阀门内漏实时在线管理系统

阀门内漏实时在线管理系统
阀门内漏实时在线管理系统

93

阀门内漏实时在线管理系统

杨永军

(上海麦杰科技股份有限公司,上海200233)

摘要:对影响火电机组热力系统安全性和经济性的主要阀门泄漏状态在线分析,实时监测汽水系统主要阀门泄漏状态,

当阀门泄漏时系统自动报警,在实时报警查询页面显示全厂所有泄漏阀门信息,并按泄漏严重程度、出现时间早晚及泄漏历时排序,为点检员制定合理的维修计划提供依据。关键词:阀门内漏;实时监测;节能;绩效考核中图分类号:TK262文献标识码:A 文章编号:1673-1131(2013)09-0093-02

0前言

随着电力体制改革,面对国家日益严格的节能减排要求,火力发电企业越来越关注发电机组的节能减耗和发电成本的降低。而减少机组阀门泄漏量是其中一个重要的节能减耗手段。

泄漏是火力发电厂中常见的故障之一,尤其是锅炉的四管泄漏问题是火电厂停机的主要故障。目前,大多数发电企业对阀门泄漏定期检测,不仅浪费了大量人力和物力,而且检漏不及时,长期泄漏导致的爆管引发设备及人员安全隐患。

阀门泄漏常用检测方法有基于超声、氦质谱等检漏法,这些检测方法都具有一定的局限性,而基于温度等运行参数的外部检漏法,具有非接触、在线、实时测量等优势。通过创建火电机组阀门综合管理平台,可以给电厂运行人员提供阀门检修、检漏的依据和参考,具有重要意义和广泛的应用前景。

1阀门泄漏判断依据

根据阀后温度测点及系统相关温度、阀门开关状态、机组负荷等参数将阀门泄漏状态划分为正常、轻度泄漏、中度泄露和严重泄漏四种状态。阀门泄漏状态划分具体步骤如下。

1.1前提判断条件

我们系统设定的判断条件一般为:机组负荷大于机组最低断油稳燃负荷,并且持续24小时。也就是机组正常运行24小时之后才会统计,这样有效地过滤掉非正常运行的冗余数据,更真实地反应实际运行泄漏情况。

满足机组运行条件之后,才开始统计是否泄漏,不满足机组运行条件就不统计。

1.2阀门泄漏状态判断

汽水系统中不同位置的阀门,其泄漏状态判别条件不同,要结合运行检修记录及专工的经验,设置适合判别机组阀门泄漏状态的条件。

(1)通过温差来判断泄漏情况,适用于大部分阀门。轻度泄漏:阀后温度减去参比温度大于20;中度泄漏:阀后温度减去参比温度大于50;严重泄漏:阀后温度减去参比温度大于100。公式:W3.UNIT2.10LBS51AA001T (阀后温度测点)-W3.UNIT2.10MAC50CT103(参比温度测点)>20(2)通过温差来判断泄漏情况,适用于锅炉本体吹灰气动门等。

轻度泄漏:阀后温度减去参比温度大于80,并且大于80度持续24小时;

中度泄漏:阀后温度减去参比温度大于100,并且大于100度持续24小时;

严重泄漏:阀后温度减去参比温度大于120,并且大于120

度持续24小时。

公式:W3.UNIT1.10HHP60AA002T (阀后温度测点)-环境温度(手工录入)>80且持续24小时注:阀后温度和参比温度的数据可以在sis 中取,也可以手工录入,环境温度数据就是手工录入温度数据。

(3)通过阀门关闭后的流量大小来判断泄漏情况,适用于在热器减温水调门等的阀后流量。

轻度泄漏:阀门已关闭,且流量大于5T/h ;中度泄漏:阀门已关闭,且流量大于10T/h ;严重泄漏:阀门已关闭,且流量大于15T/h 。公式:W3.UNIT1.10LAF30AA010ZT <1且W3.UNIT1.10LAF20CF142C >5

注:阀门泄漏状态的划分具体应该满足的条件结合电厂专工经验给定。

2系统架构

2.1

系统硬件集成

图1典型硬件集成方案

典型硬件集成方案如图1所示。将新增温度测量传感器与DAS 系统相连,采集的数据通过前置机的通讯卡接入DCS 系统,位于MIS 层的应用服务器自OPENPLANT 数据库取得必要的数据,经过模型计算,将结果显示终端上,供点检、运行人员监视。

2.2软件系统结构

软件系统集成的主要目的是将许多孤立的计算模块组合

2013年第9期(总第131期)

2013

(Sum.No131)

信息通信

INFORMATION &COMMUNICATIONS

无线传感器网络应用研究

张为

(湖南信息科学职业学院,湖南长沙410004)

摘要:无线传感器网络是目前国内外研究的一个热点方向,具有非常广泛的应用前景,其应用与发展将对人类的生活和生产的各个领域带来深刻的影响。在简要介绍传感器网络体系结构的基础上,详细分析和总结了无线传感器网络在许多领域应用的实例,提出了无线传感器网络在应用中面临的问题和挑战。

关键词:无线传感器网络;应用实例;问题和挑战

中图分类号:TP393文献标识码:A文章编号:1673-1131(2013)09-0094-02

Overview of Applications in Wireless Sensor Networks

Abstract:Wireless Sensor Network is currently a hot subject of research at home and abroad.It has a very extensive application prospect.The application and development of it will deeply influence many aspects of human living and producing.In this paper, we briefly introduce the architecture of sensor network,detailedly analyze and summarize applying instances of wireless sensor network in many areas,and propose problems and challenges faced in applying of wireless sensor network.

Keywords:Wireless sensor network;applying instance;problem and challenge

无线传感器网络[1](wireless sensor networks,简称WSN)是由大量具有特定功能的传感器节点通过自组织的无线通信方式,相互传递信息,协同地完成特定功能的智能专用网络。它综合了传感器技术、嵌入式计算机技术、通信技术、分布式信息处理技术、微电子制造技术和软件编程技术等,可以实时监测、感知和采集网络所监控区域内的各种环境或监测对象的信息,并对收集到的信息进行处理后传送给终端用户。无线传感器网络在工业、农业、商业、环境、交通、军事、医疗、救灾、物流等众多领域都有着广泛的应用,其研究、开发和应用关系到国家安全、经济发展、城市生活等诸多方面。由于无线传感器网络在各行各业有着这么广泛的应用,近年来在国际上引起了广泛的关注,对无线传感器网络在现实环境中的各种应用模式的研究也是当前的一个热点。

1无线传感器网络的应用

1.1工业监控方面

WSN网络在工业上主要用于对工业设备进行实时的监控,即时掌握工业设备的工作状态以及实时运行情况,及早发现工业设备出现的问题和状况,从而及早发现出现的安全隐患和有效地避免了安全事故的发生。

1.2农业监控方面

WSN网络在农业上的应用主要是对农业作物的生长环

成一个完整的系统,使得各组成模块相互协作,实现阀门泄漏实时报警查询、历史报警查询、泄漏汇总查询及绩效考核任务。3阀门泄漏监测管理系统

3.1泄漏实时报警查询

可以按照机组、阀门名称、泄漏状态、厂家、设备编码、专业、点检员、所属系统来查询实时泄漏数据,并进行实时监视。

在这个页面中显示阀门所属机组、实时泄漏状态、阀后温度、参比温度、差值温度△T、影响煤耗、连接到的图形画面、泄漏开始时间、泄漏持续时间、△T趋势、点检员、趋势分析等。

