椭圆题型大全 (1)

椭圆题型大全 (1)
椭圆题型大全 (1)

椭圆题

1、命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦

点的椭圆,则命题甲是命题乙的 ( )

A 、充分不必要条件

B 、必要不充分条件

C 、充要条件

D 、既不充分又不必要条件

2、已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P 的轨迹是( )

A 、椭圆

B 、圆

C 、直线

D 、线段

3、已知1F 、2F 是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长1F P 到Q ,使得2PF PQ =,那么动点

Q 的轨迹是( )

A 、椭圆

B 、圆

C 、直线

D 、点

4、已知1F 、2F 是平面α内的定点,并且)0(221>=c c F F ,M 是α内的动点,且a MF MF 221=+,

判断动点M 的轨迹.

5、椭圆19

252

2=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 。

6、若方程13

52

2=-+-k y k x 表示椭圆,求k 的范围. 7、

轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 102

2=+>>( ) A 、充分而不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件 8、已知方程11

252

2=-+-m y m x 表示焦点在y 轴上的椭圆,则实数m 的范围是 . 9、已知方程222=+ky x 表示焦点在y 轴上的椭圆,则实数k 的范围是 .

10、方程231y x -=所表示的曲线是 .

11、如果方程222=+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围。

12、已知椭圆06322=-+m y mx 的一个焦点为)2,0(,求m 的值。

13、已知方程222=+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 .

14、根据下列条件求椭圆的标准方程:

(1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26;

(2)长轴是短轴的2倍,且过点(2,-6);

(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点)

2,3(),1,6(21--P P ,求椭圆方程. 15、以)0,2(1-F 和)0,2(2F 为焦点的椭圆经过点)2,0(A 点,则该椭圆的方程为 。 16、如果椭圆:k y x =+224上两点间的最大距离为8,则k 的值为 。

17、已知中心在原点的椭圆C 的两个焦点和椭圆3694:222=+y x C 的两个焦点一个正方形的四个顶点,且椭圆C 过点A (2,-3),求椭圆C 的方程。

18、已知P 点在坐标轴为对称轴的椭圆上,点P 到两焦点的距离为

354和352,过点P 作长轴的垂线恰过椭圆的一个焦点,求椭圆方程。

19、求适合下列条件的椭圆的标准方程:

(1)长轴长是短轴长的2倍,且过点)6,2(-;

(2)在x 轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.

1、已知动圆P 过定点)0,3(-A ,并且在定圆64)3(:22=+-y x B 的内部与其相内切,求动圆圆心P 的轨迹方程.

20、一动圆与定圆032422=-++y y x 内切且过定点)2,0(A ,求动圆圆心P 的轨迹方程.

21、已知圆4)3(:221=++y x C ,圆100)3(:222=+-y x C ,动圆P 与1C 外切,与2C 内切,求动圆圆心P 的轨迹方程.

22、已知)0,21

(-A ,B 是圆4)21(:2

2=+-y x F (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为

23、已知ABC ?三边AB 、BC 、AC 的长成等差数列,且,CA AB >点B 、C 的坐标)0,1(-、)0,1(,求点A 的轨迹方程.

24、一条线段AB 的长为a 2,两端点分别在x 轴、y 轴上滑动 ,点M 在线段AB 上,且2:1:=MB AM ,求点M 的轨迹方程.

25、已知椭圆的焦点坐标是)25,0(±,直线023:=--y x l 被椭圆截得线段中点的横坐标为

2

1,求 椭圆方程.

26、若ABC ?的两个顶点坐标分别是)6,0(B 和)6,0(-C ,另两边AB 、AC 的斜率的乘积是9

4-

,顶 点A 的轨迹方程为 。

27、 已知圆229x y +=,从这个圆上任意一点P 向x 轴引垂线段'PP ,垂足为'P ,点M 在'PP 上, 并且错误!未找到引用源。,求点错误!未找到引用源。的轨迹。

