行B/S或者C/S架构程序的自动化功能测试 二、实验内容 功能测试是针对应用系统进行测试,是基于产品功能说明书,是在已知产品所应具有的功能,从用户角度来进行功能验证,以确认每个功能是否都能正常使用。本项目主要使用QuickTest对其自带的MercuryTours网站/飞机票订票系统进行功能测试,要求录制预订机票的完整过程,然后执行测试脚本并分析结果。 三、实验要求 1、独立完成; 2、提交测试脚本 3、提交测试用例说明书及缺陷报告。 四实验内容 1脚本的录制与回放测试及检查点的设置验证 脚本代码: Dialog("Login").WinEdit("Agent Name:").Check CheckPoint("Agent Name:") '验证乘客名字文本框中的值标准检查点 Dialog("Login").WinEdit("Agent Name:").Set "123456" '输入用户名 Dialog("Login").WinEdit("Password:").Set "mercury" '输入密码 Dialog("Login").WinButton("OK").Click '单击OK按钮登陆 Window("Flight Reservation").Static("Static").Check CheckPoint("Static") '检查页面中的图片元素是否加载 Window("Flight Reservation").ActiveX("MaskEdBox").Type "011218" Window("Flight Reservation").WinComboBox("Fly From:").Select "London" Window("Flight Reservation").WinComboBox("Fly To:").Select "Paris" Window("Flight Reservation").WinButton("FLIGHT").Click Window("Flight Reservation").Dialog("Flights Table").WinList("From").Select "12534 LON 08:00 AM PAR 10:00 AM AF $165.50" Window("Flight Reservation").Dialog("Flights Table").WinButton("OK").Click Window("Flight Reservation").WinEdit("Name:").Set "gcc" Window("Flight Reservation").WinEdit("Tickets:").SetSelection 0,1

飞行器控制实验报告剖析

H a r b i n I n s t i t u t e o f T e c h n o l o g y 飞行器制导与控制 实验报告 专业:自动化 班级: 学号:1120410333 姓名: 设计时间:2015/12/12

上机实验1: 使用四阶龙格库塔法求解微分方程 sin()ω=+dy t b dx (1) 先定义参数,ωb ,初值条件可以自己任取。 1. 源程序: function [x,y] = M1(fun,x0,xt,y0,PointNum) if nargin<4 | PointNum<=0 PointNum=100; end if nargin<3 y0=0; end y(1,:)=y0(:)'; h=(xt-x0)/(PointNum-1); x=x0+[0:(PointNum)]'*h; for k=1:(PointNum) f1=h*feval(fun,x(k),y(k,:)); f1=f1(:)'; f2=h*feval(fun,x(k)+h/2,y(k,:)); f2=f2(:)'; f3=h*feval(fun,x(k)+h/2,y(k,:)); f3=f3(:)'; f4=h*feval(fun,x(k)+h,y(k,:)); f4=f4(:)'; y(k+1,:)=y(k,:)+(f1+2*(f2+f3)+f4)/6; end 2、运行文件: x0=0; xt=2; Num=100; h=(xt-x0)/(Num-1); x=x0+[0:Num]*h; a=1; yt=1-exp(-a*x); fun=inline('-y+1','x','y'); y0=0; PointNum=100; [xr,yr]=M1(fun,x0,xt,y0,Num); M1_x=xr'