3.2泄漏历史查询

可以按照开始和结束时间(必填)、设备编码、机组、设备名称、泄漏状态、点检员、专业、厂家、所属系统来查询泄漏历史数据。

通过对阀门泄漏趋势劣化分析,可以预测阀门泄漏状态由轻度发展到重度的时间,便于运行维护人员制定合理的阀门治理计划。

(1)阀后温度与参比温度差值△T的趋势分析。通过计算阀后温度减去参比温度得到差值△T,当天△T每小时的最大值求平均和前三天△T每小时的最大值求平均比较,±5℃之内算是平稳。大于5℃是上升趋势,小于-5℃是下降趋势。

(2)阀后流量趋势分析。把阀后流量数据当做△T来计算,当天流量数据每小时的最大值求平均和前三天流量数据每小时的最大值求平均比较,±5t/h之内算是平稳。大于5t/h是上升趋势,小于-5t/h是下降趋势。

3.3阀门泄漏汇总查询

提供了阀门泄漏历史数据按开始和结束时间(必填)、专业、机组、设备厂家、点检员、专业、所属系统的设备个数和所占比例的汇总查询功能。并提供了查看详细历史数据和下载Excel功能。

3.4阀门管理绩效考核

该模块提供了查询当年所有点检员或专业每月阀门管理绩效结果的功能,按年查询所有点检员或专业的月绩效结果,并提供了下载Excel功能。

(1)点检员每月阀门管理绩效计算。根据每个点检员上个月阀门泄漏情况乘以权重系数得出绩效结果。

计算规则:阀门泄漏评价指标=轻度时间泄漏率×0.2+中度时间泄漏率×0.5+严重时间泄漏率×1.0(区间值:0~100)。

(2)所有专业每月阀门管理绩效计算。根据每个专业上个月阀门泄漏情况乘以权重系数得出绩效结果。计算规则:阀门泄漏评价指标=轻度时间泄漏率×0.2+中度时间泄漏率×0.5+严重时间泄漏率×1.0(区间值:0~100)。

作者简介:杨永军(1972-),男,湖北潜江人,研究生,工程师,研

究方向为实时数据库系统和生产信息化系统的研发。

94

SDT阀门内漏检测方法及注意事项

SDT阀门内漏检测方法及注意事项 超声波检测仪(SDT270,SDT200)的研发和生产制造中心位于欧洲西北部比利时首都布鲁塞尔,核心业务领域是为工业维修及质量控制提供高科技泄漏检测、气密性检测和预测性维护的测量系统。 检测前的两个要素确认: 一、将阀门关闭 二、管路内介质的流向 开始检测(确认超声波检漏仪主机开启,并且接触式传感器已连接好): 将接触式传感器顶在阀门上游管线(如图A处)测定系统环境超声值。 超声波检漏仪主机上的向上和向下箭头按钮调整仪器灵敏度,确保液晶显示屏上的箭头指针隐去,以测定系统背景信号,同时注意显示屏上的dB 读数。 将接触式传感器顶在阀门下游管线(如图B处)倾听泄漏信号。如果显示屏上的dB 读数小于或等于A点读数,说明阀门没有泄漏现象;如果B点的dB 读数相 对于A 点有所增加,说明阀门可能有泄漏。 最后一步,将接触式传感器顶在B 点之下的某处下游管线,进行泄漏点确认。 如果阀门泄漏,图中C 点的dB 读数应小于B 点读数;如果C 点的dB 读数大 于B 点读数,泄漏位置应该在管线的下游某处。 在阀门处于关闭状态时,则几乎听不到声响。如果阀门处于打开状态,可以听到连续或间断的流动声音,这是介质流过阀体时发出的声音。 水处理厂可以参照超声波检漏仪的数字读数进行阀门检修后的校准和设置工作。水处理设备的闸式阀的读数一般低于5dBμV。 阀门内漏检测注意事项及要求:要保证被检测阀门上下游有压差(大于0.05MPa),该阀门前后同管道有串联的阀门,应完全打开。 被检测阀门前后一倍管径处有法兰相连的,应向阀门处适当缩短采点距离。 被检测阀门管道有并联管道的,且并联连接处(上游或者下游)距离被检测阀门小于1m的,应关闭并联管道阀门(避免并联阀门流体流动信号传递到被检测阀门检测点)。

疏水阀为什么会泄漏

疏水阀为什么会泄漏 蒸汽疏水阀作为蒸汽系统和冷凝水系统的分割点,是隔绝蒸汽泄漏的重要节点,如果疏水阀泄漏会造成巨大的能源浪费。那么蒸汽疏水阀为什么会泄漏呢? 瓦特节能的经验是首先要区分蒸汽泄漏和是正常的闪蒸蒸汽。一般可以看到的现象,冷凝水排放量变少或疏水阀出口端产生大量的蒸汽泄漏,表明此疏水阀需要维修。当然,目视评估仅适用于开放式系统。 二次蒸汽又叫闪蒸蒸汽,当高压的饱和冷凝水被排放至低压环境中,由于低压饱和冷凝水的“显热”较低,疏水阀排放的较高“显热”的冷凝水会在低压环境中二次蒸发,以吸收多余的“显热”。我们把这部分二次汽化的蒸汽就叫做二次蒸汽。而次蒸汽的比例与冷凝水前后的压差有关,压差越大,二次蒸汽的比例就会越大。 随着疏水阀的开关,二次蒸汽会出现相应的变化,如果蒸汽的流动没有变化,而且伴有一定的啸叫声,一般这表明疏水阀已经泄漏。 由于二次蒸汽中带水情况,通常二次蒸汽呈现一种乳白色的颜色,如果排水口紧靠疏水阀侧的蒸汽有较长(10cm以上)的透明段,这表示很有可能疏水阀在泄漏新鲜蒸汽。 蒸汽疏水阀要在高压条件下将蒸汽和凝结水的混合物中的凝结水分离出来并排出,而避免泄漏新鲜蒸汽。蒸汽疏水阀必须兼有压力(容器)元件和精密机械的作用,能够在长时间苛刻条件下使用,蒸汽疏水阀需要保持有足够的强度和耐久性。所以疏水阀泄漏最多的原因就是疏水阀阀芯阀座组成的密封副失效。 疏水阀密封副失效的原因很多,疏水阀阀芯阀座必须采用够好的材料,并经过适当的热处理,强化密封副的硬度和耐磨型。否则高速通过的两相流很容易由于冲蚀、冲刷、气蚀等原因过早失效。 对于热静力型蒸汽疏水阀,瓦特节能认为这类阀的关键部件是波纹管或双金属等感温体,这类疏水阀的性能及耐用性在很大程度上取决于感温元件的质量,波纹管膜合的抗腐蚀和焊接应力,双金属片的抗疲劳性是此类疏水阀泄漏的考量因素。 对于机械型疏水阀,机构的卡塞是造成疏水阀泄漏的另外一个原因,比如杠杆浮球式疏水阀较自由浮球式疏水阀就容易由于机构卡塞导致疏水阀泄漏。倒置桶疏水阀也会由于杠杆的偏置造成疏水阀泄漏。所以疏水阀内部机构的设计和装配对疏水阀泄漏有直接的影响。 机械型疏水阀有严格的安装方位要求,错误的安装和不精确的安装也会造成疏水阀泄漏。 疏水阀泄漏有时与选型过大有关系,过大的尺寸会不仅降低疏水阀使用寿命,使得疏水频繁开关和长期微开导致的过度磨损,也由于疏水阀设计泄漏率是基于设计最大排量而导致的实际运行泄漏偏高。 蒸汽疏水阀泄漏和疏水阀的结构形式也密切相关,双阀座的泄漏量会远远大于单阀座,只有机械密封的疏水阀更加容易泄漏。 如果管道和疏水阀安装后的焊渣和杂质等杂质物质处理不当,就会给蒸汽疏水阀带来泄漏可能。新施工安装的管道淸洗要彻底,同时应定期清扫过滤器,清除运转初期所产生的水垢和杂质,这是非常重要的。

