600MW超临界直流锅炉特点分析与运行控制

600MW超临界直流锅炉特点分析与运行控制
600MW超临界直流锅炉特点分析与运行控制

一、直流锅炉与汽包锅炉差异

1.直流锅炉蒸发受热面内工质的流动不像汽包炉那样,依靠汽水的重度差而形成自然循环来推动。而是与在省煤器、过热器中的工质流动一样,完全依靠给水泵产生的压头,工质在此压头的推动下顺次通过加热、蒸发、过热过程,水被逐渐加热、蒸发、过热,最后形成合格的过热蒸汽送往汽轮机。

2.锅炉在直流状态运行时,汽水通道中的加热区、蒸发区、过热区三部分之间并没有固定的界线(可以把水在沸腾之前的受热面称为加热区,水开始沸腾到全部变为干饱和蒸汽的受热面称为蒸发区,蒸汽开始过热到全部被加热至额定温度压力的过热蒸汽的受热面称为过热区)。当给水量、空气量、燃料量和机组负荷有扰动时,此三个区段就会发生移动。

3.直流锅炉的另一个特点是蓄热能力小。而汽包锅炉则相反,降压速度不能过快,因为压力减小的过快,可能会使下降管中工质发生汽化而破坏水循环。由于直流锅炉的蓄热能力小,在受到外部扰动时,自行保持负荷及参数的能力就较差,对扰动较敏感,因此对调节系统提出更高的要求。但是在主动调整锅炉负荷时,由于其蓄热能力小,且允许的压力降速度快,可以使其蒸汽参数迅速地跟上工况的需要,所以能较好的适应机组调峰的要求。

4.直流锅炉在纯直流状态下工作时,蒸发区的循环倍率等于1,而自然循环的汽包锅炉的循环倍率为3~5。低倍率强制循环锅炉的循环倍率为1.5左右。

5.直流锅炉的金属消耗量小。与同参数的汽包锅炉相比,直流锅炉可节约20%~30%的钢材。

6.直流锅炉的设计,不受工质压力的限制,可以做成亚临界,超临界,甚至是超临界。因此制造、安装和运输方便。

7.直流锅炉启炉、停炉较快。机组启动停止一般都受限于壁厚部件的热应力。自然循环锅炉因为有厚壁汽包,启动时内外壁温差、上下壁温差大,应力和汽包内压力所产生的应力组合成复合应力。因此上水,升压速度均受到限制。

8.直流锅炉给水品质要求高,因为在蒸发区不排污,除了能溶于蒸汽的盐分被蒸汽带走外,给水中所含杂质将全部沉积在管壁上,因此要求水处理严格。

9.直流锅炉工质流动阻力较大。在自然循环锅炉中,只有省煤器和过热器内工质为强迫流动,要消耗给水泵压头,蒸发受热面内的自然循环不消耗水泵压头。但是直流锅炉蒸发受热面内的工质也是强迫流动,且管径较小,流速较高,以便得到较大的质量流速来冷却水冷壁,故要消耗额外的较多的水泵功率。

10.直流锅炉控制及调节复杂。由于直流锅炉受热面的金属重量较轻,工质储存量较小。故金属及工质的蓄热能力一般只为汽包锅炉的1/4~1/2。因此在外界负荷变化时,自适应能力差,汽压波动幅度较大,压力波动速度往往超过汽包锅炉一倍以上。另外由于工况变动引起热水段、蒸发段和过热段之间的调节互相影响,因此,直流炉的自动调节系统较复杂,控制技术也较高。

11.直流炉水冷壁的安全性存在一定的问题。自然锅炉,因其循环倍率高,蒸发管中发生第一类传热危机和第二类传热危机的可能性小。

直流锅炉蒸发管出口往往是接近饱和,甚至是微过热蒸汽,故管内发生膜态沸腾和结垢的可能性较大。强迫流动的特性常导致并列蒸发管中吸热越多的管子,其工质流量反而越小。目前的的螺旋水冷壁采用整焊膜式水冷壁,各个管带均匀地分布于炉膛四周,在同一高度上的管带受热几乎一样,相邻管带之间外侧管管壁温差较小(30℃)。由于各管带皆为倾斜上升,从而避免了拉姆辛管圈水平部分的较易发生的汽水分层的现象。同时,低负荷时采用炉水循环泵,建立炉水再循环,水冷壁质量流速的提高,也避免了发生膜态沸腾可能。从而有效的降低了水冷壁管的金属温度保证了安全可靠运行。

12.直流锅炉设置分离器的目的是为了适应低负荷运行和低负荷运行时的热损失,另一目的是可使过热器干态启动,从而缩短启动时间。

13.当外界负荷变化,汽门开度发生变化时,锅炉汽压变动很快,波动的幅度也远比汽包炉大;给水量变化时,汽温、汽压、蒸汽量的变化趋势都和汽包锅炉相反,而且影响程度也要大得多。即给水量增大,汽压、汽量明显增大,汽温则显著降低;当燃料量变化时,直流锅炉主要变化的是汽温,故直流锅炉运行特点之一就是必须保持燃水比一定,否则汽温将无法保持正常。

二、直流炉的运行控制

(一)直流锅炉汽压控制

机组负荷增加时,汽机调门开大,蒸汽流量立即增加,使得

2009年第14期

(总第125期)Chinesehi-techenterprises

NO.14.2009(CumulativetyNO.125)

中国高新技术企业

600MW超临界直流锅炉特点分析与运行控制

李伯伙

(广东火电工程总公司,广东广州510730)

摘要:600MW超临界直流锅炉以其启停速度快、负荷变化快的特点已逐步成为调峰主力机组,所以有必要对该机型的运行

特性进行更深入的了解。文章对600MW超临界直流锅炉与汽包锅炉差异进行了比较分析,并提出了该系统的运行控制。

关键词:直流锅炉;汽包锅炉;运行控制;汽温控制;给水控制

中图分类号:TK229文献标识码:A文章编号:1009-2374(2009)14-0053-02

53

--

汽轮机功率也同样立即增加。由于锅炉给水流量和燃烧率均未变化,蒸汽流量和汽轮机功率的暂时增加是由于蒸汽压力下降而使锅炉放出蓄热引起。由于直流锅炉蓄热能力小,压力下降的速度大一些。稳定后汽压维持在偏低的数值。

(二)直流锅炉汽温控制

直流锅炉不像汽包锅炉那样有汽包可以将蒸发受热面和过热器分开,由于直流锅炉给水和燃料单一的变化特性决定了将明显影响汽温。为此必须保持燃水比不变,但即使保证燃水比作为调温的基本手段,过热器之间,往往仍需要喷水减温,以适应变动工况下调节汽温和保护过热器的需要。运行中应使喷水调节阀开度处于中间位置,以备工况变动既能开大也能关小。因此,直流锅炉汽温控制的基本措施就是保持燃水比,喷水减温只是临时措施。通过控制中间点温度不变,就表示汽温变化稳定。

再热器温度的控制采用尾部烟道烟气挡板和冷再入口事故一级喷水减温。主要影响因素为再热器出口汽温、机组负荷变化速度、喷水减温及低温再热器出口汽温的变化速度。燃烧率和给水流量的比例变化1%,将使过热蒸汽温度变化10℃。