飞机数字化装配技术发展与应用

龙源期刊网 https://www.360docs.net/doc/3c851453.html, 飞机数字化装配技术发展与应用 作者:赵鹏 来源:《科学与信息化》2017年第33期 摘要数字化技术的应用是飞机研制发展史上的一次重大飞跃。数字化装配技术由数字化装配工艺技术、柔性工装技术、激光检测与补偿技术、数字化钻铆技术、数字化数据管理以及集成技术等组成,是机械、电子、控制、计算机等多学科交叉融合的高新技术。本文就飞机数字化装配技术发展与应用进行了讨论。 关键词飞机;数字化装配技术;发展;应用 1 数字化装配 数字化装配是现代航空制造企业装配技术的发展方向。从20世纪90年代开始,国外的波音、空客等先进航空制造企业陆续开发和应用了三维虚拟制造软件,多以飞机装配典型结构为应用对象,建立飞机装配的数字化设计制造模式和数字化协调技术体系,利用网络技术及数字化技术,建立工艺设计流程,实现3D装配工艺设计及验证、仿真,实现车间、工厂布局数字化及仿真,实现现场工人操作的可视化等[1]。 2 飞机数字化装配技术国内发展现状 国内的飞机装配,虽然在局部上也采用了较为先进的技术,如采用catia技术进行了包括建立型架标准件库和优化型架及参数设计,对工装、工具和产品的装配过程进行了三维仿真等,开始采用激光测量+数控驱动的定位方式,部分机型还采用了自动钻铆技术等,但总体上与发达国家相比还存在较大差距,具体表现在:①飞机设计制造仍主要采用串行模式,工装、工艺设计与产品设计脱节,制造模式未真正实现到并行模式的转换,导致飞机装配协调困难、返工率高;②尚未实现人机交互的装配仿真以及装配路径的优化;③仍然采用以专用工装为主的刚性定位装配方式,导致飞机制造成本居高不下;④数字化装配应用规模有限,尚未实现一个完整型号真正意义上的全面数字化[2]。 3 飞机数字化装配技术应用 3.1 数字化定位技术 以数字化为基础的定位技术包括数字测量定位技术、特征定位技术、柔性定位技术等。数字测量定位技术是指针对飞机产品的结构特点、定位要求,借助数字化测量设备或系统进行飞机零部件的定位;特征定位技术利用数字化定义、数控加工的具有配合关系的配合面、装配孔或工艺凸台、工艺孔等设计或工艺特征,实现零件之间的相互定位,保证装配的一致性和高装配质量;柔性定位技术是指通过采用柔性工装满足不同产品的定位需要。随着飞机装配质量越来越高的要求,数字化定位技术已经成为飞机零部件高效、高精度定位的重要保障。

北航飞行力学实验班飞机典型模态特性仿真实验报告(精)

航空科学与工程学院 《飞行力学实验班》课程实验飞机典型模态特性仿真 实验报告 学生姓名:姜南 学号:11051136 专业方向:飞行器设计与工程 指导教师:王维军 (2014年 6 月29日 一、实验目的 飞机运动模态是比较抽象的概念, 是课程教学中的重点和难点。本实验针对这一问题,采用计算机动态仿真和在人-机飞行仿真实验平台上的驾驶员在环仿真实验,让学生身临其境地体会飞机响应与模态特性的关系,加深对飞机运动模态特性的理解。 二、实验内容 1.纵向摸态特性实验 计算某机在某状态下的短周期运动、长周期运动的模态参数;进行时域的非实时或实时仿真实验,操纵升降舵激发长、短周期运动模态,并由结果曲线分析比较模态参数;放宽飞机静稳定性,观察典型操纵响应曲线,并通过驾驶员在环实时仿真体验飞机的模态特性变化。

2.横航向模态特性实验 计算某机在某状态下的滚转、荷兰滚、螺旋模态参数;进行时域仿真计算,操纵副翼或方向舵,激发滚转、荷兰滚等运动模态,并由结果曲线分析比较模态参数。 三、各典型模态理论计算方法及模态参数结果表 1 纵向模态纵向小扰动运动方程 0000 1 00 0e p e p e p u w e u w q p u w q X X u u X X g Z Z w w Z Z Z q q M M M M M δδδδδ δδδθθ????????-???? ????????? ? ???????????=+??????????????????? ?????????????????? A =[ X

u X ?w Z u Z w 0?g Z q 0M ?u M ?w0 M q 010] =[?0.01999980.0159027?0.0426897?0.04034850?32.2869.6279 0?0.00005547?0.001893500?0.54005010] A 的特征值方程 |λ+0.0199998?0.01590270.0426897 λ+0.0403485032.2 ?869.627900.000055470.001893500λ+0.540050 ?1λ |=0 特征根λ1,2=?0.290657205979137±1.25842158268078i λ3,4=?0.00954194402086311±0.0377636398212079i 半衰期t 1/2由公式t 1/2=? ln2λ 求得,分别为 t 1/2,1=2.38475828674173s t 1/2,3=72.6421344585972s 振荡频率ω分别为 ω1=1.25842158268078rad/s ω3=0.0377636398212079rad/s 周期T 由公式T =