水闸闸门监控系统详细

水闸闸门监控系统详细 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

水闸闸门遥控与监测系统方案 1、概述 某水闸共5孔平板闸门,闸门宽度8米,闸身长40米。目前使用的水闸监控系统已经完全损坏,使用中存在以下问题: (1)不能实现定点控制闸门开度。目前各闸门的定点控制均由值班人员手动完成。由于现场控制站在闸顶楼上,值班人员只能凭现场聆听闸门与卡位相接的声音实现定点控制闸门开度,在下雨等噪音严重的情况下往往会因无法听到声音而难以定位,监控效率低,且存在安全隐患; (2)闸门现场控制站的PLC坏掉,工作不稳定,其他装置是否损坏不确定; (3)无法实现远程监控功能,不能满足监控管理自动化的要求。2、 系统工作范围 本系统功能的实现: (1)五孔平板闸门的自动控制:通过工控机现地实现左右四扇闸门的全开、全关控制和中间闸门的全开、半开、全关控制。也可在监控室上位机远程控制闸门开度; (2)五孔平板闸门的手动控制:在工控机故障或其他特殊情况下,采用手动控制方式实现各种控制;

(3)主要参数的采集与显示:采集各孔闸门位置及状态信号、上下游水位和闸基扬压力信号,并在控制面板和上位机上显示; (4)视频监控功能:设多台定点视频监控摄像头对闸门进行监视,在监控室可以实时对闸门进行监控。 系统监控内容 输入/输出信号统计 闸门监控系统报警信号统计 闸门监控系统 系统设计

考虑到水闸五孔闸门和启闭机分组监控的特点,本方案根据要求设计一套以工控机为主控设备并配置手动操作与执行设备组成的分层分布式计算机监控系统,该系统由一台上位机、一台现地工控机单元、摄像头、视频显示器等组成。在监控室可以通过显示器远程监视闸门的运行状况,并实现远程发送控制指令;现场控制站能接收来自上位机的控制指令进行控制,也可以单机独立控制,特殊情况下实现手动控制。系统总体结构 监控系统总体由闸门监控子系统和视频监控子系统构成。总体框图如图1所示: 图1 水 闸监控系统总体框图

阀门内漏的检测方法

阀门内漏判定标准我厂至投产以来汽水侧阀门内漏很严重,此次#2机组小修后,消除了大部分内漏缺陷,现#2机组已经运行正常,运行与检修对内漏阀门各自进行了一次普查,存在较大的意见分歧,现做以下规定:1、判定阀门内漏的方法是:阀门关闭4—6小时后,用红外线测温仪表测量阀杆(靠近阀体处)或阀体下游150mm处金属温度,如大于70~C,则认定为“内漏”。这种判断方法对大多数的内漏阀门是适用的,但在实际工作中,我们碰到了以下一些特殊情况:(1)由于管道安装位置原因,使得有些阀门前、后存在扰动着的高温蒸汽,如高加的启动排空气门,连接到有压疏、放水母管的疏水门或排污门,这些阀门即使严密不漏,其阀杆温度也将超过70~C。所以,这些阀门的内漏判定要采用其他方式,观察高加启动排气口是否冒汽判定高加启动排气门是否内漏等。(2)并排接入疏、放水母管的疏水门或排污门,当最后一道阀门位置均靠近母管时,只要管路中任一支路阀门内漏,其他阀门温度均会升高以至超过70"C,如锅炉排污阀门、过热蒸汽疏水等。因此,这些阀门的内漏判定也要采用其他方式,般测量门前管壁温度或一次门前阀杆温度来确定内漏情况。2、运行人员确认或怀疑阀门内漏,必须通知检修人员到场进行确认,经与检修人员共同鉴定确认是内漏,方可登记缺陷,同时将检修鉴定人员名字记录在缺陷信息中,如在未通知检修到场鉴定确认的 文档冲亿季,好礼乐相随 mini ipad移动硬盘拍立得百度书包 情况下登记缺陷,经过鉴定确认阀门并不内漏,每一个阀门考核运行部50元。3、在运行人员与检修人员对阀门否内漏发生意见分歧时,应参照以下表格进行确认,如仍有意见分歧时,应通知设备管理部点检人员到场进行判定,最终以设备管理部点检人员的鉴定为准。 设备管理部 2010-9-18 1234567890ABCDEFGHIJKLMNabcdefghijklmn!@#$%^&&*()_+.一三五七九贰肆陆扒拾,。青玉案元夕东风夜放花千树更吹落星如雨宝马雕车香满路凤箫声动玉壶光转一夜鱼龙舞蛾儿雪柳黄金缕笑语盈盈暗香去众里寻他千百度暮然回首那人却在灯火阑珊处 你可能喜欢

2020版汽轮机疏水系统阀门内漏对系统经济安全的影响分析

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020版汽轮机疏水系统阀门内漏对系统经济安全的影响分析Safety management is an important part of production management. Safety and production are in the implementation process

2020版汽轮机疏水系统阀门内漏对系统经 济安全的影响分析 一、大型机组汽轮机疏水系统的主要问题 大型机组汽轮机转子发生大轴永久性弯曲是重大恶性事故,为此原国家电力公司反复强调,在“二十五项重点要求”中明确了具体的反事故措施,起到明显效果,但大轴弯曲事故仍时有发生。统计表明,86%的弯曲事故是由于转子碰磨引起,而其中80%以上是热态起动时发生,它们都与汽缸上、下缸温差大有关。导致汽缸上、下缸温差大,除意外进入冷水、冷汽之外,往往与疏水系统的设计和操作不合理密切相关。制造厂和设计院在防汽缸进水和冷汽方面一般均采取有效措施,普遍参照了ASMETDP1-1980(1998)的建议,但须注意不同机组的实际情况并不一样,如引进型机组管道疏水原设计并没有考虑旁路的设置等。疏水系统的设计往往只顾及正常运行

或机组冷态启动时疏水压力高低的分布,而未考虑温、热态开机及甩负荷后的启动情况。目前大型机组典型的疏水系统设计和操作容易导致高负荷停机、甩负荷后温、热态开机出现高、中压缸温差、汽缸内外壁温差逐渐增大现象,既存在安全隐患,又不利于机组的及时再次启动 二我厂从科学论证实验的角度对于汽轮机疏水系统做的工作。 机组热力系统泄漏是影响机组经济性的一项重要因素,国内外各研究机构及电厂的实践表明,机组阀门的泄漏虽然对机组煤耗的影响较大,但仅需较小的投入就能获得较大的节能效果。在一定条件下其投入产出比远高于对通流部分的改造,因此在节能降耗工作中首先应重视对系统阀门严密性的治理。另外热力系统的内漏在使机组经济性下降的同时,还会给凝汽器带来额外的热负荷,经计算可知国华盘山两台机组凝汽器热负荷每增加10%,将使低压缸排汽压力上升0.35kPa。 表4-14给出了国华盘山两台机组各部位阀门泄漏对机组热耗率的影响量。由表4-14可知,蒸汽品质越高,其泄漏对机组经济性的

