超高声速飞行器

超高声速飞行器
超高声速飞行器

超高声速飞行器

摘要:高超声速飞行器一般是指飞行速度超过5倍音速的飞机、导弹、炮弹之类的有翼或无翼飞行器,具有较高的突防成功率和侦查效能,能大大扩展战场空间。高超声速飞行器潜在的巨大军事和经济价值使得当前世界各军事大国纷纷投巨资到该领域,成为21世纪世界航空航天事业发展的一个主要方向。近年来,各军事大国在推进技术、结构材料、空气动力和飞行控制等关键技术研究方面积累了丰富经验,对高超声速飞行器未来的发展奠定了基础。

关键字:超高声速、飞行器、推进技术。

一、飞行器的发展历程

人类向往飞行的理想几乎伴随这整个人类的历史。最初,人们受到鸟类的启发而使用人造翅膀,但是发现这并不现实。人类的身体对于人造翅膀而言过于的沉重。并且在探索的早期人类并不了解鸟类飞行的空气动力学原理。

经过一系列的探索,到了18世纪后期,人类发明了热气球。1783年热气球首次载人升空。随后出现了飞艇。相比于热气球,带有推进装置、载重更大的飞艇更具实用性。

飞艇的出现并未宣告飞行器的发展并未就此停歇。人类还是研制机动性更好的飞行器。1903年,由莱特兄弟制造的人类第一架飞机——飞行者1号,并成功升空。莱特兄弟总共制造了三架“飞行者”号飞机。“飞行者”三号是其中最成功的一架,其飞行成绩为38分钟

飞行38.6km。“飞行者”三号飞机的成功宣布飞机终于具有了实用性。至此人类迎来的飞机时代。

自飞行者之后活塞式螺旋桨飞机得到了极大的发展,飞行时速不断地提高。但是螺旋桨式飞机存在着速度上限。当螺旋桨尖端线速度接近声速时,空气会被极具压缩,而这部分压缩空气来不及散开,在桨端形成一个巨大的阻力,称为激波阻力。此时桨端的空气将粘滞在桨叶表面,使螺旋桨的效率降低。这便是螺旋桨飞机不能飞得更快的原因。

为了克服螺旋桨飞机的这一速度上限,人们研制了喷气发动机。喷气发动机构造不同于活塞式螺旋桨,因此飞机可以飞得更快。随着发动机性能的提升以及飞行器气动外形的升级,飞机的速度已经能达到2马赫。性能与早期的飞机相比,现在的飞机已经将其远远的抛在了身后。

随着新的技术、新材料的不断应用,人造飞行器的性能还在不断的提升。

二、高超声速飞行器技术难点

在高超声速飞行器的研制过程中遇到许多困难,主要是飞行器的动力系统以及热防护等方面。这些方面直接关系到飞行器的性能和安全。

1、动力系统

1)喷气式发动机

战斗机动力装置的设计,总是追求更高的推重比;大型飞机自重

和载重的不断增大,对发动机提出了更高的推力要求。

喷气发动机通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分军用发动机的涡轮和尾喷管间还有加力燃烧室。喷气式发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。

工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。

压气机顾名思义,用于提高吸入的空气的压力。压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。

随后高压气流进入燃烧室。燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。

高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化为机械能,驱动涡轮旋转。由于高温涡轮同压气机装在同一条轴上,因此也驱动压气机旋转,从而反复的压缩吸入的空气。

从高温涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速从尾部喷口向后排出。这一速度比气流进入发动机的速度大得多,从而产生了对发动机的反作用推力,驱使飞机向前飞行。

2)超然冲压发动机

冲压发动机是吸气式发动机的一种,它利用大气中的氧气作为全部或部分的氧化剂,与自身携带的燃料进行反应。与压气机增压的航空发动机不同,它利用结构部件产生激波来对高速气流进行压缩,实现气流减速与增压,整体结构相对简单。

其工作原理是首先通过进气道将高速气流减速增压,在燃烧室内空气与燃料发生化学反应,通过燃烧将化学能转变为气体的内能。最终气体经过喷管膨胀加速,排入大气中,此时喷管出口的气体速度要高于进气道入口的速度,因此就产生了向前的推力。

超燃冲压发动机主要由进气道、隔离段、燃烧室与尾喷管组成。

其中进气道的主要功能是捕获足够的空气,并通过一系列激波系进行压缩,为燃烧室提供一定流量、温度、压力的气流,便于燃烧的组织。

隔离段是位于进气道与燃烧室之间的等直通道,其作用是消除燃烧室的压力波动对进气道的影响,实现进气道与燃烧室在不同工况下的良好匹配。当燃烧室着火后压力升高,隔离段中会产生一系列激波串,激波串的长度和位置会随着燃烧室反压的变化而变化。当隔离段的长度足够时,就能保证燃烧室的压力波动不会影响进气道.燃烧室是燃料喷注和燃烧的地方,超燃冲压发动机中燃料可从壁面和支板或喷油杆喷射。超燃冲压发动机中的火焰稳定与亚燃冲压发动机不同,它不能采用“V”型槽等侵入式火焰稳定装置,因为它们将带来巨大的阻力,因此目前普遍采用凹腔作为火焰稳定器.尾喷管则是气流膨胀产生推力的地方。

2、热防护

多数人见到过流星,一道闪亮的光划破夜空飞向地面。它是散布在太空中的小物体以十几千米每秒的速度飞进地球大气层,与空气强烈摩擦产生高温高热,从而烧蚀发光,这就是受气动加热的结果。在

高超声速飞行器研发过程中遇到类似的气动加热问题,即所谓热障。它主要是飞行器飞行时由于激波和粘性的作用,其周围空气温度急剧升高(可达几千摄氏度),形成剧烈的气动加热环境,使一般飞行器结构无法承受。

为克服热障,科研人员首先精心设计飞行器的飞行轨道和气动外形,使其在不影响或较少影响飞行器性能的情况下,尽可能降低进入飞行器的气动加热率,即热流。以再入航天器为例,不同类型和用途的飞行器,其飞行轨道和气动外形大不一样:弹道式中远程导弹弹头,由于其主要性能要求之一是以最快的速度命中敌方目标,所以一般采用小钝头细长形气动外形以减小阻力和速度损失(尖头外形不行,因为不管用什么材料制造都将很快被烧钝);采用较大的再入角的飞行轨道以缩短再入航程。但这样一来,就要承受更为严酷的短时间高热流的气动加热环境。而返回式卫星或宇宙飞船,返回时间长短不是其主要性能指标,于是采用小再入角飞行,缓慢减速的轨道以及大钝头体的飞行器外形以降低加热率,从而形成低热流长时间的气动加热环境。当然,这样做的另一目的是,不使飞行器的过载超过宇航员所能承受的程度(一般认为是五倍的重力加速度)。

克服热障更主要的手段是对飞行器进行热防护,希望以较小的代价保证飞行器及其有效载荷(战斗部或乘员)的安全。

热防护的方法按防热机理划分有:热沉(热汇)防热;辐射防热;发汗冷却防热和烧蚀防热。

热沉(热汇)防热主要利用材料的热容量来吸收热量。任何材料

都有热容量,但作为防热材料(处为热沉材料)使用时有其特殊要求。首先要有大的比热,这样单位质量的材料才能吸收更多的热量;其次要有高的导热率,只有这样才能使热沉材料的温差不致过大,不然的话,受热面已接近或达到材料的破坏温度,而其余部分的温度还较低,就不能充分发挥材料大热容量的潜力。由于热沉材料的破坏温度一般不是很高,比如说铜的熔点是1357 K,要想吸收大量的热,就必须大量增加热沉材料的质量,形成比较笨重的防热系统。这种防热方案仅在美国早期的洲际导弹弹头上使用过,后来就将其弃用了。

