2014考研数学备考重点解析——如何求幂级数的收敛半径和收敛域

2014考研数学备考重点解析——如何求幂级数的收敛半径和收敛域
2014考研数学备考重点解析——如何求幂级数的收敛半径和收敛域

2014考研数学备考重点解析——如何求幂级数的收敛半径和收敛域

一、相关定理 阿贝尔定理: (1) 若

∑∞

=1n n

n x a

当)0(00≠=x x x 时收敛,则当||||0x x <时,∑∞

=1

n n

n

x a 绝对收敛. (2) 若

∑∞

=1

n n

n

x a

当0x x =时发散,则当||||0x x >时,∑∞

=1

n n n x a 发散.

二、具体型问题的收敛半径、收敛域的求法 1.通用求法:根据阿贝尔定理,

∑∞

=1

n n n

x a

绝对收心理学考研敛,所以把n n a x 加绝对值后,由比值法或根植法可反解

出收敛区间.即令1

1lim 1n n n n n a x a x

++→∞<或lim 1n n n a x →∞<解出x 的范围,即可得出收敛区间与收敛半径. 2.便捷求法(针对不缺项的幂级数):如果ρ=+∞→n

n n a a 1lim

,则ρ1=R ;或如果ρ=→∞n n n a ||lim ,则ρ1

=R .特别0ρ=时,

R =+∞;ρ=+∞时,0R =

3.再单独讨论收敛区间两个端点处的常数项级数的敛散性,收敛区间与收敛端点结合在一起就是收敛域.

三、抽象型问题的收敛半径、收敛域的求法 根据阿贝尔定理,已知0

1

()

n

n

n a x x ∞

=-∑在某点1x (10x x ≠)的敛散性,确定该幂级数的收敛半径可分为以下三种情

况:

(1)若在1x 处收敛,则收敛半径10R x x ≥-; (2)若在1x 处发散,则收敛半径10R x x ≤-;

(3)若在1x 处条件收敛,则收敛半径10R x x =-.(你会心理学考研用反证法证明该条么?)

【例1】求n n n

n x n )1()2(31

--+∑∞

=的收敛域. 【解析】n

n n n n n n n n n n

n n n n u u )2(3)

2(3lim

)2(31

)2(3lim

lim

1

11

1

1-+-+=-+?

+-+=++∞→++∞

→+∞→3)3

2

(1)32

(23lim

=-+--=∞→n

n

n . 或3)3

2

(1lim 3)2(3lim

||lim =-+=-+=∞→∞

→∞

→n

n n n

n

n

n n n n n n

u .

则收敛半径3

1

=

R . 当31

1=-x 时,原级数为∑∑∑∞

=∞=∞=-+=-+11

11)32(131)2(3n n n n

n n n n n n , 由于∑∞

=11n n

发散,∑∞

=-11)32(n n n 收敛,则原幂级数在31

1=-x 处发散.

当311-=-x 时,原级数为∑∑∑∞

=∞=∞=+-=--+1

11)32(1)1(3)1()2(3n n n n n

n n n n n n n ,则原幂级数在31

1-=-x 处收敛,故原幂级数收敛域为)3

4

,32[.

【例2】求幂级数

212(3)

n n n

n n

x +∞

=+-∑的收敛半径. 【解析】这是缺项级数,只能用通用求法来求收敛半径,即22

211

1212(3)lim

lim 132(3)n n n n n n n

n

n n

n x

u x n u x

++++→∞

→∞++-==<+-,得(3,3)x ∈-,收敛半径为3.

【例3】例7.22 设幂级数

∑∞

=-1

)1(n n n

x a

在0=x 收敛,在2=x 发心理学考研散,则该幂级数收敛域为____.

【解析】由于幂级数

∑∞

=-1

)1(n n

n x a 在0=x 处收敛,可知当|01|R ≥-,即1R ≥; 该级数在2=x 处发散,可知当|21|R ≤-,即1R ≤.