1.过热汽温控制。过热蒸汽温度是由煤/水比和两级喷水减温来控制。喷水取自高加出口,每级减温器喷水量为该负荷下的3%主蒸汽流量。系统在35%~100%BMCR负荷范围内维持出口汽温在℃。在20%BMCR负荷以下不允许投一级喷水。在10%BMCR负荷以下不投二级喷水。如果喷水调节阀关闭超过10秒之后且过热汽温低于控制的目标值,则每个隔离阀自动关闭。若隔离阀关闭则减温水控制阀自动关闭。在失去控制信号和电源时喷水阀固定不动。

2.再热汽温控制。滑压运行时,在50%~100%BMCR负荷之间,再热器出口蒸汽温度控制在569+5~10℃。正常运行期间,再热蒸汽温度由布置在尾部烟道中的烟气挡板控制。两个烟道的挡板以相反的方向动作。烟气挡板的连杆有一个执行器,可调节满行程限制值,使之在关闭位置下至少有10%的烟气量通过。再热汽温偏低时,再热器烟道挡板向全开位置调整,以减小再热器烟道阻力,增加通过再热器烟道烟气量,提高再热汽温。在负荷低于约85%时再热器挡板全开。过热器烟道挡板向关闭位置调整可增大过热器烟道阻力,这样将增加通过再热器对流受热面的烟气量以提高再热器出口汽温。

当再热汽温升高时过热器烟道挡板将开启。在过热器烟道挡板开度低于72%时,再热器烟道挡板维持在原来位置。当过热器烟道挡板开度超过72%时,两套挡板将同时操作。如果再热器汽温继续升高,那么过热器烟道挡板完全开启,再热器挡板向关闭方向动作。这将减少再热器烟道的烟气量,使再热器温升减小。过热器烟道挡板在再热器烟道挡板开度超过72%之前在原位置不动。推荐在分隔烟道挡板失去控制信号或电源时挡板固定不动。

烟气挡板系统的响应有一定的滞后性,在瞬变状态或需要时,可以投布置在冷再管道上的减温器喷水减温。如果再热器烟道挡板完全关闭并且再热出口汽温继续升高(例如在扰动运行状态下),那么在额定目标值以上5℃时减温器截止阀将自动开启,且减温器用于控制末级再热器出口汽温。喷水水源取自给水泵的中间抽头。减温器的隔离阀在负荷低于50%BMCR(271kg/s)时,在任何情况下都不应使用。

(三)直流锅炉燃烧控制

1.设计煤粉燃烧器共30只,分三层前后墙对冲布置。每台

磨煤机对应前后墙一层六只燃烧器。制粉系统为六台HP磨正压直吹系统。燃烧控制系统调节锅炉燃料和燃烧空气的总供给,在特定的范围内维持燃料的燃烧。

2.中心风的调整:中心风由二次风道提供并从每个二次风挡板前引出。中心风引入每台燃烧器的中心风管以防止热烟气回流,并为油燃烧器提供一定比例的燃烧空气。挡板位置在试运期间根据负荷和风压来设定。

3.在煤粉燃烧器上方共设置了10个燃烬风喷嘴,前后墙各为5只,燃烬风保证NOX排放控制在设计要求的范围之内。在正常运行期间,燃烧器和燃烬风喷口的总风量应满足燃料燃烧要求炉膛出口的过量空气。在BMCR工况下,炉膛出口的过量空气系数是1.19,燃烧器区域的过量空气系数为1.05。炉膛出口(省煤器)氧量信号用于调整所要求的总风量。

燃烧器区域的过量空气系数是随锅炉负荷变化的,并受投运磨煤机数量的影响。燃烧器区域的风量是指经过燃烧器进入锅炉的风量,包括运行燃烧器的一次风,二次风,未运行燃烧器的漏风/冷却风和所有燃烧器的中心风。停运燃烧器的漏风/冷却风量约为BMCR负荷下该风室二次风量的12%。停运燃烧器的漏风量是由二次风挡板最小位置决定的,并随着该负荷下热二次风道与炉膛负压之间的压差而变化。根据氧量信号操纵燃烧器风室风量和燃烬风量两者的比例,使燃烬风系统旋转趋势最小。

(四)直流锅炉给水控制

锅炉给水系统配置了一台35%容量的电动泵和两台50%容量的汽动泵。首先用电动给水泵进行锅炉启动,用给水操纵台中的启动控制阀调整给水流量。一旦该阀开启约75%,给水操纵台中的主管路隔离阀缓慢开启并切换到单独由给水泵转速控制。当主隔离阀完全开启时,启动控制阀缓慢关闭。MFT时给水控制阀和隔离阀关闭,汽动给水泵甩负荷,运行人员启动电动给水泵,必要时可以打开启动控制阀。

两台汽动泵运行时,一台泵甩负荷,备用泵自动启动,负荷降低至80%。燃烧率、减温水量、汽机调节阀开度保持不变的情况下,给水流量扰动增加时,由于直流锅炉中工质是一次强迫通过受热面的,在达到稳定流动后,进入的给水量应等于送出的蒸汽流量,故给水流量增加时蒸汽流量也是增加的,其延迟很小。

但是因为炉内供热量未变,给水量增加使得加热区和蒸发区变长而过热区变短,增加的给水量先要填补加热区的增长的空间,而且增加的水量变成蒸汽要经过共质流动及传热过程,所以蒸汽流量是逐渐上升的。由于燃烧率没有变动,而给水量的增加使过热区减少了,同时蒸汽流量增加,从而使过热汽温在经过一段较长的迟延后,单调下降,最后稳定在一个较低的温度。实际显示给水量变化1%,过热汽温度变化10%左右。

三、结语

600MW超临界直流锅炉以其启停速度快、负荷变化快的特点已逐步发展成为我国调峰主力机组,对该机型的运行特性应更深入的了解,在实际运行中更为合理和精确的控制机组运行。

参考文献

[1]汪祖鑫.超临界压力600MW机组的启动和运行[M].北京:中国电力出版社,1996.

作者简介:李伯伙(1981-),男,广东清远人,广东火电工程总公司助理工程师,研究方向:热能动力工程。

54 --

超临界锅炉运行技术

超临界锅炉运行技术 4. 超临界机组协调控制模式 (1)CCBF,机炉自动,机调负荷,炉调压力; 能充分利用锅炉蓄热,负荷响应快;主汽压力控制存在较大延迟,降低了主汽压稳定性。 (2)CCTF,机炉自动,炉调负荷,机调压力; 主汽压稳定性好,负荷响应慢。 (3)机炉协调; 机炉同时接受负荷和主汽压力指令,同步响应负荷和主汽压力的变化。 其中:(1)应用最广,(3)的调节器若匹配不当,机炉间容易引起震荡。 3.2.3 600MW超临界机组协调控制策略 1. 被控参数 (1)给水流量/蒸汽流量 因为给水系统和蒸汽系统是直接连通的,且由于超临界锅炉直流蓄热能力较小,给水流量和蒸汽流量比率的偏差过大将导致较大的汽压波动。 (2)煤水比 稳定运行工况时,煤水比必须维持不变,以保证过热器出口汽温为设计值。而在变动工况下,煤水比必须按一定规律改变,以便既充分利用锅炉蓄热能力,又按要求增减燃料,把锅炉热负荷调到与机组