辐射防热主要利用材料的辐射特性。就是将其表面的气动热再以辐射的形式散发出去。由于辐射热流与表面温度的四次方成正比,因此,选用的辐射防热材料不仅要有高辐射特性外,而且还必需有低导热率和耐高温特性(此两种特性为了保证其表面有较高的温度)。早期,这种防热方案在某些返回式卫星的局部使用过,不过最成功的应用还是在美国的航天飞机上。对于航天飞机防热,除了机身头部及机翼和尾翼的前缘,因为加热率过大采用烧蚀率极低的碳复合材料防热外,其余的大面积均用防热瓦来防热,总共有几万块。防热瓦的基体是导热率极低的高温陶瓷,外覆辐射率较高的涂层,辐射涂层外还覆盖一层透明的玻璃类物质。后者的作用一是为避免涂层因氧化而降低辐射率;二是避免高温气流中的原子和离子在表面的催化作用下产生放热反应而增加气动加热率,这是因为玻璃类材料对复合反应的催化率是极低的。这种防热方案的一大优点是飞行过程中气动外形变化极小,这对于在大气层中滑翔很长时间而后着陆的航天飞机而言极为重

要;它的另一优点是防热层由几万块防热瓦组成,返航着陆后若发现少量防热瓦有损坏还可以修理或更换,整个防热系统还可重复使用。它的致命缺点是陶瓷制的防热瓦较脆而不耐冲击。正因为此,2003年1月16日,哥伦比亚号航天飞机在发射升空时,主燃料箱外的泡沫塑料脱落撞在左机翼上,使左机翼表面的防热瓦松动或破损而形成缝隙,当2003年2月1日返航再入时,炽热的气体从这些缝隙进入机体,引发哥伦比亚号爆炸,造成机毁人亡的惨剧。

另一种热防护方案是发汗冷却防热。顾名思义,与人类通过出汗来降低体表温度相类似,飞行器通过从多孔表面渗出流体达到防热的目的。不过,与人类主要靠汗液蒸发降温不同,发汗冷却防热除了有蒸发吸热外,主要靠热阻塞效应或质量引射效应的机理来防热。基本原理是,当流体注入飞行器表面气体边界层时,使边界层结构发生改变,厚度增大而使得温度梯度降低,从而减小进入飞行器的对流传热。飞行器使用发汗冷却防热优点是在飞行中没有气动外形的变化,还可以通过控制流体的渗出量来适应不同大小热流的热防护需求。虽然这一方案很吸引人,但在技术上却很复杂。首先多孔介质的防热层就很难制造;其次流体的储罐、管道、泵送、分配以及控制系统,不仅复杂笨重而且不太可靠。正是这些难于克服的技术难题,使得这一防热方案虽然各国都做过不少研究和试验,但未见在飞行器上实际应用的报道。

薄膜冷却防热在防热机理上与发汗冷却防热基本相同。与人们想象中的“通过许多毛孔来发汗”稍有不同的是,薄膜冷却防热依靠在

飞行器表面的小孔喷出液体或气体,在表面形成一层很薄的液膜或气膜,将飞行器表面与高温气体分隔开,而后液体蒸发吸热,气体注入边界层,产生热阻塞效应,降低进入飞行器的对流传热。薄膜冷却防热与上述发汗冷却防热相类似。很多人把它归结到发汗冷却防热。

烧蚀防热的灵感源于陨石。很多人见过陨石,它的表面布满鱼鳞坑,这是烧灼留下的痕迹。科研人员对这种自然现象做了潜心研究。防热专家由此受到启发,烧去了外层,保护了内层安全到达地面,由此引出烧蚀防热技术。烧蚀热防护由于有效、可靠、自适应、重量轻、工艺简单、便于搬运和储存等优点而得到广泛应用。中远程弹道导弹弹头、返回式卫星、宇宙飞船(包括我国的神舟号飞船),登月飞行返回舱以及航天飞机机头和机翼尾翼前缘,都使用烧蚀防热。经过几十年的研究试验和实际应用,现已研发多种烧蚀材料,供不同用途的飞行器或飞行器的不同部位选用。烧蚀防热是目前高超声速飞行器热防护中应用最成功的一种方法。烧蚀防热的主要缺点是一次性使用和由于烧蚀产生的气动外形变化。后者,将影响再入航天器的稳定性、落点精度和再入机动飞行,以及巡航飞行器的升阻力、稳定性和操纵性。

三、发展现状

超高声速飞行器被看作是航空史上继发明飞机,突破音障,进入太空之后的一个里程碑。世界主要国家一直将其作为航空科技的最前沿阵地,并给予全力的支持。美、俄、法、德、日、印度等国家在新世纪以来陆续取得了技术上的突破,并相继进行了地面和飞行试验,

这表明高超声速技术已经从概念和原理探索的基础阶段进入了以某种高超声速飞行器为应用背景的先期技术开发阶段。各国技术开发的主要应用目标,近期为高超声速巡航导弹,中期为高超声速飞机,远期为吸气式推进的跨大气层飞行器,航天飞机。

1、高超声速巡航导弹

高超声速巡航导弹已成为远程精确打击的主力巡航导弹,目前正在向高速度、高精度、隐形化的方向发展。高超声速巡航导弹装有多燃料仓超燃冲压喷气发动机推进系统,采用易存储的液态碳氢燃料,甚至是纯液态氢,能在24km以上高空、以马赫数4~8的速度机动飞行,并能在6h内环绕地球一周,迅速打击地球上任意地点的目标。

美国正在研制的X-51高超声速巡航导弹。X-51长3.5m,射程为1000km,时速为5马赫。X-51由B-52轰炸机带到3.5万英尺的高空发射,然后加速到5马赫。

法国的航空航天研究院和宇航-马特拉公司正在开展“普罗米修斯(Promethee)”计划。目的是研究碳氢燃料双模态超燃冲压发动机推进的高超声速空地导弹。该空射型导弹采用的是半椭圆外形的“南瓜子型”无翼乘波体方案,弹长6m,总发射质量为1700kg,航程大于1000km,最大速度可达8马赫。

印度正在研制一种可重复使用的高超声速巡航导弹系统,其飞行高度为30~40km,巡航速度为7马赫。除水平发射外,该导弹还设计成可垂直发射。冲压发动机先工作在亚燃模态,速度达到3马赫,然后转入超燃模态,加速到7马赫。

德国高超声速导弹的主要性能指标为:飞行马赫数 6.5,采用高能、高密度的吸热型碳氢燃料超燃冲压发动机,惯性加全球定位系统复合制导,射程为1000km左右,命中精度在15m以内,可从空中、水面或水下发射。

2、高超声速飞机

超高声速侦察机是一种最新的侦察机,它拥有的速度可以使侦察变得更加容易以及更加的安全,这种侦察机速度可达马赫数5~9,航程超过1800km,装有超燃冲压发动机,有人或无人驾驶。主要用于侦察敌方对空防御系统阵地情况,还能执行电子情报搜集等多种任务。据悉,法国正在研制HAHV高超声速无人侦察机,其速度将达6~8马赫,航程超过2000km,飞行高度为30km,隐身能力很强。美国的“曙光女神”高超声速侦察机(Aurora),又名“极光”,是SR-71“黑鸟”战略侦察机之后新一代战略侦察机。据推测,“曙光女神”侦察机全机长为32m,全载重为83吨,其中三分之二以上是燃料,具有超大功率发动机和流线型机身,飞行高度40km以上,飞行速度6马赫,甚至更快。美国的高超声速侦察机“黑燕”如战斗机般大小,动力系统由使用氢燃料的一台涡轮喷气发动机和一台冲压式喷气发动机组合而成。首先涡轮喷气发动机把飞机的速度提升到3倍音速,冲压式喷气发动机开始工作,并将巡航速度提升到6倍音速。组合循环发动机取代火箭助推器提供动力,因此它可以像飞机一样起降。“黑燕”将是一种集很强的隐形、速度和高度于一身的无人侦察机。

超高声速轰炸机是一种攻击范围大,作战比较灵活的轰炸机。计

划研制中的高超声速轰炸机能把炸弹投到地球上任何地点并返回到原起飞点,能精确投掷高爆穿甲弹或动能武器来实施打击,下一步将配载高能激光武器或粒子束武器攻击目标,不需中途加油和在国外设置前进基地,飞行高度高、速度快、侧向机动性好,目前的防空武器很难打到它。“B-3”是美国第一种高超声速“B”式隐形战略轰炸机,是近年来开始研制的可带核弹、5倍音速的新一代远程隐形战略轰炸机。其在性能指标上,要求隐形、高超声速、远程飞行等能力更强,飞行高度大于30km,速度达到5~6马赫,航程大于11100km,载弹量要达到或超过B-52的水平。B-3采用了一系列新技术和新设备,具有跟踪地形及抗核能力的机载雷达,并可在高超声速情况下使用远程导弹或激光波束武器