所以收敛半径1R =,该幂级数收敛域为).2,0[

2014年考研数一真题及答案解析(完整版)

2014年考研数一真题与答案解析

数学一试题答案 一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项 符合题目要求的,请将所选项前的字母填在答题纸 ...指定位置上. (1)B (2)D (3)D (4)B (5)B (6)A (7)(B) (8)(D)

二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸... 指定位置上. (9)012=---z y x (10)11=-)(f (11)12+=x x y ln (12)π (13)[-2,2] (14)25n 三、解答题:15—23小题,共94分.请将解答写在答题纸... 指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)【答案】 2 1211111111102 0221 121 2112=-=--=--=--=--=+ --++→→+∞→+∞ →+∞→+∞→???u e lim u u e lim x )e (x lim ,x u x )e (x lim x tdt dt t )e (lim )x ln(x dt ]t )e (t [lim u u u u x x x x x x x x x 则令 (16)【答案】 20 20 2232222=+=+='++'?++')x y (y xy y y x xy y y x y y y x y )(y 20-==或舍。 x y 2-=时,

2 110 660 62480 62480 633333223223-==?==+-=+-+-=+-?+?+-=+++y ,x x x x x x )x (x )x (x x y x xy y 04914 190 141411202222222362222>=''=''=''+-''-''=''+'+'++''?+'?+'+'+''+')(y )(y )(y )(y )(y y x y x y x y y y x )y (x y y y y y y y )y ( 所以21-=)(y 为极小值。 (17)【答案】 y cos e )y cos e (f x E x x '=?? )y cos (e )y cos e (f y sin e )y cos e (f y E )y sin (e )y cos e (f y E y cos e )y cos e (f y cos e )y cos e (f x E x x x x x x x x x x -'+''=??-'=??'+''=??22222222 y cos e )y cos e (f )y cos e (f e )y cos e E (e )y cos e (f y E x E x x x x x x x +=''+=''=??+??44222 222 令u y cos e x =, 则u )u (f )u (f +=''4, 故)C ,C (,u e C e C )u (f u u 为任意常数2122214 -+=- 由,)(f ,)(f 0000='=得 4 161622u e e )u (f u u --=- (18)【答案】 补{}∑=1 1z )z ,y ,x (:的下侧,使之与∑围成闭合的区域Ω,

高等数学基本公式整理(级数部分)

常数项级数: 是发散的调和级数:等差数列:等比数列:n n n n q q q q q n n 1312112 )1(3211111 2+++++=++++--=++++- 级数审敛法: 散。存在,则收敛;否则发、定义法: 时,不确定时,级数发散时,级数收敛,则设:、比值审敛法: 时,不确定时,级数发散时,级数收敛,则设:别法): —根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞→+∞→∞→+++=?? ???=><=?? ???=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ 。的绝对值其余项,那么级数收敛且其和 如果交错级数满足—莱布尼兹定理: —的审敛法或交错级数1113214321,0lim )0,(+∞ →+≤≤?????=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛: ∑∑∑∑>≤-+++++++++时收敛 1时发散p 级数: 收敛; 级数:收敛; 发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数; 肯定收敛,且称为绝对收敛,则如果为任意实数; ,其中111)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n 幂级数:

0010)3(lim )3(1111111221032=+∞=+∞=== ≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。 ,其中时不定 时发散时收敛 ,使在数轴上都收敛,则必存收敛,也不是在全 ,如果它不是仅在原点 对于级数时,发散 时,收敛于 ρρρρρ 函数展开成幂级数: +++''+'+===-+=+-++-''+-=∞→++n n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f ! )0(!2)0()0()0()(00lim )(,)()! 1()()(! )()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数: )()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-+ +=+--x n x x x x x x x n n m m m x m m mx x n n n m 欧拉公式: ??? ????-=+=+=--2sin 2cos sin cos ix ix ix ix ix e e x e e x x i x e 或 三角级数: 。 上的积分=在任意两个不同项的乘积正交性:。 ,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin )sin cos (2)sin()(00101 0ππω???ω-====++=++=∑∑∞ =∞= nx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n 傅立叶级数:

1987年-2014考研数学一历年真题完整版(Word版)