新的负荷相适应的水平. (3)喷水流量/给水流量 超临界锅炉喷水仅能瞬时快速改变汽温.但不能始终维持汽温,因为过热受热面的长度和热焓都是不定的。为了保持通过改变喷水流量来校正汽温的能力,控制系统必须不断地把喷水流量和总给水流量之比恢复到设计值。 (4)送风量/给煤量(风煤比) 为了抑制NOx的产生,以及锅炉的经济、安全运行,需对各燃烧器的进风量进行控制,具体是通过各层燃烧器的二次风门和燃尽风门控制风量,每层风量根据负荷对应的风煤比来控制。 2 协调控制回路 超临界机组蓄热能力相对较小.锅炉跟随系统的局限性较大,对于锅炉和汽机的控制指令既考虑稳态偏差又要考虑动态偏差。为了在机组负荷变化时机炉同时响应,机组负荷指令作为前馈信号分别送到锅炉和汽机的主控系统,以便将过程控制变量维持在可接受的限度内。 汽轮机调节汽门直接控制功率,锅炉控制主汽压力(CCBF),给水流量由锅炉给水泵改变。功率指令直接发送到汽轮机调节汽门,使得功率响应较快。由于锅炉惯性大,负荷应变较慢.为防止汽机调门动作过大锅炉燃烧跟不上,设计了压力偏差拉回逻辑,当压力偏差过大时限制调门进一步动作,直到燃烧满足负荷需求。 在协调控制模式下,主汽压力偏差一直作为限制主汽调门响应负荷需

超临界直流锅炉的汽水品质

超临界直流锅炉的汽水品质 超临界锅炉多为直流锅炉。直流锅炉由于没有带有汽水分离功能的汽包,并且无锅炉的排污,使给水中的杂质随同蒸汽直接进入汽轮机或沉淀在锅炉的受热面上,因此,直流锅炉的给水品质要求高。给水中所含盐分在进入锅炉后的溶解、沉淀及腐蚀问题称为锅炉的热化学问题。 直流锅炉的汽水品质是影响锅炉、汽轮机等热力设备安全及经济运行的重要因素之一。锅炉产生的蒸汽不仅要符合设计规定的压力和温度,而且还要达到规定的品质指标。蒸汽的品质是指蒸汽中杂质含量的多少,也就是指蒸汽的清洁程度。蒸汽中的杂质包括气体杂质和非气体杂质。蒸汽中常见的气体杂质有O2、N2、CO2、NH3等,气体杂质若处理不当,可能引起金属腐蚀,且CO2还可参与沉淀过程。 蒸汽中的非气体杂质主要有钠盐、硅酸盐等,蒸汽含有非气体杂质又称蒸汽含盐。含有杂质的蒸汽通过过热器时,一部分杂质将沉积在过热器管内,影响蒸汽的流动和传热,使管壁温度升高,加速钢材蠕变甚至超温爆管。过热蒸汽中的含盐还可能沉积在管道、阀门、汽轮机叶片上,如果沉积在蒸汽管道的阀门处,会使阀门动作失灵;如果沉积在汽轮机的叶片上,将使得叶片表面粗糙、叶型改变和通流截面减小,导致汽轮机效率和出力降低,轴向推力增大,严重时还会影响转子的平衡而造成更大事故。 为了预防热力设备金属的结垢、积盐和腐蚀,直流锅炉的给水主要由汽轮机的凝结水加少量的补给水组成。为了确保给水品质,除补给水须高度精制外,凝结水也须进行除盐处理,并除去其中铜和铁的悬浮物。对凝汽器除选用合适的管材外,还需对冷却水管和凝汽器采用适当的防腐措施。对于新建或运行中的锅炉还需进行酸洗或定期冲洗,以保持锅炉管系内部的清洁,并做好停炉保养工作。 第一节锅内盐分的溶解与杂质的沉淀 在直流锅炉中,由给水带入的盐分随过热蒸汽进入汽轮机,或沉淀在锅炉受热面上。 盐分平衡方程式可用式(12—1)表示 S fw=S s+S d (12—1) 式中Sfw——给水含盐量,mg/kg或~g/kg; Ss——蒸汽含盐量,mg/kg或>g/kg; Sd——每千克水中沉淀在锅炉受热面上的盐量,mg/kg或~tg/kg。 一. 锅内盐分的溶解 1.盐类在过热蒸汽中的溶解度 在一定温度和压力下,某种物质(溶质)在100g溶剂里达到饱和溶液时所溶解的克数被称为该物质在这种溶液里的溶解度。 由给水带入锅内的杂质包括钠化合物、钙化合物、镁化合物、硅酸化合物及金属腐蚀产物等。这些杂质在过热蒸汽中的溶解度与过热蒸汽的参数有关,如图12—1~图12—6所示。从图中可见,蒸汽压力越高,各盐类在蒸汽中的溶解度越大。

国外超超临界机组技术的发展状况

国外超超临界机组技术的发展状况 一、超超临界的定义 水的临界状态点:压力 22.115MPa,温度374.15℃;蒸汽参数超过临界点压力和温度称为超临界。锅炉、汽轮机系列(通常以汽轮机进口蒸汽初压力划分等级):次中压2.5 MPa,中压3.5 MPa,次高压6.5 MPa,高压9.0MPa,超高压13.5 MPa ,亚临界16.7 MPa,超临界24.1 MPa。 超超临界(Ultra Super-critical)(也有称高效超临界High Efficiency Supercritical))的定义:丹麦人认为:蒸汽压力27.5MPa是超临界与超超临界的分界线;日本人认为:压力>24.2MPa,或温度达到593℃(或超过 566℃)以上定义为超超临界;德国西门子公司的观点:从材料的等级来区分超临界和超超临界;我国电力百科全书:通常把蒸汽压力高于27MPa称为超超临界。 结论:其实没有统一的定义,本质上超临界与超超临界无区别。 二、国外超超临界技术发展趋势 (一)超超临界机组的发展历史 超超临界机组发展至今有50年的历史,最早的超超临界机组于1957年投产,建在美国俄亥俄州(Philo 电厂6#机组),容量为125MW,蒸汽进汽压力31MPa,进汽温度621 / 566 / 566 C(二次再热)。汽轮机制造商为美国GE公司,锅炉制造商为美国B&W公司。 世界上超超临界发电技术的发展过程一般划分为三个阶段: 第一阶段(上世纪50-70年代)

以美国为核心,追求高压/双再的超超临界参数。1959年Eddystone 电厂1#机组,容量为325MW,蒸汽压力为34.5MPa,蒸汽温度为 649 / 566 / 566 C(二次再热),热耗为8630kJ/kWh,汽轮机制造商美国WH 公司,锅炉制造商美国CE公司。其打破了最大出力、最高压力、最高温度和最高效率的4项记录。1968 年降参数(32.2MPa/610/560/560 C)运行直至今,但至今仍是世界上蒸汽压力和温度较高的机组。 结果,早期的超超临界机组,更注重提高初压(30MPa或以上),迫使采用二次再热。使结构与系统趋于复杂,运行控制难度更难,并忽视了当时技术水平和材料水平,使机组可用率不高。 第二阶段(上世纪80年代) 以材料技术发展为中心,超超临界机组处于调整期。锅炉和汽轮机材料性能大幅度提高,电厂水化学方面的认识更趋深入,美国对已投运的超临界机组进行大规模的优化和改造,形成了新的结构和新的设计方法,使可靠性和可用率指标达到甚至超过了相应的亚临界机组。其后,美国将超临界技术转让给日本,GE公司转让给东芝和日立公司,西屋公司转让给三菱公司。 第三阶段(上世纪90年代开始) 迎来了超超临界机组新一轮的发展阶段。主要原因是国际上环保要求日趋严格,新材料的开发成功,常规超临界技术的成熟。大规模发展超超临界机组的国家以日本、欧洲(德国、丹麦)为主要代表。日本以川越电厂31 MPa /654℃/566℃/566℃超超临界为代表,开拓了一条从引进到自主开发,有步骤有计划的发展之路,成为当今超超临界技术领先国家。其值得我们认真学习。 三、各国超超临界发电技术情况