28、已知圆122=+y x ,从这个圆上任意一点P 错误!未找到引用源。向X 轴引垂线段PP ,则线段PP 的中点M 的轨迹方程是 。

29、已知(01)A ,-,(0.1)B 错误!未找到引用源。,ABC ?错误!未找到引用源。的周长为6,则错误!未找到引用源。的顶点C 的轨迹方程是 。

30、已知椭圆14

522

22=+y x ,A 、B 分别是长轴的左右两个端点,P 为椭圆上一个动点,求AP 中点的轨迹方程。

31、已知1F 、2F 为椭圆19

252

2=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点。若1222=+B F A F ,则=AB 。

32、已知1F 、2F 为椭圆19

252

2=+y x 的两个焦点,过2F 且斜率不为0的直线交椭圆于A 、B 两点,则1ABF ?的周长是 。

33、已知C AB ?的顶点B 、C 在椭圆13

22

=+y x 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则C AB ?的周长为

34、设M 是椭圆116

252

2=+y x 上的一点,1F 、2F 为焦点,621π=∠MF F ,求21MF F ?的面积。 35、已知点P 是椭圆14

22

=+y x 上的一点,1F 、2F 为焦点,021=?PF ,求点P 到x 轴的距离 35、椭圆14

22

=+y x 的两个焦点为1F 、2F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则

= 。

37、已知AB 为经过椭圆22

221,(0)x y a b a b

+=>>错误!未找到引用源。的中心的弦,(c,0)F 错误!未找到引用源。为椭圆的右焦点,则错误!未找到引用源。的面积的最大值为

38、椭圆12

92

2=+y x 的焦点为1F 、2F ,点P 在椭圆上,若41=PF ,则=2PF ;=∠21PF F 。 39、椭圆14

92

2=+y x 的焦点为1F 、2F ,P 为其上一动点,当21PF F ∠为钝角时,点P 的横坐标的取值范围为 。

40、P 为椭圆116

252

2=+y x 上一点,1F 、2F 分别是椭圆的左、右焦点。(1)若1PF 的中点是M ,求证:12

15PF MO -=;(2)若?=∠6021PF F ,求21PF PF ?的值。 41、求下列椭圆的标准方程

(1)32,8==e c ; (2)3

5=e ,一条准线方程为3=x 。 42、 椭圆过(3,0)点,离心率为3

6=e ,求椭圆的标准方程。 43、椭圆短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则椭圆的标准方程为?

44、椭圆的对称轴为坐标轴,离心率为2

2,两准线间的距离为4,则此椭圆的方程为? 45、根据下列条件,写出椭圆的标准方程:

(1)椭圆的焦点为)0,1(1-F 、)0,1(2F ,其中一条准线方程是4-=x ;

(2)椭圆的中心在原点,焦点在y 轴上,焦距为34,并且椭圆和直线016372=-+y x 恰有一个公共点;

(3)椭圆的对称轴为坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆的最近距离是3。

46、已知椭圆)0(12222>>=+b a b y a x 的左、右焦点分别为21F F 、,离心率为2

2,右准线方程为2=x 。求椭圆的方程。

47、根据下列条件求椭圆的方程:

(1)两准线间的距离为5

518,焦距为52; (2)和椭圆120

242

2=+y x 共准线,且离心率为21; (3)已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点煌距离分别为

354和352,过P 作长轴的垂线恰好过椭圆的一个焦点。

47、已知椭圆)0()3(22>=++m m y m x 的离心率为2

3=

e ,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标。

48、已知椭圆的长轴长是6,焦距是24,那么中心在原点,长轴所在直线与y 轴重合的椭圆的准线方程是 。

49、椭圆81922=+y x 的长轴长为 ,短轴长为 ,焦点坐标为 ,顶点坐标为 ,离心率为 ,准线方程为 。 50、过椭圆)0(122

22>>=+b a b

y a x 的左焦点1F 作x 轴的垂线交椭圆于点P ,F2为右焦点,若?=∠6021PF F ,则椭圆的离心率为_______________;

51、在平面直角坐标系中,椭圆)0(12222>>=+b a b

y a x 的焦距为2,以O 圆心,a 为半径作圆,过点)0,(2

c a 作圆的两切线互相垂直,则离心率e = 。

51、若椭圆的两个焦点把长轴分成三等份,则椭圆的离心率为?