阀门内漏原因分析及预防

阀门内漏原因分析及预防 1 阀门密封概述 1.1阀门是在流体系统中用来控制流体方向、压力、流量的装置。阀门的作用是使管道或设备内的介质流动或停止并能控制其流量。阀门的密封性能是指阀门各密封部位阻止介质泄漏的能力,是阀门最重要的技术性能指标之一。阀门的密封部位主要有三处:启闭件与阀座两密封面间接触处;填料与阀杆和填料函结合处;阀体中法兰连接处。 1.2硬密封与软密封的区别 1.2.1密封材料的区别: 软密封是指用软质材料:如:1)橡胶(丁睛橡胶,氟橡胶等);2)塑料(聚四氟乙烯,尼龙等)。 硬密封材料:1)铜合金(用于低压阀门);2)铬不锈钢(用于普通高中压阀门);3)司太立合金、硬质合金(用于高温高压阀门及强腐蚀、耐磨阀门);4)镍基合金(用于腐蚀性介质)等。 1.2.2软密封和硬密封的优缺点: 软密封优点:密封性能好,可以做到“零泄漏”,并且阀座的维护更换方便。阀门扭矩小,可节约执行器的成本。制造成本低,加工便宜,供货周期短。一般用于比较干净、粘度小的液态和气体。缺点是:不耐高温,不耐磨,使用寿命短。 硬密封优点:阀芯阀座可做很多种组合,表面喷涂工艺的应用让阀门在耐磨、耐高温、耐腐蚀工况都有很好的应用,使用寿命长。缺点:密封性能不及软密封,制造成本高,阀门扭矩较大。 2 阀门泄漏分类 阀门泄漏主要分为内漏和外漏两类。启闭件与阀座两密封面间接触处泄漏为内漏,即当阀门处于关闭状态时管路中仍有介质流通,它影响阀门阻断介质的能力。填料与阀杆和填料函结合处、阀体中法兰连接处泄漏为外泄漏,即介质从阀内泄漏到阀外。外漏造成输送介质的损失,污染环境,严重时还会造成事故,对于易燃、易爆、有毒介质外漏更不允许。因此,阀门必须有可靠地密封性能。

阀门内漏检查和处理管理制度

XX电厂规章制度发布通知 XX电规章〔2016〕第9号 《XX电厂阀门内漏检查和处理管理制度》已经于2016年3月20日通过,现予发布,自发布之日起施行。 厂长: 2016年3月20日

规章制度控制表

XX电厂阀门内漏检查和处理管理制度 第一章总则 第一条为防止疏放水阀门因未关闭严密,由于受高温高压汽水长期冲刷,造成该阀门永久内漏,甚至无法修复;另外高温高压阀门内漏,造成工质未做功直接排走,直接影响到煤耗指标,为此特制定本办法。 第二条本制度适用于XX电厂生产技术部、运行分场、检修分场阀门内漏检查和处理管理办法。 第二章职责 第三条发电一、二分场负责运行分场是本办法责任落实部门。负责日常阀门内漏检查、验收工作。 第四条检修分场职责检修分场是本办法责任执行部门。负责阀门内漏处理工作。 第五条生产技术部职责 一、生产技术部是本办法工作管理的归口部门。 二、负责日常阀门内漏治理情况的监督、检查、考核工作。

三、负责组织制定机组及公用系统等级检修计划制定上报工作,协调各专业部完成机组等级检修、临检及设备抢修工作,并对检修质量提供技术指导和考核。 第六条安全与环境保护监察部负责安全监察工作。 第七条各检修分场在生产技术部和安全与环境保护监察部的协调与监督下完成运行设备维护,机组等级检修、临检和事故抢修等各项工作。 第三章工作内容要求与程序 第八条阀门内漏现象:当机组启动、事故状态结束后,及正常运行中疏放水阀门、高旁门及低旁门关闭后8小时后,阀门仍有漏量。 第九条阀门内漏原因:气动或电动阀门因关极限未到位、手动门未关严或各阀门关闭过程中因有杂质遗留在门体内,造成阀门无法关闭严密。 第十条阀门内漏确认过程 一、当阀门关闭8小时后,由运行分场副值班员及巡检对各阀门盘根或门体法兰及测温孔用点温仪进行测温,并记录当前温度。 二、当发现阀门温度超过50℃时,应判断出阀门内漏程度,并在阀门检查卡上进行登记。 三、若是手动阀门内漏,在条件许可的情况下,应重新稍开此阀门,1分钟后关闭并较严;若是气动阀门,将门前手动阀门关闭并稍开后,将气动阀门开关一次,重新全开手动门;若是电

阀门内漏检测方法探讨.

阀门内漏检测方法探讨 刘文泉廉丛 山西输气管理处灵丘压气站 摘要:阀门是输油气管道重要的设备之一,在输油气生产中起着至关重要的作用,随着石油天然 气储运行业的发展,对阀门的使用安全性能和密封性能等要求也越来越高。如果阀门存在泄漏现象,直接影响输油气正常生产和维检修作业安全。针对阀门内漏的隐蔽性,本文就阀门是否存在内漏及内漏量大小的判断方法作一探讨。 主题词:阀门密封内漏检测方法 阀门在油气储运中的地位是毋庸置疑的,阀门的泄漏也是很常见的问题,不能及时发现并处理就有可能造成严重后果。阀门的泄漏一般可以分为外漏和内漏两种情况。当阀门发生外漏时比较直观,通常可以用听气流声、检漏液检漏、可燃气体检测仪检漏等方法进行检查。但当阀门发生内漏时一般不容易发现,具有较强的隐蔽性,容易造成安全隐患,下面对阀门是否存在内漏及内漏量大小的判断方法进行分述。 一、根据阀门后端压力容器压力的变化来判断阀门是否内漏 常关阀门后端为不带压管线或压力容器,可根据压力容器压力的变化来判断阀门内漏:平均每小时每英寸公称直径密封面的泄露量用x V 表示: D T V P P V x ??= 012( 其中: P1:压力容器初始压力(bar

P2:压力容器检查时压力(bar V0:压力容器容积(m3 T :时间(hr D :管线公称直径(in V x 大于0.04m3/hr·in ,即认为该阀门内漏,内漏量大小可以经过计算分析得出。 二、放空法判断阀门是否内漏 当无法通过阀门后端的管线或容器来判断阀门是否内漏时,可通过给阀门排污放空阀腔的方法检查阀门是否内漏:缓慢打开阀门排污阀将阀腔内气体或液体放空,如果阀腔气体或液体无法排空,即认为该阀门内漏,反之则不存在内漏。泄漏量的大小可以根据放空气体或液体的流量情况进行定 性分析判断。 三、根据阀门阀腔压力的变化来判断阀门内漏情况: 制作阀门密封测试专用工具,见下图1: 图1 阀门密封测试工具 具体操作步骤:

阀门内漏的处理

5、阀门内漏的处理 5.1、阀门内漏的判断 (1)常关阀门后端为不带压管线或压力容器,根据压力容器压力的变化来判断阀门内漏: 平均每小时每英寸公称直径密封面的泄露量用x V 表示: D T V P P V x ?-=012)( 其中: P1:压力容器初始压力 (bar) P2:压力容器检查时压力 (bar) V0:压力容器容积 (m3) T :时间 (hr) D :管线公称直径 (in) V x 大于0.04m3/hr·in,即认为该阀门内漏。 (2)当无法通过阀门后端的管线或容器来判断阀门是否内漏时,通过排污检查阀门内漏,缓慢打开阀门排污阀将阀腔内气体放空,如阀腔气体无法排空,即认为该阀门内漏。 5.2、球阀内漏的处理 (1)通过阀位观察孔或手动检查阀门是否在全开位或全关位,如阀门不在全开位或全关位则进行调节。 (2)将球阀置于全开或全关位置(GROVE 球阀置于全关位置)。 (3)确定阀座密封脂注咀的数量。 (4)对于已进行清洗、润滑维护的阀门,直接注入阀门密封脂。 (5)如阀门没有进行清洗、润滑维护,用手动或气动注脂枪,均匀地在各个注脂咀中缓慢地注入规定数量的阀门清洗液。 (6)1~2天后,注入规定数量的阀门润滑脂,将阀门操作大约2~3次,使阀门润滑脂通过阀座涂到球上。阀门不能全开关时,应开关到可能的最大位。 (7)检查阀门是否仍存在内漏,如阀门仍存在内漏则执行以下步骤: ——将球阀置于正常运行状态的全开位或全关位。

——按照规定用量,用手动或气动注脂枪等量缓慢地将阀门密封脂注入到阀门中。 ——检查阀门是否仍存在内漏,如仍存在内漏,可以继续注入50%~100%规定用量的密封脂。 (8)如阀门仍存在内漏则说明阀座或球体已存在比较严重的损伤,需要进行更换阀座或维修。 5.3、阀门内漏处理中的注意事项 (1)阀门内漏的处理已清洗、活动为主要解决方法,注密封脂密封为辅助手段。 (2)阀门内漏的检查和处理应尽可能在阀门全关的状态下进行。 (3)阀门的活动尽可能做全开关的活动,不能做全开关活动的阀门要尽可能大范围地活动阀门。 (4)清洗液和密封脂必须缓慢注入,尽量使用手动注脂枪进行操作。 (5)清洗液和密封脂在注入时注意观察注入压力的变化,注入压力不能超过管线压力的4000PSI。

浅析阀门内漏产生原因危害及处理方法

浅析阀门内漏产生原因危害及处理方法 褚艳霞* (华电能源牡丹江第二发电厂,黑龙江 牡丹江 157015) 摘 要:阀门是锅炉系统中不可缺少的流体控制的设备,在锅炉事故中,有相当部分是由阀门所引发的故障,本文介绍阀门内漏产生的原因,并对处理问题的方法进行探讨,提出可行性方案。 关键词:阀门;内漏;处理 阀门是锅炉系统中不可缺少的流体控制的设备,在锅炉事故中,有相当部分是由阀门所引发的故障,阀门内漏,导致产生汽水损失,锅炉补给水量就要增加,相对所消耗的煤量也要增多,同时阀门内漏腐蚀将使阀门寿命降低,损坏过快,影响公司的经济效益,所以介绍阀门内漏产生的原因,并对处理问题的方法进行分析,提出可行性方案,对锅炉设备生产和使用单位具有一定的参考价值。 随着锅炉设备逐步向高参数大容量的方面发展,对锅炉设备本身也提出了新的要求。随着蒸汽参数的提高(主要指蒸汽的压力和温度)和蒸发量的增大,近代锅炉已较多地使用高温高压阀门,这就对阀门的要求越来越高。 锅炉阀门在运行中要经受各种恶劣环境如温度、压力、磨损和腐蚀等的影响,这些恶劣环境对锅炉阀门部件可造成轻微损伤,严重时会产生严重的漏泄。 一、阀门漏泄所产生的危害及机组运行的影响 1 阀门漏泄率增大>3 漏泄阀门增多,阀门漏泄率增大,泄流量也增大,在无形中导致汽水的损失,影响机组的运行。 2 机组补给水率增大 阀门漏泄导致水的流失,使机组不能正常经济运行,需要对锅炉进行补水,导致机组的补给水率增大。 3 汽水损失增加 阀门漏泄也导致机组内汽水流失,阀门漏泄个数越多,汽水损失越大。 4 煤耗增大 阀门漏泄也导致机组内汽水损失,需要对炉内进行大量补水,产生高温高压的过热蒸汽,需要对水进行大量加热,如此循环,需要消耗大量的燃煤,使发电厂的煤耗增大。 二、阀门在运行中常见的故障及消除方法 1 阀门阀体漏 消除方法:对漏处有4%硝酸容液侵蚀,便可显示出全部裂纹,然后用砂轮磨光或铲去有裂纹和砂眼的金属层,进行补焊即可。 2 阀盖的结合面漏 消除方法:铲除旧垫片更换,结合面擦伤补焊后研磨。 3 阀瓣与阀座密封面漏 消除方法:对阀座与阀瓣进行研磨,粗糙度达到0 4。 4 阀瓣腐蚀损坏 消除方法:精车后研磨,腐蚀深度达0 5mm可更换。 5 阀瓣、阀座有裂纹 消除方法:更换新的阀门。 6 阀瓣和阀壳间泄漏 消除方法:找好阀瓣与阀壳间的间隙,盘根或更换。 7 填料盒泄漏 消除方法:紧固盘根或更换新盘根,检查填料室的粗糙度。 综上所述,发生汽水损失的最大原因就是阀门内漏(阀瓣、阀座密封面的损坏)。阀门内漏,导致产生汽水损失,锅炉补给水量就要增加,相对所消耗的煤量也要增多,同时阀门内漏腐蚀将使阀门寿命降低,损坏过快,影响公司的经济效益。 综上所述,总结如下,见图1。 (1)在研磨阀门中,由于手工研磨阀门,研磨速度补均匀,用力不当,可导致阀座密封面受力不均,力量大时研磨砂粒可损坏密封面,力量小时,起不到研磨作用。 (2)手工研磨阀门,研磨杆上无定位导向垫圈,使研磨杆转动中东扭西歪,研磨容易导致把阀座密封面锥面研歪,组装阀门后使阀杆上的密封面与阀座的密封面中心对不上,密封面关闭不严密。 (3)由于工作人员没有责任心或专业技术水准不够,对阀门的使用范围不清楚,错用不符合要求的阀瓣、阀杆、阀座(如高温高压阀门采用合金材质、中温高压阀门采用碳钢),高温可导致阀瓣强度降低,疲劳度增加、腐蚀,使用寿命降低,阀瓣、阀座抗冲蚀磨损不够,容易发生内漏。 (4)由于检修的作业标准不够,使管路中存有遗留物,如焊渣、焊条头、锯条、铁渣、金属垫片残损部分及由于水质不良,使管道结垢后脱落的腐蚀物,在阀门开关使用 中国电力教育 2008年研究综述与技术论坛专刊*作者简介:褚艳霞,女,华电能源牡丹江第二发电厂锅炉检修分公司,助理工程师。