1987年全国硕士研究生入学统一考试 数学(一)试卷 一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)当x =_____________时,函数2x y x =?取得极小值. (2)由曲线ln y x =与两直线e 1y x =+-及0y =所围成的平面图形的面积是 _____________. 1x = (3)与两直线 1y t =-+及121 111 x y z +++== 都平行且过原点的平面方程为_____________.2z t =+ (4)设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)L xy y dx x x dy -+-?= _____________. (5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),===ααα则向量 (2,0,0)=β在此基底下的坐标是_____________. 二、(本题满分8分) 求正的常数a 与,b 使等式2 01lim 1sin x x bx x →=-?成立. 三、(本题满分7分) (1)设f 、g 为连续可微函数,(,),(),u f x xy v g x xy ==+求 ,.u v x x ???? (2)设矩阵A 和B 满足关系式2,+AB =A B 其中301110,014?? ??=?? ????A 求矩阵.B 四、(本题满分8分) 求微分方程26(9)1y y a y ''''''+++=的通解,其中常数0.a > 五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设2 ()() lim 1,()x a f x f a x a →-=--则在x a =处

高等数学(级数)期末试卷

《高等数学》--级数期末考试试卷 班级 学号 姓名 一、填空:本大题共8小题,每题2分,共16分。 1、写出几何级数 ,通项为 。 2、写出调和级数 ,通项为 。 3、写出p 级数 ,第100项为 。 4、设级数1 n n u ∞ =∑收敛于s ,a 为不等于零的常数,则级数1 n n au ∞ ==∑ 。 5、已知级数1 2!n n n ∞ =∑收敛,则2lim !n n n →∞= 。 6、若级数1 n n u ∞=∑发散,则原级数1 n n u ∞ =∑ (填敛散性)。 7、将函数()sin f x x =展开成马克劳林级数为 。 8、将函数()cos f x x =展开成幂级数为 。 二、选择题:本大题共8小题,每小题3分,共24分。在每小题给出的四个选项 中,只有一项是符合题意要求的。 9、lim 0n n u →∞ =是级数 1 n n u ∞ =∑收 敛的------------------------ --------------------------------------------------------------------------------------------( ) A 、充分条件 B 、必要条件 C 、充要条件 D 既非充分又非必要条件

10、设级数1 n n u ∞=∑收敛,级数1 n n v ∞=∑发散,则级数1 ()n n n u v ∞ =+∑------( ) A 、收敛 B 、绝对收敛 C 、发散 D 、敛散性不定 11、下列级数收敛的是----------------------------------------------------( ) A 、1n n ∞ =∑ B 、1ln n n ∞ =∑ C 、11n n n ∞ =+∑ D 、1 1 (1)n n n ∞ =+∑ 12、下列级数的发散的是-------------------------------------------------( ) A 、1n ∞ = B 、111 248+++ C 、0.001 D 、13 ()5n n ∞ =∑ 13、若级数1 n n u ∞ =∑收敛,n s 是它的前n 项部分和,则1 n n u ∞ =∑的和为( ) A 、n s B 、n u C 、lim n n s →∞ D 、lim n n u →∞ 14、幂级数0! n n x n ∞ =∑的收敛区间为 -----------------------------------( ) A (-1,1) B 、(0,)+∞ C 、(,)-∞+∞ D 、(1,2) 15、被世界公认的微积分的创始人为----------------------------( ) A 、阿基米德和刘徽 B 、牛顿和庄子 C 、莱布尼兹和牛顿 D 、欧拉 16、若幂级数0n n n a x ∞ =∑的收敛区间为(1,2)-则-------------------( ) A 、在1x =-处收敛 B 、在4x =处不一定发散 C 、在2x =处发散 D 、在0x =处收敛