洛河三期超临界直流炉自动控制系统方案简介

洛河三期超临界直流炉自动控制系统方案简介 摘要:本文对超临界直流炉的控制特点进行了分析,并结合洛河三期两台超临界机组对协调控制系统、给水调节及蒸汽温度控制的方案从原理上进行简要说明。 关键词:协调;给水;调节 1.概述 洛河电厂三期2×600MW超临界机组的汽轮机是由上海汽轮机有限公司制造的超临界、一次中间再热、单轴、三缸四排汽、双背压、凝汽式汽轮机。额定功率为600MW,最大连续功率为648MW,主蒸汽压力24.2MPa,主蒸汽温度566℃,再热蒸汽压力4.033MPa,再热蒸汽温度566℃。 分散控制系统采用ABB公司生产的Symphony控制系统。软件组态采用Composer 4.3控制软件,图形组态采用PGP 4.0组态软件。其主要包括:数据采集及处理系统(DAS)、模拟量控制系统(MCS)、顺序控制系统(SCS)、旁路控制系统(BPS)、炉膛安全监视系统(FSSS)以及事故追忆系统(SOE)等。 DEH系统和MEH系统也采用ABB的控制软件及硬件,即与DCS一体化。是一套完成整个汽轮发电机组各项控制功能的完善的控制系统。 2.超临界直流炉的控制特点 超临界变压运行直流锅炉,由于没有汽包,当外部负荷变化时,汽压波动较大且因加热、蒸发、过热过程在各受热面没有固定的分界线,当给水或燃料扰动时,都将引起汽温的波动。因此为使锅炉具有良好的调节品质,需要有高性能的调节系统。 直流锅炉是汽水一次性循环,因此锅炉的蓄热较少,系统具有多变量的特性。 直流锅炉—汽轮机是复杂的多输入多输出的被控对象,燃料量、给水、汽轮机调门的任一变化,均会影响机组负荷、中间点温度、压力的变化,而且燃料、汽轮机调门的变化又会影响到给水流量的变化及主汽压力的变化,因此对于直流锅炉机组的协调控制系统来说,主汽压力控制是最基本的控制。 直流锅炉由于没有汽包,因此汽水没有固定的分界点,它随着燃料、给水流量以及汽轮机调门的变化而前移或者后移。而汽水分界点的移动直接影响汽水流程中加热段、蒸发段、过热段的长度,影响新蒸汽的温度,导致机前压力、负荷的变化,因此控制中间点温度是直流锅炉控制的重要环节。

超临界大型火电机组安全控制技术示范文本

超临界大型火电机组安全控制技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

超临界大型火电机组安全控制技术示范 文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 目前,国内装机容量已突破4亿千瓦,引进和建设低 煤耗、大容量的超临界大型火电机组可以提高我国发电厂 的经济性,同时也能满足节能、环保的要求,国内已投产 600 MW、800 MW、900 MW级超临界燃煤机组多台, 邹县电厂2×1000 MW超超临界燃煤机组立项在建。随着 超临界燃煤机组占国内装机容量的比重越来越大,其运行 情况将对电网安全产生很大影响。所以根据超临界大型火 电机组的特点,实施科学合理的安全控制监测,将对确保 电力安全生产发挥积极的作用。 1 超临界机组安全生产的特点 超临界大型火电机组蒸汽参数高(压力≥22.12 MPa、

温度≥540 ℃),和亚临界机组相比在运行过程中存在的问题有所不同。其主要问题有:①过热器进出口的部分管子过度磨损和水冷壁管、再热器管的泄漏,这些问题大多与燃料的含灰量和烟气流速有关;②汽机高压缸第一级叶片根部腐蚀,此种现象在机组投运6~8年后渐渐严重,蒸汽品质是主要的原因;③高压阀门的泄漏问题。 超临界大型火电机组的不可用率(包括强迫停炉、维修与计划停运)的影响因素是多方面的,超临界压力锅炉的不可用率约为汽轮机、发电机和电站辅机的3倍。水冷壁管泄漏是锅炉方面的主要问题,大部分是由于过热所致。管壁结垢和水冷壁中质量流量过低、管内紊流程度不够,使锅炉在高热负荷区发生核态沸腾所引起。造成上述问题的原因大多是锅炉水冷壁无法得到足够的冷却和缺少凝结水除盐设备或除盐设备不完善。水的品质对于超临界机组的可靠运行极为重要。

超超临界直流锅炉变压运行

内容摘要 我国电力以煤电为主, 在获取相同电能的情况下, 提高燃煤电厂的效率是节约能 源的主要途径,而超临界大容量机组恰恰满足这一要求。通过对超超临界锅炉机组技术特点的介绍,分析其变压运行时的有关问题,得出超超临界锅炉机组具有运行可靠性高,经济性高,厂效率高,煤耗低,具有良好的负荷调节特性和显著的环保效益等特点。超超临界锅炉与亚临界相比占有一定的优势,是我国燃煤锅炉技术发展的方向。 关键词:超超临界直流锅炉变压运行技术特点经济性 Abstract :China's coal-based electricity to the power of access to the same circumstances, improve the efficiency of coal-fired power plant is the major means of energy conservation, and large-capacity supercritical generating units precisely meet this requirement. Ultra-supercritical boiler through the introduction of technical features to analyze the issues related to transformer running, come running ultra supercritical boiler with high reliability, economy and high plant efficiency, low coal consumption, with good load regulation characteristics and significant environmental benefits and so on. The ultra supercritical boiler compares with subcritically and holds certain superiority. Supercritical and subcritical boiler holds certain advantages in comparison, is China's coal-fired boiler technology development direction . Key words: Ultra-supercritical once–through boiler variable pressure operation technique characteristics economic