自动门的系统配置及自动门的工作原理

自动门的系统配置及自动门的工作原理 集中控制 集中控制的概念,包括集中监视自动门运行状态和集中操作多个自 动门两层含义,集中监视自动门开门关门状态可以通过位置信号输 出电路来实现,可以采用接触式开关,当门到达一定位置(如开启位置)时,触动开关而给出触点信号。也可以采用感应式信号发生装置,当感应器探测到门处于某一位置时发出信号。在中控室设置相应的 指示灯,就可以显示自动门的状态,而集中操作通常指同时将多个 门打开或锁住,这取决于自动门控制器上有无相应的接线端子。自 动门的系统配置是指根据使用要求而配备的,和自动门控制器相连 的外围辅助控制装置,如开门信号源、门禁系统、安全装置、集中 控制等。必须根据建筑物的使用特点。通过人员的组成,楼宇自控 的系统要求等合理配备辅助控制装置。 当门扇要完成一次开门和关门,其工作流程如下:感应探测器探 测到有人进入时,将脉冲信号传给主控器,主控器判断后通知马 达运行,同时监控马达转数,以便通知马达在一定时候加力和进 入慢行运行。马达得到一定运行电流后做正向运行,将动力传给 同步带,再由同步带将动力传给吊具系统使门扇开启;门扇开启 后由控制器作出判断,如需关门,通知马达作反向运动,关闭门扇。 一、自动控制系统 1. 主控单元及BEDIS 主控制单元系32位微机控制单元,它和接口的BEDIS(双线通 讯控制器)一起保证自动弧形门灵巧而可靠地进行人--机对话,充 分展示出智能型自动弧形门的魅力。

2. 驱动单元 弧形门主传动采用模块驱动电路控制的无刷直流电动机。注入高科技的驱动单元具有优异的运行和控制特性,其功能指标非常高,而且噪音低,运转平稳,免维护。 3. 传感器 移动检测传感器,如:雷达; 存在传感器,如:主动或被动式光电传感器; 4. 任选项--附加控制单元模块(可和主控单元直接接口) 电子锁控制 交流供电电源故障备用电源控制 5. 机械结构 主体结构 自动弧形门主体采用成型铝材的积木式拼装装配结构。成型铝材的技术要求满足VDE0700T.238标准规定。严格的材料标准和施工规范确保自动平滑门结构上对强度和稳定性的要求,使之长期可靠地运行。 二、BEDIS控制器 BEDIS是和主控制器总线直接接口的双线数据通讯专用远程控制器,小巧精美、安装快捷、使用方便,可在50米范围内实现:功能转换 运行参数的整定 功能状态的选择 故障自诊断显示 1. 控制功能 自动门诸可供选者的通道状态已被主控制器程序化,可用BEDIS 极其方便地进行功能转换。下述功能用户可任意选定:手动--动门翼静止时,可以用手推动; 常开--动门翼打开,并保持在打开位置;

阀门内漏检测

阀门内漏 可视化测漏仪的独特应用 1 阀门内漏、阀门外部渗漏一般很难检测出来,而其危害性很大。LKS1000可视化超声波测漏仪可以迅速、直观的检测阀门的内漏和外部 渗漏,减少维护的工作量和提高效率。 2 如果阀门调节的是腐蚀性或危险性强的介质,人员在阀门旁检测有很大的危险性。或者,如果阀门在高处或人员 不容易接触的位置,平常检测十分困难。而可视化测漏仪可以在距离阀门一段距离的地面检测,安全程度高。 3 LEAKSHOOTER已申请专利,技术除了拍摄泄漏外,还同时捕获一幅数字照片,将其融合在一起,有助于识别和定位故障,从而能够在第一 时间正确的修复故障。 4 LEAKSHOOTER可视化测漏仪配备了功能强大的软件,用于存储和分析泄漏图像并生成专业报告。通过该软件,可以对泄漏图中参数进行调 节,提高了检查的安全性和方便性。 具体操作

典型应用举例——「阀门内漏、液压系统内漏检测方法」 1、将仪器贴靠在阀门上游管线(如图A处)测定系统环境超声值。 2、使用LEAKSHOOTER可视化超声波检漏仪按钮调整仪器灵敏度,以测定系统背景信号,同时注意显示屏上的dB读数。 3、将仪器贴靠阀门下游管线(如图B处)倾听泄漏信号。如果显示屏上的dB读数小于或等于A点读数,说明阀门没有泄漏现象;如果B点的dB读数相对于A点有所增加,说明阀门泄漏。 4、最后,将检测仪贴靠B点之下的某处下游管线,进行泄漏点确认。如果阀门泄漏,图中C点的dB读数应小于B点读数;如果C点的dB读数大于B点读数,泄漏位置应该在管线的下游某处。 5、如果阀门处于关闭状态,则几乎听不到声响。如果阀门处于打开状态,可以听到连续或间断的流动声音,这是介质流过阀体时发出的声音。 6、水处理厂可以参照LEAKSHOOTER可视化超声波检漏仪的数字读数进行阀门检修后的校准和设置工作。水处理设备的闸式阀的读数一般低于5dBμV。

电厂系统阀门内漏分析及防治.

2013年第 08 期 电 引言: 发电厂因系统阀门内漏造成的热力损失是影响汽轮机热效率 的重要因素, 所以找到阀门内漏原因, 建立防治措施、 掌握运行维护的技巧, 把防治阀门内漏作为一项重点工作来抓, 才能建立安全生产长效机制, 提高机组经济运行水平。为了治理阀门内漏, 榆林汇通热电公司成立了阀门内漏治理小组,通过一个阶段的工作开展, 使阀门内漏得到很大改善, 提高了系统经济性和安全性。 1. 阀门内漏对发电企业的影响: 阀门内漏对发电企业的安全经济运行, 都有很大影响。从电厂安全生产方面而言,阀门内漏将使运行中的设备无法隔离消缺, 主要体现在安全措施无法执行到位,严重威胁检修人员的安全作业, 例如我们在给水泵检修时, 要求必须放尽存水, 泄压力至 0MPa, 给 水泵的进、 出口电动门必须严密关闭, 否则检修人员解体阀门时如果系统还有压力, 就会造成严重后果。 从发电厂经济效益方面,汽轮机蒸汽系统旁路门或疏水门内漏, 会使高温、高压蒸汽未经利用就直接排走。如果排入凝汽器, 将导致凝汽器热负荷增加, 机组真