2014年考研数学一真题与详细解答

2014硕士研究生入学考试 数学一 一、选择题1—8小题.每小题4分,共32分. 1.下列曲线有渐近线的是( ) (A )x x y sin += (B )x x y sin +=2 (C )x x y 1sin += (D )x x y 12sin += 2.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( ) (A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≤'')(x f 时,)()(x g x f ≥ (D )当0≤'')(x f 时,)()(x g x f ≤ 3.设)(x f 是连续函数,则=? ?---y y dy y x f dy 1110 2 ),(( ) (A )? ?? ?---+2 100 11 010 x x dy y x f dx dy y x f dx ),(),( (B )? ?? ? ----+0 101 1 10 1 2 x x dy y x f dx dy y x f dx ),(),( (C )? ?? ? +++θθππθθπ θθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1 2 10 20 dr r r f d dr r r f d (D )? ?? ? +++θθππ θθπ θθθθθθsin cos sin cos )sin ,cos ()sin ,cos (10 2 10 20rdr r r f d rdr r r f d 4.若函数{ } ??-∈---=--π π ππ dx x b x a x dx x b x a x R b a 2211)sin cos (min )sin cos (,,则=+x b x a sin cos 11( ) (A )x sin 2 (B )x cos 2 (C )x sin π2 (D )x cos π2 5.行列式d c d c b a b a 000 000 0等于( ) (A )2)(bc ad - (B )2)(bc ad -- (C )2222c b d a - (D )2222c b d a +- 6.设321ααα,, 是三维向量,则对任意的常数l k ,,向量31ααk +,32ααl +线性无关是向量321ααα,,线性无关的( ) (A )必要而非充分条件 (B )充分而非必要条件 (C )充分必要条件 (D )非充分非必要条件 7.设事件A ,B 想到独立,3050.)(,.)(=-=B A P B P 则=-)(A B P ( ) (A )0.1 (B )0.2 (C )0.3 (D )0.4

2014年考研数学三真题及答案

2014年考研数学三真题 一、选择题(18小题,每小题4分,共32分。下列媒体给出的四 个选项中,只有一个选项是符合题目要求的。) (1)设且≠0,则当充分大时有 (A) (B) (C)(D) 【答案】A。 【解析】 【方法1】直接法: 由且≠0,则当充分大时有 【方法2】排除法: 若取显然,且(B)和(D)都不正确; 取显然,且(C)不正确 综上所述,本题正确答案是(A) 【考点】高等数学—函数、极限、连续—极限的概念与性质 (2)下列曲线中有渐近线的是 (A) (B)

(C) (D) 【答案】C。 【解析】 【方法1】 由于 所以曲线有斜渐近线,故应选(C) 解法2 考虑曲线与直线纵坐标之差在时的极限 则直线是曲线的一条斜渐近线,故应选(C) 综上所述,本题正确答案是(C) 【考点】高等数学—一元函数微分学—曲线的凹凸、拐点及渐近线 (3)设当时,若是比 高阶的无穷小,则下列选项中错误的是 (A) (B)

(C) (D) 【答案】D。 【解析】 【方法1】 当时,知,的泰勒公式为 又 则 【方法2】 显然, 由上式可知,,否则等式右端极限为∞,则左端极限也为∞,与题设矛盾。 故 综上所述,本题正确答案是(D)。 【考点】高等数学—函数、极限、连续—无穷小量及其阶的比较

(4)设函数具有二阶导数,,则在区间 [0,1]上 (A)当时, (B)当时, (C)当时, (D)当时, 【答案】D。 【解析】 【方法1】 由于则直线过点和(),当时,曲线在区间[0,1]上是凹的,曲线应位于过两个端点和的弦的下方,即 【方法2】 令,则 ,,