无人机已经广泛应用于战场,执行侦察、监视与搜索的任务。未来战场上,高超声速无人机更将把这方面的优势发挥到极致,超高声速飞行器拥有的飞行将达到12~15马赫,飞行高度26~38km,可以快速到达出事地点,向后方传出最新的战场态势,从而取代远程高速侦察机。另一方面,还可以在高超声速无人机上装载侦察设备和精确制导武器,用于侦察和攻击世界各地的重要目标,或伴随高超声速巡航导弹执行战场毁伤评估与侦察任务。

虽然目前高超声速飞行器还停留在试验阶段,但是随着新材料、新技术的应用,其性能正在朝着人们预期的方向进步着,相信在不久的将来,高超声速飞行器将越来越多地得到使用。

X-51及高超声速飞行器简介

美国X-51A飞行器及总体设计及其关键技术简介 Xxx 摘要:从计划的背景、飞行器的构造、热防护材料研发测试以及实际飞行试验等方面对X-51A 的发展计划作了较为详细的介绍,并据此对美国发展高超声速飞行技术的研究流程和理念有个一定的了解与认识。 关键词:X-51A 高超声速导弹热防护系统结构材料飞行器 引言:美国自二十世纪九十年代启动“全球敏捷打击”计划以来,一直处于低速发展过程中,该计划近期开始迅速升级,从改造“三叉戟”导弹开始,美国正推出一系列先进攻击武器概念,包括飞机、无人机和导弹。其中,X-51高超声速巡航导弹是美国武器库目前速度最快的全球打击武器,可以在一小时内攻击地球上任一目标。 1项目概况 巡航导弹在美国武器系统中具有特殊的地位,在未来信息化战争中,巡航导弹不要要成为首选的打击武器,也是美军实行远程军事打击的必备武器。 美国于20世纪90年代启动的“全球敏捷打击”计划自推出以来一直处于低速发展过程中,直至近年该计划开始迅速发展。美国从改造三叉戟导弹开始,陆续推出一系列的先进攻击武器概念,包括新一代的飞机、无人机和导弹。 X-51A计划是由美国空军研究试验室(AFRL)、国防高级研究计划局(DARPA)、NASA、波音公司和普惠公司联合实施的旨在验证高超声速飞行能力的计划。终极目标是发展一种马赫数达到5~7的可以在1 h内进行全球打击的武器,包括快速响应的空间飞行器和高超声速巡航导弹。X-51A于2010年2月中旬进行了首次高超声速飞行试验。 X-51A的首飞创造了又一个人类历史记录———超燃冲压发动机推进的历时最长的高超声速飞行,刷新了X2 43创造的12 s的记录。X2 51A首飞的成功意味着, 超燃冲压发动机将提供一种全新的快速全球打击能力。据称,该高超声速导弹将能够在60 min内实施全球打击。美国国防部/NASA的X2 51A项目则是这一新型武器系统方案的关键部分。X2 51A 的飞行试验对于空间进入、侦察、打击、全球到达以及商业运输等都有重要意义。 2 X-51A计划的背景 美国空军认为,高超声速推进技术是美国亟须发展的关键领域之一,为了达到这一目的,必须走“阶梯式发展”的道路。1979年首次发射的先进战略空射导弹(ASLAM)是早期的高超声速导弹,它使用高速冲压发动机实现了马赫数为5. 5的飞行,虽然达到了高超声速,但由于冲压发动机的燃烧是在亚声速状态下进行,效率非常低。解决这一问题的方法是使用超燃冲压动机,于是X-51A计划应运而生。 20世纪90年代中期,国家空天飞机(NASP,NationalAerospace Plane)计划终止后,美国空军转而投资HyTech(Hypersonic Technology)计划以延续其对高超声速技术的研究。2004年1月, AFRL选择波音公司与普惠公司共同制造SED-WR的验证机,由波音公司制造机身,普惠公司

高超声速飞行器鲁棒控制系统的设计

高超声速飞行器鲁棒控制系统的设计 Christopher I. Marrison and Robert F. Stengel Princeton University, Princeton, New Jersey 08544 本文设计了高超声速飞行器纵向平面鲁棒控制系统。飞行器纵向平面的非线性数学模型包含了28个不确定参数。利用遗传算法搜索每个控制器的系数设计空间;利用蒙特卡洛算法检验每个搜索点处的稳定性和鲁棒性。补偿器的鲁棒性用概率函数来表示,该函数表示在参数可能变动范围内,闭环系统的稳定性等性能指标落入允许范围的概率。设计了一性能指标函数,使其最小,从而产生可能控制器系数空间。这种设计方法综合考虑了不同的设计目标,辨识了鲁棒性指标下的系数的不确定性。这种方法有效利用了计算工具,广泛考虑了工程知识,设计出了能够应用于实际的控制系统。 本文中用到的符号: a ——声速,ft/s D C ——阻力系数 L C ——升力系数 ()M C q ——俯仰角速率引起的俯仰力矩系数 ()M C α——攻角引起的俯仰力矩系数 ()M C E δ——舵偏引起的俯仰力矩系数 T C ——发动机推力系数 c ——参考长度,80ft D ——阻力,lbf h ——高度,ft yy I ——俯仰转动惯量,6710?slug-ft 2 L ——升力,lbf M ——马赫数 yy M ——绕俯仰轴的转动力矩,lbf-ft m ——质量,9375slugs q ——俯仰速率,rad/s E R ——地球半径,20 903 500 ft r ——距地心距离,ft S ——参考面积,3603ft 2 T ——推力,lbf V ——速度,ft/s α——攻角,rad

高超声速飞行器结构材料与热防护系统

本文2010201222收到,作者分别系中国航天科工集团三院310所助工、高级工程师 高超声速飞行器结构材料与热防护系统 郭朝邦 李文杰 图1 挂载在B 252H 机翼的X 251A 摘 要 随着人类对高超声速飞行器的不断探索,结构材料和热防护系统已成为高超技术发展的瓶颈。首先介绍了X 251A 和X 243A 的项目概况、结构材料和热防护系统,然后分别从高超声速试飞器超高温热防护材料、大面积热防护材料和热防护系统等几方面对X 251A 和X 243A 试飞器进行了分析,最后提出了结构材料和热防护系统发展的关键技术。 关键词 X 251A X 243A 结构材料 热防护 系统 飞行器 高超 引 言 随着高超声速飞行器飞行速度的不断提高,服役环境越来越恶劣,飞行器的热防护问题成为限制飞行器发展的瓶颈。而高超声速结构材料和热防护系统的研究与开发是高超声速飞行器热防护的基础,因此,各国都大力开展了高超声速飞行器热防护材料与结构的相关研究。尤其是以美国为代表的X 251A 和X 243A 高超声速飞行器在结构材料和热防护方面的研究比较突出,本文对这两种试飞器的结构材料和热防护技术分别进行详细介绍。1 X 251A 高超声速飞行器1.1 项目概况 X 251A 计划是由美国空军研究试验室(AFRL )、国防高级研究计划局(DARP A )、NAS A 、波音公司 和普惠公司联合实施的旨在验证高超声速飞行能力 的计划。终极目标是发展一种马赫数达到5~7的可以在1h 内进行全球打击的武器,包括快速响应的空间飞行器和高超声速巡航导弹。试验方式是使 用B 252H 轰炸机挂载X 251A 飞行,达到预定的飞 行条件,释放X 251A 进行飞行试验。图1是挂载在B 252H 机翼下的X 251A 。美国空军在2003年开始研 制试飞器,2004年12月完成初始设计评估,2005年1月开始详细设计,2005年9月27日被正式赋予X 251A 的代号,2007年5月该项目通过关键设计评审。2009年12月9日在加利福尼亚州爱德华兹空军基地进行了首次系留挂载飞行试验,X 251A 挂载在B 252H 重型轰炸机的机翼下向北起飞后爬升至15.24km 高空,随后该机携载X 251A 做了较柔和的机动动作。按计划,X 251A 将于2010年2月中旬进行了首次高超声速飞行试验。1.2 结构材料与热防护系统1.2.1 总体结构 X 251A 整个飞行器长7.62m ,质量1780kg,