空下降, 汽轮机效率降低; 如果排入疏水箱, 将使热量损失, 使疏水箱溢流。大量蒸汽未经利用直接排走, 对电厂的经济运行影响很大。 从发电厂文明生产方面,生产现场阀门泄漏将使部分高温、高压的汽、水直接排入环境中, 无法为运行、检修人员提供一个良好的工作环境。 2. 阀门内漏的原因:在实际生产中, 造成阀门内漏的原因较多, 总结榆林汇通热电公司阀门内漏治理的统计分析, 主要有以下几方面: 2.1阀门质量差造成内漏。阀门在生产过程中对材质、加工工艺、装配工艺等控制不严, 致使密封面结合不严密, 有麻点、沙眼等缺陷, 而现场安装前的质检又没有严格把关, 造成不合格的产品进入生产现场, 使阀门在使用过程中产生内漏。 2.2阀门调试不好引起内漏。电动阀门受加工、装配工艺的影响, 普遍存在手动关严后电动打不开的现象, 如通过上、下限位开关的动作位置把电动阀门的行程调整小一些, 又会出现电动阀门关不严或者阀门开不全的不理想状态;把电动 阀门的行程调整大一些, 则引起过力矩开关保护动作; 如果将过力矩开关的动作值 调整的大一些, 则出现撞坏减速传动机构或者撞坏阀门, 甚至将电机烧毁的事故。为了解决这一问题, 通常, 电动门调试时手动将电动阀门全关, 再往开的方向回一圈, 这时定电动门的下限位开关位置, 然后将电动阀门开到全开位置定上限开关位置, 这样电动阀门就不会出现手动关严后电动打不开的现象, 才能使电动门开、关操作自如, 但这样又会无形中引起了电动门内漏。即使电动阀门调整的比较理想, 由于限位开关的动作位置是相对固定的, 介质在运行中对阀门的不断冲刷、磨损, 也会造成阀门关闭不严而引起内漏现象。 2.3热力系统水质不合格, 管道冲洗不干净造成阀门内漏。机组在启动时, 特别是在调试期间, 由于系统长期停运, 管道内积存铁锈、积盐较多, 这时应全开系统的疏放水阀门进行冲洗, 如果冲洗不彻底, 铁锈等杂质就会在阀芯、阀座之间存积, 阀门关闭时卡涩在阀芯底部, 使阀门关闭不严造成冲刷内漏。

阀门内漏判定标准

阀门内漏判定标准 根据焦化厂易燃易爆强腐蚀的特性,为保证安全作业生产,避免煤气及其他腐蚀性液体内漏造成事故,现针对阀门内漏的判断做出以下规定: 方法一:管道内介质不是常温的情况下,关闭阀门2—3小时后,用红外线测温仪测量阀门关闭一侧的阀体及管路温度,如果关闭一侧阀体及管路温度与另一侧温度相符合,则认定为阀门内漏。 方法二:如果管路前后都有阀门,则关闭管路前后阀门,打开退液管或放散管进行确认,确保退液管和放散管畅通无堵塞现象,如果放散和退液管内无液体或汽体排出,则认定阀门良好;如果放散和退液管内有液体或汽体排出,则认定阀门内漏。 方法三:管道内的介质是煤气,且阀门一侧是高压区,而另一侧可以泄压,如槽罐、塔类设备等。关闭需切断的阀门,打开放散阀,用蒸汽置换直至放散管冒出蒸汽20分钟左右,关闭蒸汽吹扫阀门20 分钟后,用四合一报警仪或CO报警仪在放散处进行测量,CO浓度≤40 ppm时,则认定阀门良好。>40ppm则认定为内漏。 方法四:管道内的介质是液体(硫酸、洗油、粗苯、水、焦油等),且阀门一侧是高压区,而另一侧可以泄压,如槽罐、塔类设备等。关闭需切断的阀门,打开泄压区的退液阀,如果退液管内无液体排出(确保退液管畅通),则认定阀门关闭良好;如果退液管内有液体排出则认定阀门内漏。 方法五:在阀门丝杆上制作安装“关闭/开启”限位标识,从而直

观地能从阀门的外观上看到丝杆的升降位置,更准确地确认阀门的开关度。 3、在生产人员与动力人员对阀门是否内漏发生意见分歧时,应参照以下表格进行确认,如仍有意见分歧时,应通知设备处人员到场进行判定,最终以设备处人员的鉴定为准。

闸门控制系统

5 闸门控制系统 5.1系统设计要求 投标单位应到各电闸进行实地调研,结合当地的实际情况和现代信息技术,利用先进的硬件设备和软件系统,提高闸门监控自动化控制水平,确保泄水建筑物的安全及泄水调度的准确性、及时性,以增强抗灾能力。拟采用可编程控制器(PLC)作为主要控制设备,并建立视频图像监视系统,作为辅助闸门监控的一个手段。 5.2系统工作范围 本系统工作范围包括: 控制涵闸2孔平板闸门。 采集各孔闸门位置及状态信号、上下游水位信号。 与上级系统联网,支持上级远程控制与调度。 涵闸至上级网络通信。(现场已提供与计算机网络连接的RJ45接口) 系统监控内容 通过监测闸上闸下水位,并依据控制中心的调度方案,控制闸门的启闭。基本的输入/输出信号和报警信号见下表: 输入/输出信号统计

闸门监控系统报警信号统计 5.3系统总体结构 考虑到涵闸2孔闸门和启闭机分组监控的特点,方案要求设计一套以可编程控制器(PLC)为主控设备并配置手动操作与执行设备组成的分层分布式计算机监控系统,建议该系统由一台上位机和一套现地监控单元组成。监控信息通过涵闸至上级网络之间传送至上级单位,以便及时了解涵闸的运行状况。控制中心的控制指令,通过计算机网络传至本地的执行系统,从而对闸门进行启闭控制。 5.4系统的基本组成 建议系统由闸门监控子系统和视频监控子系统构成。 闸门监控子系统由一台上位机、一套现地监控单元、现场传感部件和执行机构等设备组成。现地监控单元采用可编程序控制器(PLC)作为主控设备,在监控单元上有2孔涵闸的手动集中控制与显示,同时保留现场的手动操作。闸门位置和上下游水位信号的采集采用专用传感器。建议现场视频监控由2台摄像机、视频监控站等组成。 5.5系统基本功能 闸门监控系统功能

阀门内漏检测方法探讨

阀门内漏检测方法探讨 刘文泉 廉 丛 山西输气管理处灵丘压气站 摘 要:阀门是输油气管道重要的设备之一,在输油气生产中起着至关重要的作用,随着石油天然 气储运行业的发展,对阀门的使用安全性能和密封性能等要求也越来越高。如果阀门存在泄漏现象,直接影响输油气正常生产和维检修作业安全。针对阀门内漏的隐蔽性,本文就阀门是否存在内漏及内漏量大小的判断方法作一探讨。 主题词:阀门 密封 内漏 检测 方法 阀门在油气储运中的地位是毋庸置疑的,阀门的泄漏也是很常见的问题,不能及时发现并处理就有可能造成严重后果。阀门的泄漏一般可以分为外漏和内漏两种情况。当阀门发生外漏时比较直观,通常可以用听气流声、检漏液检漏、可燃气体检测仪检漏等方法进行检查。但当阀门发生内漏时一般不容易发现,具有较强的隐蔽性,容易造成安全隐患,下面对阀门是否存在内漏及内漏量大小的判断方法进行分述。 一、根据阀门后端压力容器压力的变化来判断阀门是否内漏 常关阀门后端为不带压管线或压力容器,可根据压力容器压力的变化来判断阀门内漏:平均每小时每英寸公称直径密封面的泄露量用x V 表示: D T V P P V x ??= 012)( 其中: P1:压力容器初始压力(bar) P2:压力容器检查时压力(bar) V0:压力容器容积(m3) T :时间(hr) D :管线公称直径(in) V x 大于0.04m3/hr·in ,即认为该阀门内漏,内漏量大小可以经过计算分析得出。 二、放空法判断阀门是否内漏 当无法通过阀门后端的管线或容器来判断阀门是否内漏时,可通过给阀门排污放空阀腔的方法检查阀门是否内漏:缓慢打开阀门排污阀将阀腔内气体或液体放空,如果阀腔气体或液体无法排空,即认为该阀门内漏,反之则不存在内漏。泄漏量的大小可以根据放空气体或液体的流量情况进行定