直流锅炉的结构特点及其工作原理

1直流锅炉得结构特点及其工作原理 1、0 引言 随着电力行业得发展,大机组、大容量、大电网得电力系统已经逐渐取戴了过去得小机组、小电网得电力生产朝流,而直流锅炉作为现代电力生产得主力设备,承载着为社会节约资源、为电力充分发挥作用得重大责任。因此我们作为一名电厂热工人员就应该全面得去了解直流锅炉得结构特点及其工作原理,为今后得工作打下基础。 1、1直流锅炉得结构特点 直流锅炉一般就是按通常称为蒸发受热面得水冷壁得结构与布置方式得不同来分类得,目前国内外直流锅炉主要分为三个类型,如图1—1所示. 1) 水平围绕管图型(拉姆辛型) 上海锅炉厂生产得220t/h高压直流锅炉与400吨/时超高压直流锅炉都属于水平围绕管圈型直流锅炉。它得水冷壁就是内许多根平行并联得管子组成得管圈自下往上盘绕而成,为了稳定流动特性与减少各管得热偏差,在所有管子得入口处装有节流孔板。 水平围绕管圈型直流锅炉得水冷壁无下降管及小间联箱,金属消耗量少,疏水排气方便.同时,因管圈四壁围绕,且宽度较狭,能使受热不均匀性减少。只有在锅炉容量增加较大而管圈变宽时。才会造成沿高度方向较大得热偏差。 这种形式得直流锅炉,由于各排管子结构不同,难以将水冷壁预先组合.同时,水冷壁管多方向膨胀,因而不能应用简便得敷管式炉墙.采用框架炉墙则金属消耗量增加。此外,为防止水平管子发生汽水分离,采用了较高得重量流速,加上管子又长,因此整体如阻力较大。 2) 垂直多次上升管屏型(本生型) 这种直流锅炉得水冷壁由许多垂 直管屏组成,每一管屏都有进出口联箱, 各屏间用不受热得下降管联结。 垂直多次上升管屏型直流锅炉, 管系简单,管屏能以组件出厂。水冷壁 采用膜式结构,可应用敷管炉墙。水冷 壁垂直向下膨胀,能采用悬吊结构.出于 有较多得小间联箱,能起平衡各管因吸 热不均而造成得热偏差与平衡产生管间 脉动时压力峰得作用,因此这种型式得 直流锅炉得水动力特性较其它型式稳 定,但可能发生类似自然循环锅炉得停 滞利例流现象.应引起足够得注意。 这种型式得直流锅炉需炉外下 降管,联箱数量也多,所以金届消耗最大.由于各管屏在炉内所处得位置不同,辐射传热得差界引起热偏差较大.此外联箱小双相流体得均匀分配问题也较为重要. 3) 多弯道垂直升降型或多弯道水平弯曲管带型(苏尔寿型) 这种直流锅炉得水冷壁就是有许多根平行并列得管子组成管带围绕炉膛连续而成,

超超临界锅炉制造技术的研究

超超临界锅炉制造技术的研究 摘要:超超临界锅炉的材料以及结构有其自身的制造特点,要想能够使得超临 界锅炉的制造技术能够实现进一步的发展,就需要在有效掌握超临界锅炉制造工 艺特点的基础上,采取有效的方式来对超超临界锅炉制造技术进行改进,选取合 理的制造技术应用到超超临界锅炉的研制当中,从而使得超超临界锅炉的未来应 用范围更加的宽广。本文将对超超临界锅炉制造技术进行研究。 关键词:超超临界锅炉,螺旋管圈水冷壁,细晶粒不锈钢,集箱管座机械焊超超临界机组因其煤耗低,节约能源,我国已经把大幅度提高发电效率、加 速发展洁净煤技术的超超临界机组作为我国可持续发展、节约能源、保护环境的 重要措施。 1超超临界锅炉用钢 超超临界机组蒸汽压力和温度的提高对关键部件材料带来更高的要求,尤其 是材料的高温强度性能、抗高温腐蚀和氧化性能以及高温疲劳蠕变性能。超超临 界机组广泛采用各种低合金高强钢、耐热钢。如水冷壁采用具有优异的焊接性能 的T23和T24,联箱和蒸汽管道主要采用P91、P92、P122等马氏体高强钢,过热器、再热器主要采用P91马氏体高强钢及uper304H和TP347HFG奥氏体耐热钢。 2超超临界直流锅炉制造工艺方案 2.1 集箱制造工艺 超超临界锅炉集箱本体的材料与超临界、亚临界锅炉略有不同,主要体现在 过热器和再热器集箱选用了性能更好的 T P347H、P92 作为集箱本体材料。集箱管径较大、管壁较厚,特别是超长集箱给集箱制造、翻转、吊运及运输等均带来一 定的难度,另外,尤为关键的是所有管座与集箱连接的角焊缝均要求全焊透。根 据以上特点,我们采取了如下措施: (1)针对 TP347H、P92、P91 等钢的焊接难点,避免焊接返修,保证一次合格率,我们新研制了1 台集箱环缝对接的窄间隙自动焊机。此设备能实现不点固焊 装配、全自动氩弧焊打底及细丝窄间隙埋弧焊一次性焊妥,此技术在国内外尚无 先例,系自主创新成果。 (2)对于管径大于 108mm 的管座角焊缝,我们采用机械焊,用先进的工艺装 备保证产品质量。 (3)对于全焊透结构的小管座角焊缝,我们尽量采用自动内孔氩弧焊封底+ 手 工电弧焊焊妥工艺。对有些无法采用内孔氩弧焊设备的长管接头角焊缝,在选用 合理的焊接坡口的同时,我们采用独创的外壁自动氩弧焊打底设备焊接,保证根 部全焊透,然后用手工电弧焊焊妥。 (4)对于超长集箱的翻转、吊运及运输,除了添置必需的工艺装备之外,我们 还制定了一系列的吊运、运输工艺守则及注意事项,防止集箱碰伤、碰坏。 (5)针对 TP347H 不锈钢集箱的制造难点,我们设计制作了焊缝背面气体保护 防氧化工装,选用合理的焊接规范,控制层间温度,减少在敏化温度区域内的停 留时间,并通过焊后稳定化处理解决受焊接热循环影响出现的“贫铬区”间隙。 2.2 “三器”制造工艺 对于蛇形管的制造工艺,无论是超(超)临界机组还是亚临界机组均无明显区别,只是按锅炉容量的大小在管径、壁厚和外形尺寸上有所不同。超超临界锅炉的“三器”管排均为超长、超宽管排,且末级过热器和再热器采用 Super304H、TP347HFG 等细晶粒不锈钢,针对制造中的难点,我们采取如下措施:

超临界直流锅炉汽温的调整(路英明)

超临界直流锅炉汽温的调整 路英明 (神华国能鸳鸯湖电厂宁夏宁东) 摘要:超临界直流锅炉具有发电效率高、负荷适应性强等特点,是未来大型锅炉发展的方向,研究其动态特性十分重要。主、再热汽温是机组正常运行中监视的重要参数,超临界直流锅炉主汽温的调节以煤水比为主,喷水减温调节为辅;再热汽温调节以二次风挡板调节为准,喷水减温作为事故情况下使用。本论文针对我厂660MW超临界直流锅炉正常运行中、机组启停、机组加减负荷过程中汽温的调节和汽温的影响因素做了详细阐述,并对事故处理情况下汽温调节及汽温偏差的产生原因及减小方法做了个人的理解。 关键词:直流锅炉煤水比喷水减温汽温偏差 [Abstract]:Supercritical once-through boiler with high efficiency, strong load adaptability and other characteristics, is the future direction of the development of large boiler, and study its dynamic characteristics is very important. Main and reheat steam temperature is one of the important parameters, in the normal operation of the monitoring unit of supercritical once-through boiler main steam temperature control is given priority to with coal water ratio, water spray desuperheating adjustment is complementary; Reheat steam temperature regulation will be subject to secondary air damper control, water spray desuperheating used as accident cases. This thesis in view of our factory in the normal operation of 660 MW supercritical once-through boiler unit, the unit start-stop, add and subtract ZhongQi load process to adjust the temperature and the influence factors of steam temperature for detail, and the accident cases and steam temperature deviation causes regulate steam temperature and reduction method has done a personal understanding. [Key words]: Once-through boiler Coal water ratio Water spray desuperheating Steam temperature deviation 引言 鸳鸯湖电厂自投产以来锅炉存在严重结焦的现象,为抑制结焦制粉系统及燃烧系统运行都制定了相应的规定,二次风调节也对汽温产生了较大的影响,造成汽温调节有很大困难。一号机组大修后,通过对锅炉燃烧器的改造后,锅炉结焦有很大改善,但是我厂为了规范管理,对壁温超温及NOx超限进行严厉考核,对机组启停机、正常加减负荷及事故处理下汽温的调整又造成很大影响,为此本论文在严格控制各项指标的情况下,使机组汽温达到最经济性。 一、设备概况 鸳鸯湖电厂#1、2锅炉为上海锅炉厂有限公司生产的超临界参数变压运行螺旋管圈直流炉,单炉膛、一次中间再热、四角切圆燃烧方式、平衡通风、全钢构架、紧身封闭布置、固态排渣、全悬吊结构Π型锅炉,锅炉型号:SG-2141/25.4-M978。 过热器汽温通过煤水比调节和两级喷水减温器来控制,第一级减温器布置在