高超声速飞行器动力技术介绍及部分国家发展现状

一、高超声速飞行器技术发展路径及动力技术介绍 1.1 高超声速飞行器技术发展路径 高超声速飞行器区别与其他飞行器最大的特点是高度一体化,使得飞行器机身与推进系统密不可分,从某种意义上来说是无法划分出一个所谓的“发动机”进行研制的,这样的“发动机”也只有在与机身合二为一才能发挥其真实的性能,也才能真正的运行起来。因此,高超声速飞行器首先是“自顶而下”地分解研究对象和研究阶段,随着技术的发展再逐步地整合各部分的研究,逐级、逐步形成一个完整的飞行器研究对象。从总体方案设计的完整的飞行器作为研究对象可划分为四个层次的研究:气动/推进一体化研究、全流动通道推进系统研究、超然冲压模型发动机研究、超然冲压发动机部件研究,将高超声速飞行器自顶而下分解后就,再从分解出来的底层部件逐步发展“自下而上”到顶层飞行器。同时“自顶而下”的技术分解和“自下而上”的技术集成这两条路线又是有交互的,在试验研究的任何阶段发现问题,都应当反馈到飞行器总体的设计,重新定义部件、子系统的研究对象。 图1.1 1.2 高超声速飞行器动力技术介绍 气动/推进一体化研究 全流动通道推进系统研究 超然冲压模型发动机研究 超然冲压发动机部件研究

高超声速飞行器的核心关键技术包括超燃冲压发动机技术、高超声速飞行器组合推进系统技术、高超声速飞行器机身推进一体化设计技术、高超声速飞行器热防护技术、高超声速飞行器导航制导与控制技术、高超声速飞行器风洞实验技术。下面的篇幅分别对超燃冲压发动机和组合推进系统技术做简要介绍: (1)超然冲压发动机概念介绍 超燃冲压发动机是高超声速飞行器推进技术的核心技术,超然冲压发动机与亚燃冲压发动机同属于吸气式喷气发动机,由进气道、燃烧室和尾喷管构成,没有压气机和涡轮等旋转部件,高速迎面气流经进气道减速增压,直接进入燃烧室和燃料混合燃烧,产生高温燃气经尾喷管加速后排出,从而产生推力。 超燃冲压发动机通常可以分为双模态冲压发动机和双燃烧室冲压发动机。双模态冲压发动机是指发动机根据不同的来流速度,其燃烧室分别工作于亚声速燃烧状态、超声速燃烧状态、超声速燃烧/亚声速燃烧/超声速燃烧状态。双燃烧室冲压发动机是指同一发动机同时具有亚燃冲压和超燃冲压双循环的超燃冲压发动机,采用双循环的主要目的是用亚燃冲压发动机点燃超然冲压发动机来解决煤油燃料的点火和稳定燃烧问题。 (2)超声速燃烧概念 在一定的压缩和膨胀效率的条件下,进入发动机的空气有一最佳压缩量,使得发动机的效率最高。燃料的热值和过程的效率越高,其

A280-飞机总体设计-matlab-SRR-DT12-新型高超声速飞行器

飞机总体设计 新一代高超声速无人机——“赤隼” 第一阶段SRR总结报告 学院名称:航空科学与工程学院 专业名称:飞行器设计与工程 组号:DT12 组长:殷海鹏 2013 年 4月 1日

目录 一、任务陈述 (4) 二、市场需求 (4) 三、相关竞争实施方案 (5) 1. 天基信息系统 (5) 2. 空基侦查系统 (5) 四、运行理念 (6) 1. 潜在运用对象 (6) 2. 载荷能力 (6) 3. 典型任务剖面 (6) (1)任务剖面1(侦查过程中发现重要作战目标) (6) (2)任务剖面2(侦查过程中未发现重要作战目标) (6) 五、系统设计需求 (6) 1. 设计要求 (6) (1)X-43A (7) (2)X-51A (7) (3)HTV-2 (7) (4)HTV-3X (8) 六、新技术与新概念 (8) 1. 激光雷达 (8) 2. 气动布局 (8) 3.热防护 (8) 七、初始参数 (9) 方案一 (9) 方案二 (10) 八、人员分工 (10) 九、本阶段总结及下阶段任务计划 (11) 十、参考资料 (12)

图表目录 图1 天基信息系统 (5) 图2 空基侦察系统 (5) 图 3 X-43A (7) 图 4 X-51A (7) 图 5 HTV-2 (7) 图 6 方案一概念草图 (9) 图7 方案二概念草图 (10) 表 1 方案一初始参数 (9) 表 2 方案二初始参数 (10) 表 3 小组人员分工表 (10)

一、任务陈述 在新世纪的战争中,高超声速飞行器的优势主要体现在以下三个方面:首先是可以迅速打击数千或上万公里外的各类军事目标,大大地拓展了战场的空间。其次,突防能力更加强大,防空系统的拦截概率因反应时间太短而大幅度下降,具有较高的突防成功率。第三,超高速的飞行可以使得雷达难以探测,是一种新型的隐身方案。在新的战争形态中,信息战变得越发重要,侦查机是获取信息的重要来源,同时针对重要目标,在侦查同时具有一定攻击能力会使侦查起到意想不到的效果。从目前中国的空军机种来看,急需一款高超声速无人侦查机,此机最好还能有一定的攻击力,在侦查到重要目标时给予高效打击,对增强我国国防力量有重要作用。 二、市场需求 臭鼬工厂曾预测飞行器的下一场革命将来自于‘速度’,其速度优势会让各国现役防空导弹统统变成废铜烂铁。高超声速飞行器具有广阔的应用前景和巨大的军事价值。纵观21世纪的战场需求,高超声速飞行器已是不可缺少的攻击型和防御型兵器,世界各国都在加速这方面的研究工作,美国当前Ma为8-10的飞行器正在试验,而在2025年计划装备Ma为12-15的飞行器。澳、俄、法、德、日等很多国家对于高超声速飞行器的相关技术、功能、应用价值展开了积极的探讨与研究,并制定了一系列技术发展计划。从市场规模的角度来看,此类飞行器各国都有投入,但由于技术原因,规模较小而成功率偏低,在这种情况下,能率先设计生产出超高声速无人机的国家必能在错综复杂的国际环境下争取到先机,对于现在的世界态势和中国的防御性国防策略来说,我国对超高声速无人机有着极其重要的需求,比如马航失事后,如果能出动10Ma的侦察机进行快速侦查,必可得到最新最真实的情报,在新的战争理念中,被发现就是被消灭,侦察机与其他飞机相比必将会有着更高的军事地位。

PID高超声速飞行器姿态控制中的应用展望

Oct.2010航天控制 v。1.28,N。.5AerospaceContr。1 。93?分数阶肼A∥在高超声速飞行器 姿态控制中的应用展望 齐乃明秦昌茂宋志国 哈尔滨工业大学,哈尔滨150001 摘要高超声速飞行器的发展是一个必然的趋势,但是其具有强耦合、严重非 线性、大范围气动环境变化的特点,这对飞行器的姿态控制系统提出了更高的要 求。本文简述了现代控制及智能控制在姿态控制器中的应用,回顾了传统PID 及其改进控制技术,针对新的被控对象特点,介绍了分数阶P,1矿及其发展。由 于分数阶PPIY"具有比传统PID更好的鲁棒性和控制性能,展望分数阶川1矿 控制在高超声速飞行器姿态控制中得到更广泛的应用。 关键词高超声速飞行器;姿态控制;传统PID;分数阶P,1矿 中图分类号:V448.2文献标识码:A 文章编号:1006.3242(2010)05-0093-06 ProspectofFractional-OrderPIADpController forHypersonicMissileAttitudeControl QINaimingQINChangmaoSONGZhiguo HarbinInstituteofTechnology,Harbin150001,China AbstractThe developmentofhypersonicmissileisaninevitabletrend.Therequirementofattitudecontrols弘temforaerocrafiishigherbecausethecharacteristicsofastrongcoupling,seriousnonlinearandlarge—scaleenvironmentalparametersarechangedinaerodynamic.Inthispaper,themoderncontrolandintelli—gent controlthatappliedtoattitudecontrolarebriefed,andclassicalPIDcontroltechnologyanditsim—provementarereviewed.thefractionalorderPI、D“controlleranddevelopmentforfknell3objectfeaturesarealsointroduced.Asaresult,fractionalorderPI、D“controlisbetterthanclassicalPIDcontrolinrobustnessandcontrolperformance.Therefore,fkfractionalorderP11D“controlwillbe埘池矽usedinhypersonicmissileattitudecontr01. KeywordsHypersonicmissile;Attitudecontrol;ClassicalPIDcontrol;FractionalorderP11D9controller 高超声速飞行器以美国的超一x计划飞行器及通用航空飞行器(CAV)[13为代表,计划实施对全球的快速打击,俄罗斯、日本等国也在积极研制高超声速飞行器,而我国尚处于起步阶段。 高超声速飞行器的飞行速度和高度变化大,可全空域机动飞行但其大范围气动环境的变化引起系统参数变化范围大,各通道间耦合影响也变大,使其成为具有强耦合、严重非线性并带有不确 收稿日期:2009-07-26 作者简介:齐乃明(1962一),男,哈尔滨人,教授,博士生导师,主要研究方向为航天器飞行动力学控制与仿真;秦昌茂(1985一),男,江西人,博士,主要研究方向为高超声速飞行器制导与控制;宋志国(1987一),男,黑龙江人,硕士, 主要研究方向为高超声速飞行器制导与控制。