飞行控制系统大作业

《飞行控制系统》课程实验报告 班级 0314102 学号 031410224 姓名孙旭东 成绩 南京航空航天大学 2017年4月

(一)飞机纵向飞行控制系统的设计与仿真 1、分析飞机纵向动力学模态,求飞机的长周期与短周期阻尼与自然频率。 在MATLAB环境下导入数据文件,输入damp(alon),得出结果: Eigenvalue Damping Freq. (rad/s) -2.29e+000 + 4.10e+000i 4.88e-001 4.69e+000 -2.29e+000 - 4.10e+000i 4.88e-001 4.69e+000 -3.16e-002 1.00e+000 3.16e-002 -7.30e-003 + 3.35e-002i 2.13e-001 3.42e-002 -7.30e-003 - 3.35e-002i 2.13e-001 3.42e-002 长周期的根为 -7.30e-003 + 3.35e-002i 和 -7.30e-003 - 3.35e-002i 阻尼为 2.13e-001 自然频率为 3.42e-002(rad/s) 短周期的根为 -2.29e+000 + 4.10e+000i 和 -2.29e+000 - 4.10e+000i 阻尼为 4.88e-001 自然频率为 4.69e+000(rad/s) 2、对升降舵及油门单位阶跃输入下的飞机自然特性进行仿真,画出相应的状态曲线。 sys=ss(alon,blon,clon,dlon) [y,t]=step(sys,500) subplot(221) plot(t,y(:,1,1)) xlabel('t(s)') ylabel('\Deltau(m/s)') subplot(222) plot(t,y(:,1,2)) xlabel('t(s)') ylabel('\Deltau(m/s)') subplot(223) plot(t,y(:,2,1)) xlabel('t(s)') ylabel('\Delta\alpha(deg)') subplot(224) plot(t,y(:,2,2)) xlabel('t(s)') ylabel('\Delta\alpha(deg)')

数据结构(C语言)实验报告_飞机订票系统

《数据结构》课程设计报告 一、订票系统 【需求分析】 本订票系统要能够实现航班情况的录入功能、航班的查询功能、订票功能、退票功能以及管理本系统的功能即能够修改航班信息。 具体分析如下: 1、录入功能 可以录入航班信息,如录入航班号,到达城市,起飞时间,飞机票数,票价。 2、查询功能 可以查询航班的各项信息,如可以查询起降时间,起飞抵达城市,航班票价,确定航班是否满仓,航班号。 3、订票功能 可以订票并且记录下乘客的相关信息如记录下乘客,,所订航班的航班号以及所订的票数。 4、退票功能 可以退票并且记录乘客的相关信息以及退票信息。 5、修改功能 可以根据需要由管理员对航班信息进行修改更正。 【概要设计】 1、算法设计:每个模块的算法设计说明如下: (1)录入模块: 查找单链表的链尾,在链尾插入一个“航班信息”的新结点。 (2)查询模块: 提供两种查方式:按航号和按航线查询,1代表按航号查询,2代表按航线查询。0则表示退出查询。 顺着单链表查找,如果与航班号(航线)一致,输出相关信息,否则,查询不成功。 (3)订票模块: 查找乘客要订的航班号,判断此航班是否有空位,有则输入乘客有关信息,订票成功,否则失败。 (4)退票模块: 输入要退票的乘客以及证件,查找乘客资料的链表中是否有这位乘客,有则删去此结点,并在空位加上1,无则退票失败。 (5)修改模块: 输入密码,确认是否有权限对航班信息进行修改,有则在航班信息链表中查找要修改的结点,进行修改,否则不能修改。 2.存储结构设计: (1)航班的信息:为了便于查找和修改,航班的情况存储结构采用单链表,每个元素表示一个航班的情况,包括航班号、起飞达到的时间、空座和目的的、票价以及限座七个数据项:

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告

实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共 射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 2.834 6.126 2.2040.63 3.92210k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

现代飞机装配技术_知识要点

现代飞机装配技术知识要点 一、绪论 1、飞机装配定义:根据尺寸协调原则,将飞机零件或组件按照设计和技术要求进行组合、连接形成更高一级的装配件或整机的过程。 2、飞机装配发展历程:人工装配、半自动化装配、自动化装配。 3、飞机结构特点:零件多、尺寸大、刚度小、外形复杂、精度要求高。其装配具有与一般机械产品不同的技术和特点。 4、现代飞机装配技术发展趋势: (1)柔性化:工装和设备适合多种机型或零部件。 (2)自动化:高效自动化装配,具体体现为零部件自动化定位调姿、自动化制孔等。(3)数字化:高精度数字量传递。 (4)集成化:工艺、工装、设备紧密集成为有机整体。 二、数字化制造 1、数字化制造和传统制造的最大区别: (1)改模拟量传递为数字量传递。 (2)把串行工作模式变为并行工作模式。 2、飞机数字化特点:缩短产品研制周期,提高产品质量,降低研制成本。 2、国外飞机数字化技术发展3个历程: 部件数字样机阶段1986——1992 全机数字样机阶段1990——1995 数字化生产方式阶段1996——2003 3、 4、飞机数字化制造的3个内容:CAD绘图技术、CAD建模技术、MBD技术。 5、数字样机的主要内容: (1)1级数字样机:飞机产品设计从用户的需求开始。飞机总体设计组经过对飞机的航程、所需燃油、载客量、总体性能及制造成本进行分析后,得出的数据就作为进行初步产品数字建模的依据。建立飞机总体定义包括飞机的描述文档、三面图、外形气动布局和飞机内部轮廓图(DIP)。 (2)2级数字样机:在生产设计数据集发放之前,为工程部门用来进一步进行产品开发,验证设计构型等。已经用它对飞机结构设计和不同设计组之间的界面进行了协调,零部件外形已经确定下来,但还未进行详细设计。在这阶段数字化预装配(DPA)的工作进展主要体现在为飞机的可维护性、可靠性、人机工程以及支持装备的兼容性等进行了尽可能的详细设