超(超)临界锅炉的特点

超(超)临界锅炉的特点 一、引言 随着我国火力发电事业的快速发展和节能、环保要求的日趋严格,提高燃煤机组的容量与蒸汽参数,进一步降低煤耗是大势所趋。在这个基础上,节约一次能源,加强环境保护,减少有害气体的排放,已越来越受到国内外的高度重视。超超临界机组因其煤耗低,节约能源,我国已经把大幅度提高发电效率、加速发展洁净煤技术的超超临界机组作为我国可持续发展、节约能源、保护环境的重要措施。尽管在同等蒸汽参数情况下,联合循环的效率比蒸汽循环的效率高10%左右,但是,由于PF-BC和IGCC尚处于试验或示范阶段,在技术上还存在许多不完善之处,而超临界技术已十分成熟,超超临界机组也已批量投运,且积累了良好的运行经验,国外已有一套完整而成熟的设计、制造技术。因此,技术成熟的大容量超临界和超超临界机组将是我国清洁煤发电技术的主要发展方向,也是解决电力短缺、能源利用率低和环境污染严重等问题的最现实和最有效的途径。 超超临界压力锅炉的关键技术是多方面的,在材料的选择、水冷壁系统及其水动力安全性、受热面布置、再热系统汽温的调控等多方面均存在设计和制造上的高难技术。 二、超(超)临界锅炉的特点 超临界机组区别与普通机组主要有以下特点: 1、蒸汽参数的选择 机组的蒸汽参数是决定机组热经济性的重要因素。一般压力为16.6~31.0MPa、温度在535~600℃的范围内,压力每提高1MPa,机组的热效率上升0.18%~0.29%:新蒸汽温度或再热蒸汽温度每提高10℃,机组的热效率就提高0.25%~0.3%;因此提高蒸汽参数是提高机组热效率的重要途径。目前超超临界与超临界的划分界限尚无国际统一的标准,下表列举了一些发达国家的典型机组的参数[1]。 现在常规的超临界机组采用的蒸汽参数为24.1MPa、538℃/566℃。一般认为蒸汽压力大于25MPa,蒸汽温度高于580℃称为超超临界。研究分析[2]指出对600/600℃这一温度等级,当主汽压力自25MPa升高到28MPa,锅炉岛和汽机岛的钢耗量将分别增加3.5%和2%。此外主汽压力28MPa时,汽机低压缸末级叶片排汽湿度将达到10.7%,已接近采用一次再热的极限值。 有文章表明[3]我国今后重点发展的超临界机组的参数将为汽机进口参数24.2MPa/566℃/566℃,锅炉的出口参数则为25.4MPa/571℃/569℃;超超临界机组的参数为汽机进口参数26.25MPa/600℃600℃,锅炉出口的参数则为27.56MPa/605℃/603℃;机组容量将主要为600MW和1000MW两种。

直流锅炉的静态和动态特性以及运行参数的调节特点

1.直流锅炉的静态和动态特性以及运行参数的调节特点 1.1.概述 锅炉正常运行是指单元机组启动后的锅炉运行过程。锅炉是单元机组中的一个重要环节,锅炉与汽轮发电机之间存在着相互联系、相互影响、相互依赖的运行关系。锅炉正常运行内容主要是监视和调整各种状态参数,满足汽轮发电机对蒸汽流量、蒸汽参数的要求,并保持锅炉长期连续安全经济运行。 锅炉各种状态参数之间的运行关系、变化规律称为锅炉运行特性,它有静态特性和动态特性两种。锅炉在各个工况的稳定状态下,各种状态参数都有确定的数值,称为静态特性。例如,不同的燃料量就有相应的蒸汽流量、相应的受热面吸热量、相应的汽温与汽压等,这些都是锅炉的静态特性。 锅炉从一个工况变到另一个工况的过程中,各种状态参数随着时间而变化,最终到达一个新的稳定状态。各种状态参数在变工况中随着时间变化的方向、历程和速度等称为锅炉的动态特性。 锅炉在正常运行中,各种状态参数的变化是绝对的,稳定不变是相对的。因为,锅炉经常受到各种内外干扰,往往在一个动态过程尚未结束时,又来了另一个动态过程。锅炉的静态特性与动态特性表明各种状态参数随时偏离设计值。锅炉正常运行的任务就是要使各种状态参数不论在静态或动态过程都应在允许的安全、经济范围内波动,这必须要通过调节手段才能实现。锅炉正常运行调节可分为自动调节和人工调节两种,高参数大型锅炉广泛采用高度的自动调节,以确保静态与动态过程各种状态参数的偏离在允许范围内。 锅炉正常运行还要注意炉内燃烧稳定,防止受热面结渣、积灰,高低温腐蚀、磨损,防止各级受热面管金属超温。正常运行还要监视给水、锅水与蒸汽品质,并进行正确的锅水处理。 1.2.过热汽温静态特性 直流锅炉各级受热面串联连接,水的加热与汽化、蒸汽的过热三个阶段的分界点在受热面中的位置不固定而随工况变化。由此而形成了直流锅炉不同于汽包锅炉的汽温静态特性。对有再热器的直流锅炉,建立热量平衡式稳定工况下,以给水为基准的过热蒸汽总焓升可按下式计算 式中——锅炉输入热量,kJ/kg; ——锅炉效率%; 、——给水焓、过热器出口焓,kJ/kg; ——再热器相对吸热量,; ——再热器吸热量,kJ/kg。 G——给水流量,等于蒸汽流量,kg/s;