高超声速飞行器发展现状

高超声速飞行器 一、国内外高超声速飞行器研制现状 高超声速飞行器技术是21世纪航空航天技术的新制高点,是航空史上继发明飞机、突破声障飞行之后第三个划时代的里程碑,同时也将开辟进入太空的新方式。高超声速飞行器技术的突破,将对国际战略格局、军事力量对比、科学技术和经济社会发展以及综合国力提升等产生重大和深远的影响。因此,世界主要国家一直把高超声速飞行器研制作为科技发展的最前沿阵地,从人力、物力、财力等各方面给予大力支持。自20世纪50年代末开始探索超声速燃烧冲压发动机技术以来,经过几十年的探索,美国、俄罗斯、法国、德国、日本、印度和澳大利亚等国在20世纪90年代初陆续取得了技术上的重大突破,并相继进行了地面试验和飞行试验。这表明高超声速技术从进行概念和原理探索的基础研究阶段,进入了以某种高超声速飞行器为应用背景的先期技术开发阶段。各国技术开发的主要应用目标近期为高超声速巡航导弹,中期为高超声速飞机,远期为吸气式推进的跨大气层飞行器、空天飞机。高超声速飞行器技术是21世纪航空航天技术的制高点,也是重要的军民两用技术。虽然目前仍存在不少技术难题,而且耗费巨大,但从世界各研制国目前的发展势头来看,以超燃冲压发动机为动力的高超声速巡航导弹有可能在2010年前后问世。预计到2025年,以超燃冲压发动机为动力的高超声速飞机和空天飞机也有可能投入使用,并将在军事、政治和经济等领域产生重大影响。 1 美国 1.1 Hyper2X计划 经过较长时间的研究和实践,美国在高超声速飞行器的设计研制方面积累了丰富的经验。作为试验性高超声速飞行研究计划,Hyper2X计划是对以往所做工作的一次检验。Hyper2X计划是美国国家航空航天局(NASA)近年来重点开展的高超声速技术研究计划,主要目的是研究并验证可用于高超声速飞机和可重复使用的天地往返系统的超燃冲压发动机技术,并验证高超声速飞行器的设计方法和试验手段。1997年1月,NASA与兰利研究中心、德莱顿飞行研究中心签订合同,Hyper2X计划正式启动。Hyper2X计划的试验飞行器代号为X243,根据演示验证的任务不同分为X243A、X243B、X243C和X243D,共4个型号。 1.1.1 X243A X243A技术由位于弗吉尼亚州汉普顿的NASA兰利研究中心和位于加利福尼亚州爱德华的NASA德莱顿飞行研究中心负责开发。其中机身和发动机由位于田纳西州塔拉荷马的ATKGASL公司(原微型飞行器公司)制造,位于加利福尼亚州亨亭顿的波音公司鬼怪工厂负责部分系统工程、热防护、操纵、导航和控制设计以及飞行控制软件、内部布局和结构设计。X243A的助推器是经过改装的飞马座运载火箭的第一级,该系统由位于亚利桑那州昌德勒的轨道科学公司提供X243A机身长3.66m,高660mm,翼展1.53m,质量1360kg,由采用液氢燃料的双模态超燃冲压发动机推进。1997年3月,NASA选定ATKGASL公司为飞行研究任务装配X243A无人驾驶研究飞行器。1997年12月,轨道科学公司对飞马座运载火箭成功进行了关键的设计审查。1998年,1台超燃冲压发动机作为第一部硬件交付NASA,随后这台发动机在兰利研究中心的2.44m八支点高温风洞中进行了一系列测试。1999年10月,第一架X243A交付德莱顿飞行研究中心。2000年,X243A在ATKGASL公司的

高超声速飞行器技术研究中心

高超声速飞行器技术研究中心 来源:国防科技大学更新时间:2010-6-28 8:56:26 点击:11502次高超声速飞行器技术研究中心成立于2009年10月,中心下设高超声速飞行器总体技术研究室、高超声速推进技术研究室、燃气引射技术研究室、燃烧流动与传热研究室四个研究室。中心共有研究人员33名,具有高级专业技术职务的教师19名,具有博士学位的教师31名。高超声速推进技术团队2008年成为国家教育部“长江学者和创新团队发展计划”的创新团队。 近年来,依托“航空宇航推进理论与工程”国家重点学科和“飞行器设计”国家重点(培育)学科,结合流体力学、固体力学、材料学等相关学科,在保持火箭发动机研究特色与优势的基础上,在高超声速飞行器总体设计、超燃冲压发动机、地面模拟试验、超声速流动燃烧机理等方面研究取得了重大进展。2009年获得国家技术发明二等奖1项。 在国家、教育部以及军队相关计划的支持下,中心已建成占地120亩、建筑面积11000平方米的高超声速飞行器技术试验基地,拥有系列化的超燃冲压发动机直连式试验台和自由射流试验系统,配备了激光光谱燃烧流动诊断PLIF系统、Malven激光测粒仪、PDA粒子动态分析仪、高速纹影仪、PIV、CVI/CVD等先进观测设备和多机并行计算集群系统,为高超声速飞行器关键技术攻关和基础研究奠定了坚实基础。 中心承担了本科、硕士、博士学员的多门课程教学和基础研究条件建设任务。新建了基础研究试验大楼,建成了多个基础研究实验平台,并配备了先进试验仪器和测量设备。这些基础研究试验平台完全向学员开放,对于学员进行高水平论文研究、实验能力的培养以及综合素质的提高提供了有力的支撑和保障。 中心的主要研究方向有: ●飞行器总体技术 本研究方向重点开展高超声速飞行器总体一体化设计、飞行器布局优化设计及应用等方面的研究。 ●高超声速推进技术 本研究方向主要开展超燃冲压发动机、发动机地面试验与飞行试验技术、高超声速飞行器机体/推进系统一体化设计、超声速燃烧与流动机理等方面的研究。 ●燃气引射技术 本研究方向主要开展航空航天发动机高空模拟试验系统等方面的研究。 ●发动机燃烧、流动与传热机理研究