防止机组阀门内漏管理制度

机组阀门内漏管理制度 第一条为降低机组运行热耗、补水率,加强徐塘发电有限责任公司(以下简称公司)节能降耗工作,提高机组效率,防止机组阀门频繁发生内漏事件,特制定本制度。 第二条本制度适用于公司#4、5、6、7机组高温、高压阀门操作、检查及检修工作;低温、低压阀门原则上适用。 第三条当发生下列情况时,发电部必须按照相应要求操作,否则,每项次考核责任人30元。 3.1机组启停及正常运行期间,应严格监视各疏水阀门开关到位,如发现疏水阀门开关不到位要及时处理,必要时联系检修处理,以防止阀门长期小开度、造成阀门阀芯冲刷、阀门关闭不严。 3.2机组启动过程中,按照规程规定及时关闭有关疏水门、放空气门,关闭疏水阀门2小时后,进行测温,检查阀门是否泄漏,防止因为关不到位造成阀门密封面冲刷损伤。 3.3对于有一、二次门的系统,开门时应先开一次门,后开二次门,关闭时应先关二次门,后关一次门,关闭后应及时手紧阀门。若需要进行流量调节时应保持一次门全开,用二次门调节流量。 3.4对于只有一个阀门的系统,开门时应全开,不要保持半开状态,减少阀门的冲刷。

3.5锅炉上水后及启动初期水质不合格冲放时,应保持定排电动一、二次截止门常开,通过调节定排调节阀的开度进行冲放。禁止同时对一、二次门进行操作,以防一、二次门受冲刷、关闭不严。 3.6锅炉升压前必须保证水质合格,汽包压力升高至2MPa 后,禁止用停炉放水门来控制汽包水位。 3.7开机过程中应及时将关闭的电动门手紧,减少因压力较高时阀门因关闭不严造成的汽水冲刷,如汽包、过热器、再热器放空气门、5%旁路电动门、汽机疏水手动门等。 3.8正常运行过程中应及时关注经常操作的电动门的内漏情况,如吹灰电动门、定排电动门等,发现有内漏情况及时手紧电动门,并通知检修人员调整电动门行程或力矩消除阀门内漏。 3.9锅炉吹灰后应及时查看电动门后吹灰压力,如发现压力有异常情况应及时处理,4、5号炉吹灰后应及时将吹灰压力调节阀关闭,减少汽水损失。 3.10机组启动后要全面检查各疏水阀门后温度是否正常。如发现阀门温度异常,阀门微漏、渗漏时要及时采取措施,通过调整阀门行程或手紧使阀门关闭到位,防止阀门长期冲刷,越漏越大。 3.11机组停运,如无特殊原因,过、再热及主蒸汽管道疏水、放空气门必须按照规程规定的参数开启。

液压闸门控制系统概述

550m2烧结机液压闸门控制系统概述 炼铁作业部耿丹 1概述 提高布料质量,对于改善料面的点火状况,降低能耗起着相当大的作用[1]。首钢京唐550m2烧结机利用烧结机圆辊上部安装的液压闸门实现了混合料的精确布料,保证了台车宽度方向上的烧结速度一致。 圆辊液压闸门安装于烧结机混合料仓下部,可实现大闸门(200mm行程)和6个小闸门(50mm行程)开度的自动调节,用来调整混合料的下料量,现场设备如图1所示。大闸门由2个液压执行器控制,同步调节。6个小闸门附着在大闸门上,由6个液压执行器控制,单独调节。液压闸门系统能够实现闸门位置的实时调节、反馈、锁死并能够实现闭环控制。 图1 液压闸门现场设备图 2工作原理 2.1工作原理 液压闸门系统的工作压力为18.0 MPa,由2台90/45-200液压系统(带位移传感器、比例阀组、液压锁、单向节流阀) 和6台50/28-50液压系统(带位移传感器、比例阀组、液压锁、单向节流阀)的位置控制、液压站(含2台电动液压泵(一用一备)、滤油器)、1套PLC 控制柜及系统内相关的管路(连接件)等组成,液压原理图如图2所示。 2.2工作过程

1、手动开启油泵(主、备可选),PLC自动控制液压系统的压力,同时检测系统故障,即时报警。 2、大闸门控制。大闸门由南北两个油缸同步控制,现场有“自动”和“手动”两种选择方式,选择手动时,当任意按下油缸缩按钮,油缸提升打开闸门,当任意按下油缸伸按钮,油缸伸出闸门关闭;选择自动时,两个油缸检测同一个设定开度输入信号实现自动同步,控制大闸门到指定位置。大闸门自动控制时设有同步过程,当两个油缸位置偏差较大时,较慢的油缸加快速度以实现同步,若位置偏差超出一定范围时则停机报警,并输出大闸门故障信号到PLC控制系统。 图2 液压系统原理图 3、小闸门控制。当液压泵站开启后可进行小闸门的控制,小闸门共6个,可分别选择手动或自动控制。选择手动时,按下控制柜上的开按钮,PLC输出开信号到比例调节阀,闸门开启,按下关按钮,闸门关闭;选择自动时,此时PLC接收中控室的设定开度信号,自动输出比例调节阀控制信号,将闸门调整到指定位置。小闸门在一定的时间(20秒)不能调节到位便停止工作并输出小闸门故障信号到PLC控制系统。 3重要组成部分描述

自动控制原理作业答案

红色为重点(2016年考题) 第一章 1-2 仓库大门自动控制系统原理示意图。试说明系统自动控制大门开闭的工作原理,并画出系统方框图。 解当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。反之,当合上关门开关时,电动机反转带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。系统方框图如下图所示。 1-4 题1-4图为水温控制系统示意图。冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水。冷水流量变化用流量计测量。试绘制系统方块图,并说明为了保持热水温度为期望值,系统是如何工作的?系统的被控对象和控制装置各是什么? 解工作原理:温度传感器不断测量交换器出口处的实际水温,并在温度控制器中与给定温度相比较,若低于给定温度,其偏差值使蒸汽阀门开大,进入热交换器的蒸汽量加大,热水温度升高,直至偏差为零。如果由于某种原因,冷水流量加大,则流量值由流量计测得,通过温度控制器,开大阀门,使蒸汽量增加,提前进行控制,实现按冷水流量进行顺馈补偿,保证热交换器出口的水温不发生大的波动。 其中,热交换器是被控对象,实际热水温度为被控量,给定量(希望温度)在控制器中设定;冷水流量是干扰量。 系统方块图如下图所示。这是一个按干扰补偿的复合控制系统。 1-5图为工业炉温自动控制系统的工作原理图。分析系统的工作原理,指出被控对象、被控量及各部件的作用,画出系统方框图。 解加热炉采用电加热方式运行,加热器所产生的热量与调压器电压Uc的平方成正比,Uc增高,炉温就上升,Uc 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。炉子的实际温度用热电偶测量,输出电压Uf。Uf作为系统的反馈电压与给定电压Ur进行比较,得出偏差电压Ue,经电压放大器、功率放大器放大成au后,作为控制电动机的电枢电压。 在正常情况下,炉温等于某个期望值T°C,热电偶的输出电压Uf正好等于给定电压Ur。此时,Ue=Ur-Uf=0,故U1=Ua=0,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使Uc保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。 当炉膛温度T°C由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程,控制的结果是使炉膛温度回升,直至T°C的实际值等于期望值为止。

相关文档
最新文档