模电实验报告

模拟电子技术基础实验报告 姓名:蒋钊哲 学号:2014300446 日期:2015.12.21

实验1:单极共射放大器 实验目的: 对于单极共射放大电路,进行静态工作点与输入电阻输出电阻的测量。 实验原理: 静态工作点的测量是指在接通电源电压后放大器输入端不加信号(通过隔直电容将输入端接地)时,测量晶体管集电极电流I CQ和管压降V CEQ。其中集电极电流有两种测量方法。 直接法:将万用表传到集电极回路中。 间接法:用万用表先测出R C两端的电压,再求出R C两端的压降,根据已知的R E的阻值,计算I CQ。 输出波底失真为饱和失真,输出波顶失真为截止失真。 电压放大倍数即输出电压与输入电压之比。 输入电阻是从输入端看进去的等效电阻,输入电阻一般用间接法进行测量。 输出电阻是从输出端看进去的等效电阻,输出电阻也用间接法进行测量。 实验电路:

实验仪器: (1)双路直流稳压电源一台。 (2)函数信号发生器一台。 (3)示波器一台。 (4)毫伏表一台。 (5)万用表一台。 (6)三极管一个。 (7)电阻各种组织若干。 (8)电解电容10uF两个,100uF一个。 (9)模拟电路试验箱一个。

实验结果: 经软件模拟与实验测试,在误差允许范围内,结果基本一致。

实验2:共射放大器的幅频相频 实验目的: 测量放大电路的频率特性。 实验原理: 放大器的实际信号是由许多频率不同的谐波组成的,只有当放大器对不同频率的放大能力相同时,放大的信号才不失真。但实际上,放大器的交流放大电路含有耦合电容、旁路电容、分布电容和晶体管极间电容等电抗原件,即使得放大倍数与信号的频率有关,此关系为频率特性。 放大器的幅频特性是指放大器的电压放大倍数与输入信号的频率之间的关系。在一端频率范围内,曲线平坦,放大倍数基本不变,叫作中频区。在中频段以外的频率放大倍数都会变化,放大倍数左右下降到0.707倍时,对应的低频和高频频率分别对应下限频率和上限频率。 通频带为: f BW=f H-f L 实验电路:

无人机实训报告

关于无人机模拟操控技能实训的报告 目录 一、前言 1.实训背景与意义 (2) 2.无人机的发展现状 (2) 3、本次实训的任务安排与技术要求 (4) 二、实训的基本情况 (5) 三、实训总结 (8)