高超声速飞行器若干问题研究进展_陈予恕

国家自然科学基金重点项目(编号:10632040) 本文2009-03-10收到,陈予恕、郭虎伦分别系哈尔滨工业大学院士、博士生,钟顺系天津大学航空航天研究院博士生 高超声速飞行器若干问题研究进展 陈予恕 郭虎伦 钟 顺 摘 要 介绍了国外高超声速飞行器的发展现状,并 总结了未来一段时期高超声速飞行器的发展方向和趋势。分析了高超声速飞行器的外形选择及其气动问题,发动机的选取与机体一体化问题和气动加热及防热问题。最后提出了未来高超声速飞行技术发展的几个方向。 关键词 高超声速飞行器 气动弹性 机体一体 化 气动加热 防热 引 言 高超声速飞行器是指飞行马赫数大于5.0的远程巡航飞行器,它综合了航空航天领域众多学科的新技术,代表了未来航空航天领域的研究发展方向,被认为是继隐身技术之后的又一重点技术领域。 按采用的动力装置不同,高超声速飞行器可分为火箭推进高超声速飞行器(Rocke-t Po w eredH yper -sonic Vehicle ,RP HV )和吸气式高超声速飞行器(A ir -B reath i n g H yperson ic V ehic l e ,AB HV )两类。早期的高超声速飞行器,如X-15和X-20,均以火箭发动机为动力,属于RPHV 。由于其性能不佳,后 续研究几乎没有开展。随着对超燃冲压发动机研究的深入,AB HV 成为各航空航天大国的发展重点。AB HV 包括吸气式运载器(A ir -Breath i n g Launch V e -h icle ,ABLV )和高超声速巡航飞行器(H yperson ic C r u ise V ehic le ,HCV )。ABLV 又称为空天飞机(A erospace Plane ),主要执行入轨任务,可分为单级入轨和多级入轨系统。H CV 主要指在大气层内飞行、执行巡航任务的飞行器,可用作高超声速飞机、战略攻击机和巡航导弹,均采用超燃冲压发动机作为动力系统。 高超声速飞行器具有以下优点[1] : 1)高超声速飞行可有效缩短对目标的反应时间,因此突防概率高; 2)射程相同时飞行时间短,目标位置变化小,故飞行器的抗干扰能力强,命中目标的概率高; 3)飞行器在高超声速飞行时动能大,若设计与亚声速飞行器相当破坏力的战斗部,高超声速飞行器战斗部的质量可以减轻,从而减小了飞行器的设计载荷; 4)射程远,如国外正在研究的高超声速导弹射程都在几百千米甚至几千千米以上。 1 高超声速飞行器国外发展现状 基于高超声速飞行器的上述优点,美、俄、法、德、日、印度等国都在进行这方面的研究,并制订了许多研制高超声速飞行器的计划[1-3] ,有些已经 做了大量的试验。 美国高超声速飞行器的研制在20世纪曾有过两次高潮:第一次是在20世纪60年代,当时研制了飞行器速度超过M a =6的X-15,但是由于使用 和经费上的困难以及技术上的难度,取消了该计划。而后对高超声速技术的研究一直处于小规模的水平。1986年,美国提出了国家空天飞机计划(NASP),当时人们称之为/高超声速技术复苏0,然而在1994年,由于在执行过程中遇到了技术、经费和管理上的一系列困难,对该计划进行了调整,但它却引发了一系列与高超声速飞行相关的研究计划。美国的高超声速技术研究重点围绕高超声速飞行器试验(H yper -X)计划、高超声速技术(H y Tech)计划和高超声速飞行(H yF l y )计划等技术验证计划

国外吸气式高超声速飞行器发展现状

情报交流 本文2008 09 29收到,作者分别系中国航天科工集团第三研究院三一〇所工程师、助工、助工 国外吸气式高超声速飞行器发展现状 陈英硕 叶 蕾 苏鑫鑫 摘 要 以美国H yT ech 、H yF ly 、 X 51A 、猎鹰(FALCON )计划为重点,介绍了世界上几个主要的吸气式高超声速技术计划和飞行器研究情况,并对当前国外吸气式高超声速飞行器的发展现状进行了简要分析。 关键词 吸气式 高超声速 H yF ly X 51A FA LCON 引 言 高超声速飞行器是指在大气层内飞行速度达到M a =5以上的飞行器。自20世纪60年代以来,以火箭为动力的高超声速技术已广泛应用于各类导弹和空间飞行器,而目前世界各国正在积极发展另一类以吸气式发动机为动力的高超声速飞行器技术,它的航程更远、结构质量更轻、性能更优越。 实际上,吸气式高超声速技术的发展始于20世纪50年代,通过几十年的发展,美国、俄罗斯、法国、德国、日本、印度、澳大利亚等国自20世纪90年代以来已在高超声速技术方面陆续取得了重大进展,并相继进行了地面试验和飞行试验。高超声速技术实际上已经从概念和原理探索阶段进入了以高超声速巡航导 弹、高超声速飞机和空天飞机等为应用背景的先期技术开发阶段。 1 美国在高超声速技术领域独占鳌头 从1985年至1994年的10年间,美国国家空天飞机计划(NASP)大大推动了高超声速技术的发展。通过试验设备的大规模改造和一系列试验,仅美国NASA 兰利研究中心就进行了包括乘波体和超燃发动机试验在内的近3200次试验。通过这些试验掌握了M a <8的超燃发动机设计技术,并建立了数据库,从而为实际飞行器打下了牢固的技术基础。实际上,30多年来,兰利研究中心一直在进行这方面的研究,曾经在2.44m 高温风洞中研制和试验过22个发动机。在此基础上,美国于1996年开始,针对高超声速导弹、高超声速飞机和空天飞机的研制工作调整高超声速技术的研究目标,在发展和应用高超声速技术方面采取了更为稳妥的循序渐进策略,提出了更为现实的全方位的高超声速武器和先进航天器研制计划。NASA 和美国空军在2000年 12月达成协议,将联合进行高超声速技术的发展和验证。2001年,NASA 和美国国防部联合提出了国家航空航天倡议(NA I),重申了美国高超声速飞行器的发展战略:近期发展高超声速巡航导弹;中期重点发展全球到达的高超声速飞机;远期发展廉价、快速、可重复使用的航天运载器。 2001年6月到2004年11月,NAS A H yper X 计划的X 43A 进行了3次飞行试验,除第一次以失败告终外,第二次飞行试验实现了7倍声速飞行,第三次在大约33.5km 高度飞行时以M a =9.8(11270k m /h)的惊人速度载入世界飞行速度记录。X 43A 的成功飞行试验,验证了高超声速飞行器的设计概念、设计方法和地面试验结果。但2006年年初NASA 表示,将把航空领域的研究重点从之前的飞行演示验证重新转向基础研究和设计工具开发,同时,NASA 对其组织结构进行调整,将高超声速研究纳入基础航空部分。X 43高超声速研究小组的项目重点将进行基础性的技术研究而不是飞行试验。 下面就简要介绍一下美国开 25 飞航导弹 2008年第12期

高超声速飞行器乘波体构型及其设计

高超声速飞行器乘波体构型及其设计 摘要:高超声速飞行器由于具有高空高速、巡航距离远以及突防能力强的特点而备受追捧,而乘波体构型正能满足这些要求。在欧拉方程的基础上,国际上提出了多种基于楔形流动和锥形流动的乘波体构造方法。此外,也提出了考虑如粘性效应等其他因素的优化方法。这些方法都将乘波体飞行器不断向工程应用推进。 关键词:乘波体附体激波自由流线追踪流线 1 引言 高超声速飞行器由于具有速度快、高度高、巡航距离远以及突防能力强的特点,近年来逐渐受到追捧。而相应的,为实现以上特点,对于其机体必须采用一种高升阻比和强机动性的气动外形。目前比较适合的气动外形有旋成体、翼身融合体、升力体和乘波体等[1]。 旋成体在Ma<1时升阻比较高,结构简单,但高马赫数飞行时机动性较差,比较适用于各种型号的导弹;翼身融合体机身机翼相融合,亦在Ma<1时升阻比较高,气动阻力小,内部容积大,但外形复杂,适用于超声速战斗机、战略轰炸机等;升力体没有机翼结构,Ma>1时升阻比都比较高,大迎角下和高超声速时有较好气动特性,内部体积利用率高,但外形复杂,比较适用于航天飞机和空天飞机等[2]。 而乘波体则是指一种外形是流线型,其所有的前缘都具有浮体激波的超声速或高超声速的飞行器。它的设计与常规的由外形决定流场再去求解的方法相反,而是先有流场,然后再推导出外形[3]。乘波体构型在高马赫数下具有更高升阻比,特别是对于Ma>5的高超声速飞行器。它具有以下四个显著的优点: (1)乘波体外形的最大优点是低阻、高升力、高升阻比,其上表面没有流场干扰,没有流线偏转,激波限制在外形的前缘,使得在可压区中下表面上的高压同向上倾斜的外形一起组合,获得整个外形上的推力分量。 (2)乘波体外形在偏离设计条件下,仍能保持有利的气动性能。 (3)乘波体外形更适合使用喷气发动机或冲压发动机。 (4)乘波体外形因为是用已知的可以得到精确解的流场设计而成,所以更易于进 行优化设计以寻求最优构型。目前,考虑粘性的最优乘波体的研究也已取得了较大进展[4]。 因此,乘波体布局的飞行器有着十分广阔的应用前景。既可用作高超音速吸气发动机、气动构形一体化飞行器、单级入轨飞行器,双级入轨飞行器的第一级, 也可用作能够穿越大气层的可重复使用的高超音速飞行器。乘波飞行器还可作为高超音速导弹,在大气层内作低空高速飞行,用于低空突防。此外,乘波飞行器可作为高超音速侦察机或略巡航飞机。在民用面,乘波飞行器可设计成一种洲际高超音速客机,主要飞行段的巡航速度可达M5、M 6,甚至更高,4h可绕地球一圈[5]。 2 乘波体构型的生成 2.1 源于楔形流动的Λ型乘波体构型 1959年,Nonweiler[6]提出了由已知得流场构造三维高超音速飞行器的观点。Nonweiler 选择平面斜激波后的流场来生成有∧型横截面和三角翼平面的构型。Λ乘波构型的生成过程如下[7]: (1)假定有一角度为δ的尖劈,置于超声速马赫数M ,攻角α=0的气流中,产生的流场就是源流场:激波前为自由流,激波为平面激波,激波角为β,激波后的流场有精