高数 级数

《高等数学(下)》自学、复习参考资料Ⅲ ——使用前请详细阅读后面所附的“使用指南” 授课教师:杨峰(省函授总站高级讲师) 强烈建议同志们以《综合练习》为纲,仔细掌握其中的所有习题内容!各章复习范围: 第一部分《矢量代数与空间解析几何》 ————第八章第一至六节、第八节(即是除了第七节之外都要复习)第二部分《多元函数微积分》 ————第九章第一至五节(其中第四节只要求“全微分”) ————第十章第一至三节、第五节(即是第四、六节暂不作要求)第三部分《级数论》 ————第十一章都要复习 敬告学员——本门课程复习资料我们是根据听课和教研的基本情况结合自己的理解、加工,尽量全面、系统地整理出来,但是也只能供大家参考使用而已,并不能代表考试的任何信息,特此说明。不便之处,敬请原谅! 另外,以后象这样的数理学科,众所周知,其难度较大,数字稍作变化,许多同志未必能做出来。因此,这些科目的面授课建议大家都能克服困难,积极地参加,以获取准确的知识和复习信息,否则光是依赖网上复习参考资料,随时有不能一次通过的危险。

第十一章 级数 一、常数项级数的概念与性质(了解) 1、无穷级数的概念 设有无穷数列 ,,,,,21??????n u u u 则式子 ,21???++???++n u u u 称为无穷级数,简称级数。记作 ∑∞ =1 n n u 。即 , 211 ???++???++=∑∞ =n n n u u u u 其中,,,,,21??????n u u u 叫做级数的项,而n u 叫做级数的一般项或通项,各项都是常数的级数称为常数级数。 例如 ???++???+++n 321, ???++???+++n 3 1 31313132。 就是常数项级数。 2、级数的收敛与发散 定义 设级数,21 ???++???++n u u u 当n 无限增大时,

2014年考研数学一真题

2014年全国硕士研究生入学统一考试数学一试题 一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项 符合题目要求的,请将所选项前的字母填在答题纸指定位置上. (1)下列曲线中有渐近线的是( ) (A )sin y x x =+ (B )2 sin y x x =+ (C )1sin y x x =+ (D )2 1sin y x x =+ (2)设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]内( ) (A )当()0f x '≥时,()()f x g x ≥ (B )当()0f x '≥时,()()f x g x ≤ (C )当()0f x '≤时,()()f x g x ≥ (D )当()0f x '≤时,()()f x g x ≤ (3)设(,)f x y 是连续函数,则2 1 10 1(,)y y dy f x y dx ---=? ? ( ) (A )2 11 10 010(,)(,)x x dx f x y dy dx f x y dy ---+?? ?? (B ) 2 1 100 1 1(,)(,)x x dx f x y dy dx f x y dy ----+?? ?? (C ) 11 2 cos sin 0 2 (cos ,sin )(cos ,sin )d f r r dr d f r r dr π π θθπθθθθθθ++? ? ?? (D ) 11 2cos sin 0 2 (cos ,sin )(cos ,sin )d f r r rdr d f r r rdr π πθθπθθθθθθ++? ? ?? (4)若函数 {} 2211,(cos sin )min (cos sin )a b R x a x b x dx x a x b x dx π π π π - -∈--=--?? ,则

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

2014年考研数学真题及参考答案(数学一)

2014年全国硕士研究生入学统一考试数学一?? 1?堆择腿11 8小甌毎小題4企共32分?下列毎题铃出的四个述项中?只有 ftt 项特合题目要 次的,请将髀项陆的爭审填念劄■懈揩定位置上? ? ? ? (1) 下列曲钱有渐近线的是 () (A)y = x+sinx (B) y= x 2 + sinx ?1 2?1 (C) y = x+ an — (D) y = f+ sm — X 7 (2) 设函敎f(x)具有二阶导如 gW-/(0)(l-x)+/(l)^-则在区糾[0」]上() (A)^/(x)> 0 时./W>g(x) (B)当八机0时?/??£(X ) Q)当於(力50 时./|?