直流热水锅炉的详细介绍

直流热水锅炉的详细介绍 一、直流热水锅炉介绍: 许多家用燃气热水器就是最简单的一种直流热水锅炉。这种热水器以强制循环的直流式水管作为受热面,在水流管路上装上与供水运动的燃气阀及燃烧器,冷水在流经水管的瞬间即被加热。因为水管外侧采用了密集的扩展受热面,结构紧凑,大部分都为壁挂式,当容量增大后,也可以设计成落地式。主要由外壳、燃气通道及燃烧器、燃烧室及对流换热器构成。它可用于一切压力,特别是在临界压力及以上压力范围内广泛应用。由于它没有汽包,因此,加工制造方便,金属消耗量小;水冷壁布置比较自由,不受水循环限制;调节反应快,负荷变化灵活;启、停迅速;最低负荷通常低于汽包锅炉。 热水锅炉是指靠给水泵压力,使给水顺序通过省煤器、蒸发受热面(水冷壁)、过热器并全部变为过热水的锅炉。由于给水在进入锅炉后,水的加热、蒸发和水蒸气的过热,都是在受热面中连续进行的,不需要在加热中途进行汽水分离。因此,它没有自然循环锅炉的汽包。在省煤器受热面、蒸发受热面和过热器受热面之间没有固定的分界点,随锅炉负荷变动而变动。 二、直流热水锅炉的发明: 直流热水锅炉在20世纪20年代初即已发明,30年代开始应用。虽然它具有一系列优点:不用汽包;压力参数范围宽,既可用于亚临界压力锅炉,又可用于超临界压力锅炉;制造方便、节省钢材;启、停炉快速等。但由于它对水处理和自动控制的要求高,并且,在蒸汽参数和锅炉容量不大时其优点并不显著,因而发展不快。直到50年代末、60年代初,由于电厂锅炉向大容量、高参数方向发展,水处理技术和自动控制技术也有了长足的进步,直流锅炉才获得迅速发展。除英、法等国外,很多国家都把直流锅炉作为大型电厂锅炉的主要型式。80年代,世界上最大容量的直流锅炉是美国4400吨/时超临界压力直流锅炉(配1300兆瓦机组)。中国于1968年建成第一台220吨/时高压直流锅炉,以后又陆续制成400吨/时超高压直流锅炉和1000吨/时亚临界参数中间再热式的直流锅炉。 三、直流热水锅炉的水冷壁布置: 直流热水锅炉水冷壁布置比较自由,形式很多,其基本形式有3种:水平围绕管圈式、回带管圈式和垂直管屏式。此外还有这 3种形式的派生型。基本形式中的前两种又称苏尔策式锅炉。它没有中间联箱,钢材较省,但水动力特性较差,安装、制造也较复杂,其原始形式已遭淘汰,派生型是苏联拉姆金教授的水平围绕上升管圈式锅炉。这种锅炉钢材最省,水阻力和热偏差较小,管圈中没有两相流体的分配问题,但其安装、支吊最复杂。70年代以来出现了UP一次上升式和FW两次上升垂直管屏式,水冷壁管都采用全焊气密膜式,这样便于制造、安装,简化了炉墙结构,可采用微正压燃烧,但只适用超大容量锅炉。 四、直流热水锅炉的技术特点: (1)快速启停。与自然循环锅炉相比,直流炉从冷态启动到满负荷运行,变负荷速度可提高一倍左右。 (2)适用于亚临界和超临界以及超超临界压力锅炉。 (3)锅炉本体金属消耗量最少,锅炉重量轻。 (4)水冷壁的流动阻力全部要靠给水泵来克服,这部分阻力约占全部阻力的25%~30%。

《安全管理》之锅炉的工作原理及工作特性

锅炉的工作原理及工作特性 1)工作原理 锅炉由“锅”和“炉”以及相配套的附件、自控装置、附属设备组成。“锅”是指锅炉接受热量,并将热量传给水的受热面系统,是锅炉中储存或输送锅水或蒸汽的密闭受压部分。“锅”主要包括:锅筒(或锅壳)、水冷壁、过热器、再热器、省煤器、对流管束及集箱等。“炉”是指燃料燃烧产生高温烟气,将化学能转化为热能的空间和烟气流通的通道——炉膛和烟道。“炉”主要包括:燃烧设备和炉墙等。 2)工作特性 (1)爆炸的危害性。锅炉具有爆炸性。锅炉在使用中发生破裂,使内部压力瞬时降至等于外界大气压的现象叫爆炸。 (2)易于损坏性。锅炉由于长周期运行在高温高压的恶劣工况下,因而经常受到局部损坏,如不能及时发现处理,会进一步导致重要部件和整个系统的全面受损。 (3)使用的广泛性。由于锅炉为整个社会生产、生活提供能源和动力,因而其应用范围极其广泛。 (4)连续运行性。锅炉一旦投用,一般要求连续运行,不能任意停用;否则,会影响一条生产线、一个厂,甚至一个地区的生活和生产,其间接经济损失巨大,

有时还会造成恶劣的后果。 3)锅炉的分类 (1)按用途分为:电站锅炉、工业锅炉、生活锅炉、机车锅炉,船舶锅炉等。 (2)按锅炉产生的蒸汽压力和蒸发量分为:高压锅炉、中压锅炉、低压锅炉及大型、中型、小型锅炉。工业锅炉一般是小型低压锅炉,电站锅炉一般为大中型、中高压锅炉。 (3)按载热介质分为:蒸汽锅炉、热水锅炉和有机热载体锅炉。 (4)按热能来源分为:燃煤锅炉、燃油锅炉、燃气锅炉、废热锅炉。 (5)按锅炉结构分为:锅壳式锅炉、水管锅炉。 (6)在燃煤锅炉中按燃烧方式分为:·层燃炉、沸腾炉、煤粉炉(室燃炉)。层燃炉又分手烧炉、链条炉、往复炉、抛煤机炉、振动炉排炉。 (7)按蒸发段工质循环动力分为:自然循环锅炉、强制循环锅炉和直流锅炉。

浅谈超临界直流锅炉“干—湿态”转换方法

浅谈超临界直流锅炉“干—湿态”转换方法 【摘要】超临界锅炉干湿态转换过程中,容易出现金属温度波动过大,影响锅炉安全运行,因此要在转换过程中控制燃料和给水量,避免出现大的波动。 【关键词】干湿态;负荷;燃料量;给水量;给水泵 0 概述 超临界直流锅炉,在负荷中心(LMCC)上以6MW/min的升负荷率,升负荷至50%额定负荷。 在此期间锅炉由湿态转化为干态,在湿态与干态转换区域运行时,控制燃料和给水量,保持汽水分离器水位稳定。严格按升压曲线控制汽压稳定上升,防止受热面金属温度波动。 1 锅炉干湿态转换时间 由于直流炉没有明显的汽水分界面,所以当燃水比严重失调时干湿态就会转换,而与机组的负荷和蒸汽参数没有严格的关系。但是为了保证螺旋水冷壁的安全和水动力特性的稳定,一般设计上要求:不带强制循环直流炉在20%MCR左右,带强制循环直流炉在30%MCR左右进行干湿态转换,但是在实际运行中为了充分保证螺旋水冷壁的安全,规定“不带强制循环直流炉在30%MCR左右,带强制循环直流炉在40%MCR左右”进行干湿态转换。 2 转换的方法 2.1 湿态向干态转换当机组负荷到达240MW左右时,此时的燃料量应该是两套制粉系统和10支油枪左右,汽水分离器出口温度已经达到对应压力下的饱和温度,储水箱水位多次呈现下降趋势,此时应该考虑锅炉该转直流运行。暖第三台磨,增投对应磨煤机的两支油枪,保持给水流量不变,投第三台磨,开汽轮机调门,加负荷至300MW以上,观察汽水分离器出口温度已经有过热度,视过热度的大小来确定是否加水。维持燃料和给水的稳定,维持燃烧的稳定,停炉水泵,关闭炉水泵出口调门,投溢流管道暖管。转换油枪,暖第四套磨煤机,启磨煤机后,机组负荷增至350MW~380MW,锅炉逐步退油。 2.2 干态向湿态转换当机组负荷降到300MW左右时,此时的燃料量应该是三套制粉系统和2支油枪左右,汽水分离器出口温度的过热度下降很低甚至没有过热度,分离器偶尔出现水位显示。此时应该考虑锅炉转湿态运行。减少一台磨煤机的出力,增投两支油枪,维持锅炉燃烧稳定,维持机组负荷不大幅度下降,此时增加给水,让分离器和储水箱见水,但不能大幅度的加水,流量大概增加100T/H左右,以防止主蒸汽温度骤降。储水箱水位达到6000mm以上时,启动炉水泵,检查再循环电动门自动开启,等炉水泵电流、储水箱水位稳定后,逐步开启炉水泵出口调门。逐步增投油枪,退磨煤机,降负荷。 3 注意事项 3.1 机组正常运行时,无论什么原因(调度原因、煤质差、原煤仓堵煤、给煤机卡、磨煤机检修等等),都必须保证锅炉的热负荷(燃料量)在350MW以上,否则只要燃料量和给水稍微一扰动就会造成锅炉转湿态,主蒸汽温度会大幅度下降。 3.2 湿态向干态转换时,增加燃料要迅速,并且燃料量要大些,防止锅炉转换成干态后又返回成湿态,造成炉水泵频繁地启动。 3.3 相应地干态向湿态转换时,要适当的增投油枪,维持锅炉燃烧的稳定,