高超声速空天飞行器研究现状汇总

高超声速空天飞行器研究现状 摘要 高超声速飞行器一般是指飞行马赫数大于5且能够在大气层和跨大气层中实现远程飞行的飞行器。这种飞行器在高度和速度上都具有相当大的优势,在军民领域具有巨大的应用潜力。高超声速飞行器是21世纪航空航天技术新的制高点,是航空史上继发明飞机、突破声障飞行之后第三个划时代的里程碑,同时也将开辟人类进入太空的新方式。本文首先阐述了高超声速空天飞行器的概念,强调了其主要的军事用途。其次,分析了空天飞行器的主要气动布局形式和特点。最后,对国外航空航天大国的空天飞行器相关发展情况进行了综述,包括美国、俄罗斯、澳大利亚和法国等国家。 1. 引言 未来的高超声速飞行器能够在2个小时之内到达地球任何地方,能够像普通的飞机一样水平起飞水平降落,并以廉价的成本完成天地往返的运输任务,从而可在空间控制和空间作战中发挥重要的作用,而这些要求的实现从根本上都取决于高超声速飞行器技术的发展。高超声速飞行器所具有的全球实时侦查、快速部署和远程精确打击能力,将改变未来战争的作战样式,对国家安全产生战略性的影响。高超声速飞行器还具有显著的军民两用性,能为民用运输和航天运载等领域提供全新的途径,进而对社会进步及国民经济产生带动作用。 2. 空天飞行器 随着现代科学技术的进步和未来战场的不断拓展,世界各国正在逐步把航空和航天飞行器朝着有机结合成一体的方向推进。空天飞行器是指既能够进入太空飞行,又能较长时间在大气层内飞行的一种飞行器。空天飞机是在航空和航天技术相结合方面的初步尝试,可实现航天运载系统的部分重复使用、提高操作效率和大幅度降低航天运输费用的目的,同时更具有广阔的军事运用前景。虽然目前单级入轨或多级入轨的空天飞机还处于探索研究阶段,但它可望成为世纪最先进、最经济有效的航天运载工具,代表了今后数十年内航天运载技术的发展方向,并且将成为未来控制空间、争夺制天权的关键武器装备之一。 空天飞行器的飞行过程可分成三段:一是发射上升段,二是轨道飞行段,三是再入返回段。对于发射上升段,从目前和未来相当长一段时间的技术水平来看,比较可行的方式还是依靠液体火箭或固体火箭。空天飞行器只是作为火箭的“乘

超高声速飞行器

超高声速飞行器 摘要:高超声速飞行器一般是指飞行速度超过5倍音速的飞机、导弹、炮弹之类的有翼或无翼飞行器,具有较高的突防成功率和侦查效能,能大大扩展战场空间。高超声速飞行器潜在的巨大军事和经济价值使得当前世界各军事大国纷纷投巨资到该领域,成为21世纪世界航空航天事业发展的一个主要方向。近年来,各军事大国在推进技术、结构材料、空气动力和飞行控制等关键技术研究方面积累了丰富经验,对高超声速飞行器未来的发展奠定了基础。 关键字:超高声速、飞行器、推进技术。 一、飞行器的发展历程 人类向往飞行的理想几乎伴随这整个人类的历史。最初,人们受到鸟类的启发而使用人造翅膀,但是发现这并不现实。人类的身体对于人造翅膀而言过于的沉重。并且在探索的早期人类并不了解鸟类飞行的空气动力学原理。 经过一系列的探索,到了18世纪后期,人类发明了热气球。1783年热气球首次载人升空。随后出现了飞艇。相比于热气球,带有推进装置、载重更大的飞艇更具实用性。 飞艇的出现并未宣告飞行器的发展并未就此停歇。人类还是研制机动性更好的飞行器。1903年,由莱特兄弟制造的人类第一架飞机——飞行者1号,并成功升空。莱特兄弟总共制造了三架“飞行者”号飞机。“飞行者”三号是其中最成功的一架,其飞行成绩为38分钟

飞行38.6km。“飞行者”三号飞机的成功宣布飞机终于具有了实用性。至此人类迎来的飞机时代。 自飞行者之后活塞式螺旋桨飞机得到了极大的发展,飞行时速不断地提高。但是螺旋桨式飞机存在着速度上限。当螺旋桨尖端线速度接近声速时,空气会被极具压缩,而这部分压缩空气来不及散开,在桨端形成一个巨大的阻力,称为激波阻力。此时桨端的空气将粘滞在桨叶表面,使螺旋桨的效率降低。这便是螺旋桨飞机不能飞得更快的原因。 为了克服螺旋桨飞机的这一速度上限,人们研制了喷气发动机。喷气发动机构造不同于活塞式螺旋桨,因此飞机可以飞得更快。随着发动机性能的提升以及飞行器气动外形的升级,飞机的速度已经能达到2马赫。性能与早期的飞机相比,现在的飞机已经将其远远的抛在了身后。 随着新的技术、新材料的不断应用,人造飞行器的性能还在不断的提升。 二、高超声速飞行器技术难点 在高超声速飞行器的研制过程中遇到许多困难,主要是飞行器的动力系统以及热防护等方面。这些方面直接关系到飞行器的性能和安全。 1、动力系统 1)喷气式发动机 战斗机动力装置的设计,总是追求更高的推重比;大型飞机自重