一.前言 本次实训主要是通过实体操控四旋翼无人机的不同姿态运动来提升自己对无人机的运动机制、动力原理以及飞行实操的了解。主要要求是使用提供的四旋翼无人机实现无人机在导航模式下实现原地360°旋转、矩形飞行以及固定翼的模拟航线飞行等,需要控制飞机高度方向,指导老师现场考核评分并记录好实训操控时的图像或音频,以完成实训总结报告。 1.实训背景与意义 无人机,是一种不需要有人驾驶,可以通过远程操控来实现某些特定功能的飞行器,具有可持续续航、飞行高度高、可携带外接设备等一系列优点,目前无人机在多个领域取得应用,并且经过行业的不断完善,已经形成初步的产业链。无人机以其自身的突出的优点、高性价比等巨大优势吸引人们的关注,并且在不断地研究中取得了一定的突破,从无人机整个行业的前景来看,无疑是值得肯定的,并且现有技术不断革新的情况下无人机在未来的发展将会越来越好,无人机作为现代的新星宠儿,对它的研究应用无论是对自身发展还是国家技术改革创新都具有很大作用,在无人机势如春笋的发展背景下,通过实训去了解无人机,熟练的操控无人机将对未来就业以及自身发展具有重大意义。 2.无人机的发展现状 20世纪90年代以来,随着信息化技术、轻量化/小型化任务载荷技术、卫星通信技术、复合材料结构技术、高效空气动力技术、新型能源与高效动力技术、起降技术的迅猛发展,无人机性能不断提升、功能不断扩展,各种类型和功能的无人机不断涌现,应用领域也越来越广泛。无人机按规模可分为微型无人机、小型无人机、中型无人机、大型无人机;按飞行高度可分为低空无人机、中空无人机、高空无人机、临近空间无人机;按飞行速度可分为低速无人机、高速无人机;按机动性可分为低机动无人机、高机动无人机;按能源与动力类型可分为螺旋桨式无人机、喷气式无人机、电动无人机、太阳能无人机、燃料电池无人机;按活动半径可分为近程无人机、短程无人机、中程无人机、远程无人机;按起降方式可分为滑跑起降无人机、火箭助推/伞降回收无人机、空投无人机、炮射无人机、潜射无人机等;按功能用途可分为靶标无人机、诱饵无人机、侦察无人机、炮兵校射无人机、电子对抗无人机、电子侦听无人机、心理战无人机、通信中继无人机、测绘无人机、攻击无人机、察打一体无人机、预警无人机…… 人机系统主要包括飞机机体、飞控系统、数据链系统、发射回收系统、电源系统等。飞控系统又称为飞行管理与控制系统,相当于无人机系统的“心脏”部分,对无人机的稳定性、数据传输的可靠性、精确度、实时性等都有重要影响,对其飞行性能起决定性的作用;数据链系统可以保证对遥控指令的准确传输,以及无人机接收、发送信息的实时性和可靠性,以保证信息反馈的及时有效性和顺利、准确的完成任务。发射回收系统保证无人机顺利升空以达到安全的高度和速度飞行,并在执行完任务后从天空安全回落到地面。 无人机主要分为多旋翼无人机、固定翼无人机以及组合式无人机三大类。 多旋翼无人机又有四旋翼、六旋翼、八旋翼甚至十旋翼等,最常见的是四旋翼无人机,以下是常见的多旋翼无人机。

模电PSPICE仿真实验报告

实验一晶体三极管共射放大电路 实验目的 1、 学习共射放大电路的参数选取方法。 2、 学习放大电路静态工作点的测量与调整,了解静态工作点对放大电路性能的影响。 3、 学习放大电路的电压放大倍数和最大不失真输出电压的分析方法 4、 学习放大电路数输入、输出电阻的测试方法以及频率特性的分析方法。 、实验内容 确定并调整放大电路的静态工作点。 为了稳定静态工作点,必须满足的两个条件 条件一: 条件二: I 1>>I BQ V>>V BE I I =(5~10)I B V B =3~5V R E 由 V B V BE V B 再选定 I EQ I CQ 计算出Re R b2 I I ,由 V B V B I I (5~10)I B Q 计算出 m - Vcc V B R b1 再由 V CC V B (5~10)I BQ 计算出 Ri

Time 从输出波形可以看出没有出现失真,故静态工作点设置的合适。 改变电路参数: V1 12Vdc Rc 此时得到波形为: 400mV 200mV 0V -200mV 450us 500us 75k 3k 4.372V R2 50k Q1 Q2N2222 Re 2.2k C2 T 一 6.984V 10uF 彳Ce 100uF

2.0 V -4.0V 0s 50us 100us 口V(C2:2) V(C1:1) 150us 200us 250us 300us 350us 400us 450us 500us Time 此时出现饱和失真。 当RL开路时(设RL=1MEG Q)时: V1 输出波形为:

4.0V -4.0V 出现饱和失真 二、实验心得 这个实验我做了很长时间,主要是耗在静态工作点的调试上面。按照估计算出的Rb1、Rb2、Re的值带入电路进行分析时,电路出现失真,根据其失真的情况需要不停的调 节Rb1、Rb2和Re的值是电路输出不失真。 实验二差分放大电路 -、实验目的 1、学习差分放大电路的设计方法 2、学习差分放大电路静态工作的测试和调整方法 3、学习差分放大电路差模和共模性能指标的测试方法 二、实验内容 1. 测量差分放大电路的静态工作点,并调整到合适的数值。

相关文档
最新文档