2014年考研数学三真题及解析

2014年全国硕士研究生入学统一考试 数学三试题 一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设lim ,n a a =且0,a ≠则当n 充分大时有( ) (A )2n a a > (B )2 n a a < (C )1n a a n >- (D )1 n a a n <+ (2)下列曲线有渐近线的是( ) (A )sin y x x =+ (B )2sin y x x =+ (C )1sin y x x =+ (D )2 1sin y x x =+ (3) (A ) (B ) (C ) (D ) (4)设函数()f x 具有二阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上( ) (A )当'()0f x ≥时,()()f x g x ≥ (B )当'()0f x ≥时,()()f x g x ≤ (C )当'()0f x ≤时,()()f x g x ≥ (D )当'()0f x ≤时,()()f x g x ≥

(5)行列式 00000000a b a b c d c d = (A )2()ad bc - (B )2()ad bc -- (C )2 2 22 a d b c - (D )22 2 2 b c a d - (6)设123,,a a a 均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的 (A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分也非必要条件 (7)设随机事件A 与B 相互独立,且P (B )=0.5,P(A-B)=0.3,求P (B-A )=( ) (A )0.1 (B )0.2 (C )0.3 (D )0.4 (8)设123,,X X X 为来自正态总体2(0,)N σ 服从的分布为 (A )F (1,1) (B )F (2,1) (C )t(1) (D )t(2) 二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸... 指定位置上. (9)设某商品的需求函数为402Q P =-(P 为商品价格),则该商品的边际收益为_________。 (10)设D 是由曲线10xy +=与直线0y x +=及y=2围成的有界区域,则D 的面积为_________。 (11)设 20 1 4 a x xe dx = ? ,则_____.a = (12)二次积分2 21 1 0( )________.x y y e dy e dx x -=?? (13)设二次型22 123121323(,,)24f x x x x x ax x x x =-++的负惯性指数为1,则a 的取值范围是_________

高等数学基本公式整理(级数部分)

常数项级数: 是发散的 调和级数:等差数列:等比数列:n n n n q q q q q n n 1 312112 )1(3211111 2 +++++= ++++--= ++++-ΛΛΛ 级数审敛法: 散。 存在,则收敛;否则发、定义法: 时,不确定 时,级数发散 时,级数收敛 ,则设:、比值审敛法: 时,不确定时,级数发散 时,级数收敛 ,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞ →+∞→∞ →+++=?? ? ??=><=?? ? ??=><=lim ;3111lim 2111lim 1211Λρρρρρρρρ 。的绝对值其余项,那么级数收敛且其和 如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞ →+≤≤?????=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u ΛΛ绝对收敛与条件收敛: ∑∑∑∑>≤-+++++++++时收敛 1时发散p 级数: 收敛; 级数:收敛; 发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中11 1 )1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n Λ ΛΛΛ 幂级数:

01 0)3(lim )3(111 1111 221032=+∞=+∞ === ≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。 ,其中时不定 时发散时收敛 ,使在数轴上都收敛,则必存收敛,也不是在全 ,如果它不是仅在原点 对于级数时,发散 时,收敛于 ρρρ ρρΛΛΛΛ函数展开成幂级数: Λ ΛΛ Λ+++''+'+===-+=+-++-''+-=∞→++n n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f ! )0(!2)0()0()0()(00 lim )(,)()!1() ()(! )()(!2)())(()()(2010)1(00)(2 0000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数: ) ()!12()1(!5!3sin )11(! )1()1(!2)1(1)1(1 21532+∞<<-∞+--+-+-=<<-++--++-+ +=+--x n x x x x x x x n n m m m x m m mx x n n n m ΛΛΛΛΛ 欧拉公式: ??? ????-=+=+=--2sin 2cos sin cos ix ix ix ix ix e e x e e x x i x e 或 三角级数: 。 上的积分=在任意两个不同项的乘积正交性:。 ,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin ) sin cos (2)sin()(00101 0ππω???ω-====++=++=∑∑∞ =∞ =ΛΛnx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n 傅立叶级数:

2014年考研数学三真题与答案解析

2014年考研数学三真题与解析 一、选择题 1—8小题.每小题4分,共32分. 1.设0≠=∞ →a a n n lim ,则当n 充分大时,下列正确的有( ) (A )2 a a n > (B )2 a a n < (C )n a a n 1- > (D)n a a n 1+< 【详解】因为0≠=∞ →a a n n lim ,所以0>?ε,N ?,当N n >时,有ε<-a a n ,即εε+<<-a a a n , εε+≤<-a a a n ,取2 a = ε,则知2 a a n > ,所以选择(A ) 2.下列曲线有渐近线的是 (A )x x y sin += (B )x x y sin +=2 (C )x x y 1 sin += (D )x x y 12 sin += 【分析】只需要判断哪个曲线有斜渐近线就可以. 【详解】对于x x y 1sin +=,可知1=∞ →x y x lim 且01 ==-∞→∞→x x y x x sin lim )(lim ,所以有斜渐近线x y = 应该选(C ) 3.设3 2 dx cx bx a x P +++=)(,则当0→x 时,若x x P tan )(-是比3 x 高阶的无穷小,则下列选项中错误的是( ) (A )0=a (B )1=b (C )0=c (D )6 1 = d 【详解】只要熟练记忆当0→x 时)(tan 3331x o x x x ++ =,显然3 1 010====d c b a ,,,,应该选(D ) 4.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( ) (A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤ 【分析】此题考查的曲线的凹凸性的定义及判断方法. 【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两

2014年考研数学二真题与解析

2014年考研数学二真题与解析 一、选择题 1—8小题.每小题4分,共32分. 1.当+→0x 时,若)(ln x 21+α ,α1 1)cos (x -均是比x 高阶的无穷小,则α的可能取值范围是( ) (A )),(+∞2 (B )),(21 (C )),(121 (D )),(2 10 【详解】αααx x 221~)(ln +,是α阶无穷小,ααα2 11 21 1x x ~)cos (-是α2 阶无穷小,由题意可知?? ? ??>>121αα 所以α的可能取值范围是),(21,应该选(B ). 2.下列曲线有渐近线的是 (A )x x y sin += (B )x x y sin +=2(C )x x y 1sin += (D )x x y 12 sin += 【详解】对于x x y 1sin +=,可知1=∞ →x y x lim 且01 ==-∞→∞→x x y x x sin lim )(lim ,所以有斜渐近线x y = 应该选(C ) 3.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( ) (A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤ 【分析】此题考查的曲线的凹凸性的定义及判断方法. 【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断. 显然 x f x f x g )())(()(110+-=就是联接))(,()),(,(1100f f 两点的直线方程.故当0≥'')(x f 时,曲线是凹 的,也就是)()(x g x f ≤,应该选(D ) 【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令 x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≥'')(x f 时,曲线是凹的,从而010==≤)()()(F F x F ,即0≤-=)()()(x g x f x F ,也就是

2014-2015年考研数学二真题及答案解析

2014年全国硕士研究生入学统一考试数学二试题 一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸... 指定位置上. (1) 当0x +→时,若ln (12)x +α ,1 (1cos )x -α 均是比x 高阶的无穷小, 则α的取值范围是( ) (A) (2,)+∞ (B) (1,2) (C) 1 (,1)2 (D) 1(0,)2 (2) 下列曲线中有渐近线的是 ( ) (A) sin y x x =+ (B) 2sin y x x =+ (C) 1 sin y x x =+ (D) 2 1sin y x x =+ (3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( ) (A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥ (D) 当()0f x ''≥时,()()f x g x ≤ (4) 曲线2 2 7 41 x t y t t ?=+??=++??上对应于1t =的点处的曲率半径是 ( ) (A) 50 (B) 100 (C) (D)(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则2 2 l i m x x →=ξ ( ) (A)1 (B) 2 3 (C) 12 (D) 13 (6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20 u x y ?≠??及22220u u x y ??+=??,则 ( ) (A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得