国外高超声速飞行器的发展及关键技术

国外高超声速飞行器的发展及关键技术 高超声速一般是指流动或飞行的速度超过5倍声速,即马赫数(Ma)大于或等于5。自20世纪60年代以来,以火箭为动力的高超声速技术已广泛应用于各类导弹和空间飞行器,而目前世界各国正在积极发展另一类以吸气式发动机为动力的高超声速飞行器技术。吸气式高超声速飞行器飞行时不需要像火箭那样自身携带氧化剂,可以直接从大气中吸取氧气,因而它的航程更远、结构重量更轻、性能更优越。实际上,吸气式高超声速技术的发展始于20世纪50年代,通过几十年的发展,美国、俄罗斯、法国、德国、日本、印度、澳大利亚等国自20世纪90年代以来已在高超声速技术方面陆续取得了重大进展,并相续进行了地面试验和飞行试验。高超声速技术已经从概念和原理探索阶段进入了以高超声速巡航导弹、高超声速飞机、跨大气层飞行器和空天飞机为应用背景的先期技术开发阶段。 一、国外高超声速飞行器的发展 1.美国 美国自20世纪50年代开始研究吸气式高超声速技术。20世纪80年代中期,美国实施了采用吸气式推进、单级入轨(马赫数25)的国家空天飞机计划(NASP),由于在技术、经费和管理方面遇到了一系列的困难,NASP计划于1995年停止。尽管如此,NASP计划仍然大大推动了美国高超声速技术的发展,仅美国航空航天局(NASA)兰利研究中心就进行了包括乘波外形一体化和超燃冲压发动机试验在内的近3200次试验。通过这些试验,美国已经基本上掌握了马赫数小于8的超燃冲压发动机设计技术,并建立了大规模的数据库,从而为实际飞行器的工程设计打下了牢固的技术基础。从1996年开始,美国对高超声速飞行器技术的发展进行了调整,确立了分阶段逐步发展的思路,降低了近期的发展目标。 目前,美国正在全方位发展高超声速飞行器技术,主要目标是研制马赫数小于8的高超声速巡航导弹(包括海军的高速打击导弹、空军的高超声速巡航导弹和国防高级研究计划局的“可负担得起的快速反应导弹”),同时实施以高超声速飞机为应用背景的高超声速飞行试验计划(Hyper一X)。此外,美国还正在开展高超声速轰炸机和单级入轨的吸气式航天运载器的研究。 2.俄罗斯 俄罗斯在高超声速技术领域仍处于世界领先地位。俄罗斯有多家机构长期致力于高超声速技术基础理论研究,在亚/超燃冲压发动机、C/H燃料、耐高温材料、CFD技术及一体化设计技术等方面取得了重大突破,并且已经进入了高超声速技术飞行验证阶段,1991~1998年,俄罗斯曾进行过5次轴对称超燃冲压发动机的验证性飞行试验,最大飞行速度达到6.5马赫,由于轴对称亚/超燃冲压发动机在工程应用上会带来较多问题,为了研究更接近于实际的飞行器布局,俄罗斯研制了先进的“彩虹”(RADUGA)高超声速试验飞行器(即D一2飞行器),其设计飞行速度为2.5~6马赫,飞行高度为15~30km。此外,俄罗斯还正在研制IGLA高超声速试验飞行器,飞行速度为6~14马赫,全长7.9m,翼展3.6m。氢燃料超燃冲压发动机由3个模块组成,总长1.9m,质量为200kg。IGLA飞行器已做了大量的地面试验和风洞吹风试验,但尚未进行飞行试验。 3.法国 自20世纪60年代以来,法国从未间断过高超声速技术研究。1992年,在国防部等单位领导下,法国制定了国家高超声速研究与技术(PREPHA)计划。PREPHA计划历时6年,最后研制了Chamois超燃冲压发动机,并在6马赫的速度下进行了反复试验。此外,法国还研制了另一种超燃冲压发动机,并于1999年成功地进行速度为7.5马赫的地面试验。目前,法国正在实施的高超声速技术发展计划主要有两个,即高超声速技术综合演示与超燃冲压发动机计划和Promethee空射型高超声速巡航导弹计划。前者是法国宇航公司与俄罗斯合作的研究计划,目的是研制一个高超声速技术综合演示器(Edith)和1台速度可达12马

高超声速飞行器的关键技术

高超声速飞行器的关键技术 以超燃冲压发动机为动力的高超声速飞行器研制面临一系列技术上的难题. 美国(包括俄罗斯等国家) 为此付出了近半个世纪的艰苦努力, 制定了多个不断变化的发展计划, 几经起伏, 最终探索出一条比较实际的、循序发展的道路. 发展高科技工程必须要有基础研究的积累, 在关键技术问题上取得突破, 否则, 可能导致失败的后果. 当前应当抓紧进行的主要研究和关键技术攻关工作包括: (1) 高温气体动力学 高温真实气体效应是高超声速飞行器研制中必须考虑的一个重要问题. 对于高温气体非平衡流动问题, 已进行了大量的研究. 对高温气流中化学反应速率的知识不足, 特别是在振动自由度激发、分子离解、表面化学反应等各种因素耦合在一起的情况下, 更是知之甚少. 目前存在的主要问题是: 高温气体热力学特性和化学反应速率常数以及化学反应模型的选取, 还有一定的不确定性,这将导致头部激波脱体距离、物面边界层速度剖面、密度剖面和物面热流等重要参数预示上的偏差. 美国人在总结X-43A 经验时曾提出要重点研究高超声速对下列问题的影响: 边界层从层流转变为湍流的转捩问题, 湍流边界层的流动和剪切层的流动, 激波与边界层之间的相互作用, 燃料喷注入气流、燃料与空气的混合、燃料与空气之间的化学反应, 机身与推进系统一体化设计的飞行器性能和可运行范围. 对于上述这些问题的研究, 都应当充分利用和发挥现代光学诊断技术和高速数值计算技术所具有的优势. 地面模拟试验设施. 目前在美国仅仅存在为数不多的几个可用于高超音速飞行研究的高焓试验设施, 而且这些设施在试验范围上还都受到种种限制. 各类脉冲型风洞的最高焓值范围可以高达对应马赫数20 的飞行速度, 但都是短持续时间(1?10 ms) 的试验设施. 试验时间可以相对较长的一些设施, 都是污浊(不清洁) 空气的风洞, 在这些风洞的自由气流内含有燃烧产物, 而且它们的最高焓值范围仅限于对应马赫数8 以下的飞行速度. 与高焓值状态相伴随出现的一些新的流动变量, 例如分子振动自由度的激发、各种分子和离子的浓度等, 都可以用现代光学诊断技术进行测量,但目前这些技术仅仅在极有限的情况下, 在高焓值的地面试验设施上得到应用. 能够提供更长试验时间(即从几毫秒提高到几秒量级) 的高焓地面试验设施和能够提供更高诊断能力的地面试验设施都是必不可少的. 为了能够满足高超音速飞行系统研制开发所提出的要求, 可能还需要建设新的地面试验设施. (2) 超燃基础和新概念推进研究 在能够促使吸气式高超音速飞行实现的各种关键技术中, 推进技术占据首要的位置. 对于超燃冲压发动机的研制来说, 存在着许多具有挑战性的技术难题, 包括: 在整个宽广的运行速度范围内(特别是在马赫数超过8 的情况下) 超燃冲压发动机内部流动, 燃烧稳定性与过程优化, 地面试验和精细流场诊断、飞行试验以及数字模拟技术;质量轻、耐高温的发动机材料和有效的热管理技术; 研究新的发动机技术, 以及验证飞行速度大于马赫数8 情况下的发动机性能; 研究发动机/飞行器一体化设计方法(包括进气道/发动机/ 尾喷管组合; 综合气动力与防热一体化; 高升阻比与操稳特性的协调; 气动特性与结构完整性设计; 气动外形与有效载荷容积要求; 多学科多目标(multidis-ciplinary design optimization, MDO) 总体优化等. ),实现可实际运行的、具有高性能的一体化设计的飞行器方案; 如何从低速推进模式转变成高速推进模式的问题, 特别是在采用可变几何形状的发动机的情况下, 如何实现工况转换的问题. 1991 年?1998 年间, 俄罗斯分别与法国, 美国,德国等合作进行了超燃冲压发动机的验证性飞行实验. 提出了一系列关键问题. 从美俄的经验教训来看, 这些基础性的问题不解决, 超燃发动机的研制是不会取得成功的, 因此在这方面还需下很大功夫. 各种组合式和新概念动力装置研究. 现有的动力装置, 不论是火箭或超燃冲压发动机, 对于在40?70km 高度, 持续、机动飞行的高超声速飞行器都是不理想的. 要积极探索各种组合式和新型动力装置(如: 脉冲爆轰驱动、激光/等离子推进、核动力推进等) 研究其作用原和实用化问题在这方面如能取得突破, 将为未来自主创新和跨越发展争取到主动. (3) 新型防热、隔热原理、材料与结构 现有飞行器热防护系统大都是针对战略弹头的, 特点是: 简单外形、短时间、很高的加热率.采用的主要办法是烧蚀热防护.新一代空天飞行器热防护问题具有不同的特点: 复杂的升力体外形、中低热流和长时间加热. 为了获得良好的气 动特性, 一般需采用保持飞行器外形不变的非烧蚀热防护技术, 还要解决长时间持续飞行的内部隔热问题. 已经建立的宏观热防护理论已不能满足要求, 要发展新的热流预示方法; 非烧蚀热防护技术; 防热结构的一体化设计技术; 结构在力/热 综合作用下的动态响应特性和破坏机制等. 各种防热、隔热原理, 包括: 被动式(热沉、隔热、表面辐射)、半被动式(热管传导+ 辐射) 和主动式(发汗、冷却膜、冷气流对流), 都是值得深入探讨的问题. 在发动机防热材料技术方面焦点集中在: 采用主动式冷却方式的燃烧室壁板材料, 以及超低温推进剂贮箱的材料. 需要更加坚固耐用的被动

相关文档
最新文档