什么是超临界变压直流锅炉

超临界压力锅炉(supereritiealpressureboil-er)主蒸汽压力超过临界压力22.12Mpa的锅炉称为超临界压力锅炉。通常大容量超临界压力电站锅炉的主蒸汽压力定在24.5MPa左右,也有比之更高的。当主蒸汽压力达到27MPa以上时(见蒸汽参数),又称为超超临界压力锅炉(ultrasupereritiealPressureboiler)。发展超临界或超超临界压力机组都是为了更有效地提高火力发电厂的经济性,因此对超临界压力锅炉还伴随着采用更高的汽温和更大的锅炉容t。妞临界压力锅炉技术特性由于水和蒸汽的压力超过临界压力后不可能有汽水双相混合物共存,因此超临界压力锅炉只能采用没有锅筒的直流锅炉。 超临界压力也体现了当代电站锅炉最先进的技术。与亚临界锅炉相比,由于蒸汽参数更高,因此在锅炉受压元件的设计时需要采用更高等级的材质,并需要更完善的强度设计和寿命分析;由于它是直流锅炉,因此其水冷壁系统的设计与锅筒式锅炉有很大区别,并且还需要设t一套起动系统;由于超临界压力锅炉往往采用变压运行,因此在锅炉性能设计时还要兼顾超临界和亚临界各种不同运行工况时的特点,保证锅炉安全经济运行。此外,超临界压力锅炉在给水品质、自控以及防止高温部件高温腐蚀等方面,都有着更高的要求。超临界压力锅炉水冷盛与亚临界压力锅炉相比,超临界压力锅炉最大特点体现在水冷壁系统的设计方面.当代超临界压力锅炉水冷壁设计必需体现超临界、直流锅炉与变压运行的三大要素.水冷壁管圈型式、质t流速、热偏差、流量分配等都是超临界压力锅炉水冷壁设计的关键因素。水冷壁管圈型式超临界压力锅炉目前常用的管圈型式分为螺旋管圈和垂直管圈两大类型。螺旋管圈水冷壁管与水平线成一定倾角,从锅炉底部沿炉膛四周螺旋式盘绕上升,直至炉膛上部折焰角与炉膛出口处为止,通常盘绕1~2圈,螺旋倾角在100~2护之间。垂直管圈与通常的锅筒式锅炉相似,从冷灰斗至炉顶水冷壁管均作垂直布置,并且为满足变压运行需要,往往采用小管径一次上升式管圈。这两种型式在当代大容t超临界压力锅炉上都得到了广泛采用,二者在水冷壁结构设计、制造和安装等方面各有优缺点,但只要设计合理,都可以满足锅炉运行性能的要求。质t流速超临界压力锅炉水冷壁管内质量流速的合理选取十分关键,是关系到锅炉安全经济运行的重要因素。对于螺旋管圈,可以通过合理选择管径、根数和姗旋倾角等来确定合理的质量流速。对于垂直管圈特别是一次上升式垂直管圈,一般只能采用较小管径(例如尹28或尹32)来满足对质量流速的要求,而且还需要采用内螺纹管解决水冷壁高热负荷区传热恶化的问题。热偏差超临界压力锅炉在高负荷超临界状态运行时,介质作单相强制流动,对炉膛内的热偏差比较敏感,在水冷壁并联管之间,介质温度或管壁温度会产生较大差值,因此在水冷壁设计时要作热偏差判断和计算。在水冷壁上部,往往还设置中间混合联箱以减少工质热偏差,防止水冷壁超温或产生过大温差应力.流t分配现代大容量超临界压力锅炉,水冷壁由成百上千根并联管子组成,介质在这些管子中作强制一次性流动,为了保证水冷壁的安全运行,应特别注意并联各管间的流量分配,无论在超临界压力或亚临界压力工作状态,每个水冷壁管中都需要保持足够的冷却流量,使水冷壁安全运行。超临界压力锅炉起动系统因为超临界压力锅炉是直流锅炉,因此必需配备一套起动系统(见直流锅炉起动系统),供锅炉在滑参数起动时分离由水冷壁产生的汽水混合物,将饱和燕汽通向过

直流锅炉汽温的调节特性

直流锅炉汽温的调节特点 一:直流锅炉汽温静态特性 在直流炉中,汽温的调节是和汽包炉有很大的区别的,首先我们先来看看直流炉汽温的静态特性: 由于直流锅炉各级受热面串联连接,水的加热与汽化、蒸汽的过热三个阶段的分解点在受热面中的位置不固定而随工况变化。因此,直流锅炉汽温的静态特性不同与汽包锅炉。对有再热器的直流锅炉,建立热平衡式: G(h gr—h gs)=BQ ar,netηgl 式中 G ——给水流量,等于蒸汽流量,kg/s; h gr——主蒸汽焓,kj/kg; h gs——给水焓,kj/kg; B ——锅炉燃料量,kg/s; Q ar,net——燃料收到基低位发热量,kj/kg; ηgl ——锅炉热效率,% 对上面公式分析如下: 1)假设新工况的燃料发热量、锅炉热效率、给水焓都和原工况相同,而负荷不同。则有以下几种情况:B'/G'=B/G,即新工况的燃料量和给水量比例和原工况相等(也就是说燃水比保持不变),则h′gr =h gr。因此,在上述假定条件下,主蒸汽温度保持不变。所以,直流锅炉负荷变化时,在锅炉燃料发热量、锅炉热效率、给水焓不变的条件下,保持适当的燃水比,主汽温度可保持稳定。这也是直流锅炉运行特性与汽包锅炉的运行特性不同之一。 2)如果新工况的燃料发热量变大,则h′gr >h gr,主蒸汽温度增高;假如新工况锅炉热效率下降,则h′gr

相关文档
最新文档