高数知识汇总之级数

第七章 级数 7.1 常数项级数的概念与性质 7.1.1 常数项级数的概念 常数项级数: 一般的,设给定数列 12,,,, n a a a 则该数列所有项相加所得的表达式 12n a a a ++++ 叫做(常数项)无穷级数,简称(常数项)级数; 其中第n 项n a 叫做级数的一般项或通项。 级数简记为: 1 n n a ∞ =∑,即 121 n n n a a a a ∞ ==++++ ∑ 部分和: 作(常数项)级数12 n a a a ++ ++ 的前n 项的和121 n n n i i S a a a a ==++ +=∑, n S 称为级数(1)的前n 项部分和。 当n 依次取1,2,3,… 时,它们构成一个新的数列{}n S ,称为部分和数列。 级数收敛与发散: 如果级数 1 n n a ∞ =∑的部分和数列{}n S 有极限S ,即lim n n S S →∞ =(有限值),则称无穷级数 1 n n a ∞ =∑收敛,极限S 叫做该级数的和,并写成12n S a a a =++++ 。 如果{}n S 没有极限(lim n n S →∞ 不存在或为±∞),则称无穷级数 1 n n a ∞ =∑发散。 常用级数: (1)等比级数(几何级数): n n q ∞ =∑ 1 11q q -当时收敛于 1q ≥当发散

(2)p 级数: 11p n n ∞ =∑ 11p p ≤当时收敛当时发散 级数的基本性质: 性质1: 若级数 1n n a ∞ =∑收敛于和S ,则级数 1 n n Ca ∞ =∑(C 是常数)也收敛,且其和为CS 。 性质2: 若级数 1 n n a ∞ =∑和级数 1 n n b ∞ =∑分别收敛于和S 、σ,则级数 ()1 n n n a b ∞ =±∑也收敛,且其和为 S σ±。 注意:如果级数 1n n a ∞ =∑和 1 n n b ∞ =∑都发散,则级数 ()1n n n a b ∞ =±∑可能收敛也可能发散;而如果 两个级数 1 n n a ∞ =∑和 1 n n b ∞ =∑中有且只有一个收敛,则 ()1 n n n a b ∞ =±∑一定发散。 性质3: 在级数中去掉、加上或改变有限项,不会改变级数的敛散性。 性质4: 若级数 1 n n a ∞ =∑收敛,则对该级数的项任意加括号后所构成的新的级数 1121111()()()n n k k k k k a a a a a a -+++ +++++++++ 仍收敛,且其和不变。 注意:该性质的逆命题不成立。即,若一个级数加括号后的新级数收敛,则不能推出原级数收敛。 推论1: 若加括号后所成的级数发散,则原来级数也发散。 性质5: 若级数 1 n n a ∞ =∑收敛,则 lim 0n n a →∞ =。 注意:lim 0n n a →∞ =仅仅是级数1 n n a ∞ =∑收敛的必要条件,而非充分条件。

2014年考研数学一真题及详细解答

2014硕士研究生入学考试 数学一 一、选择题1—8小题.每小题4分,共32分. 1.下列曲线有渐近线的是( ) (A )x x y sin += (B )x x y sin +=2 (C )x x y 1sin += (D )x x y 12sin += 2.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( ) (A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≤'')(x f 时,)()(x g x f ≥ (D )当0≤'')(x f 时,)()(x g x f ≤ 3.设)(x f 是连续函数,则 =??---y y dy y x f dy 11102),(( ) (A ) ????---+210011010x x dy y x f dx dy y x f dx ),(),( (B ) ????----+010*******x x dy y x f dx dy y x f dx ),(),( (C ) ????+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1021020dr r r f d dr r r f d (D ) ????+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1021020rdr r r f d rdr r r f d 4.若函数{} ??-∈---=--πππ πdx x b x a x dx x b x a x R b a 2211)sin cos (min )sin cos (,,则=+x b x a sin cos 11( ) (A )x sin 2 (B )x cos 2 (C )x sin π2 (D )x cos π2 5.行列式d c d c b a b a 000000 00等于( ) (A )2)(bc ad - (B )2)(bc ad -- (C )2222c b d a - (D )2222c b d a +- 6.设321ααα,, 是三维向量,则对任意的常数l k ,,向量31ααk +,32ααl +线性无关是向量321ααα,,线性无关的( ) (A )必要而非充分条件 (B )充分而非必要条件 (C )充分必要条件 (D )非充分非必要条件 7.设事件A ,B 想到独立,3050.)(,.)(=-=B A P B P 则=-)(A B P ( ) (A )0.1 (B )0.2 (C )0.3 (D )0.4

相关文档
最新文档