54、椭圆的短轴为AB ,它的一个焦点为F1,则满足1ABF ?为等边三角形的椭圆的离心率是?

55设椭圆)0(122

22>>=+b a b

y a x 的右焦点为1F ,右准线为1l ,若过1F 且垂直于x 轴的弦的长等于点1F 到1l 的距离,则椭圆的离心率是 。

56、已知点),0(b A ,B 为椭圆)0(12222>>=+b a b

y a x 的左准线与x 轴的交点,若线段AB 的中点C 在椭圆上,则该椭圆的离心率为 。

57、设椭圆)1(11

22

22>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到定直线x=a 的平方除以才的距离为 。

58、椭圆221259x y +=与22

1(09)925x y k k k

+=<<--的关系为( ) A 、相同的焦点 B 、有相同的准线 C 、有相等的长、短轴 D 、有相等的焦距

59、当m 为何值时,直线m x y l +=:和椭圆14416922=+y x (1)相交;(2)相切;(3)相离。

60、若直线2+=kx y 与椭圆63222=+y x 有两个公共点,则实数k 的取值范围为 。

61、已知斜率为1的直线l 过椭圆的右焦点,交椭圆于A 、B 两点,求AB 的弦长

64、设椭圆)0(1:22

22>>=+b a b

y a x C 的左右两个焦点分别为1F 、2F ,过右焦点2F 且与x 轴垂直的直线l 与椭圆C 相交,其中一个交点为)1,2(M ;(1)求椭圆的方程;

(2)设椭圆C 的一个顶点为B (0,-b ),直线2BF 交椭圆C 于另一点N ,求BN F 1?的面积。

65、已知一直线与椭圆22

4936x y +=相交于A 、B 两点,弦AB 的中点坐标为(1,1),求直线AB 的方

程.

66、椭圆C以坐标轴为对称轴,并与直线l:x+2y=7相交于P、Q两点,点R的坐标为(2,5),若

PQR ?

为等腰三角形,

?

=

∠90

PQR,求椭圆C的方程

椭圆典型题型归纳(供参考)

椭圆典型题型归纳 题型一. 定义及其应用 例1.已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程; 练习: 1.6=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 2.10=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 4.1m =+表示椭圆,则m 的取值范围是 5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的 另一个焦点2F 构成的2ABF ?的周长等于 ; 6.设圆22 (1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ; 题型二. 椭圆的方程 (一)由方程研究曲线 例1.方程22 11625 x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程 例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程 例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程; 例4.求经过点(2,3)-且与椭圆22 9436x y +=有共同焦点的椭圆方程; 注:一般地,与椭圆22221x y a b +=共焦点的椭圆可设其方程为22 2221()x y k b a k b k +=>-++; (四)定义法求轨迹方程; 例5.在ABC ?中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>

椭圆的常见题型及解法(一).

椭圆的常见题型及其解法(一) 椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助. 一、椭圆的焦半径 椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 1.公式的推导 设P (,)是椭圆上的任意一点, 分别是椭圆的左、右焦点,椭圆 ,求证,。证法1: 。 因为,所以 ∴ 又因为,所以 ∴, 证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知1 1 PF e d ,又,所 以, 而 。

∴,。 2.公式的应用 例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4, 0)的距离成等差数列,则 12 x x + . 解:在已知椭圆中,右准线方程为 25 4x = ,设A 、B 、C 到右准线的距离为 , 则、、。 ∵ , , ,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 例2.12,F F 是椭圆22 14x y +=的两个焦点,P 是椭圆上的动点,求 的最大值和最 小值。 解:设 ,则10202,2.PF x PF x =+ =-2 12034.4 PF PF x ?=- P 在椭圆上,022x ∴-≤≤,12PF PF ?的最大值为4,最小值为1. 变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。 解:由已知 可得 ,所以直线AB 的方程 为 ,代入椭圆方程 得 设 ,则 ,从而 变式练习2. 设Q 是椭圆22 221(0)x y a b a b +=>>上任意一点,求证:以2QF (或1QF )为

高中数学-选修2-1-椭圆题型大全-(1)

高中数学-选修2-1-椭圆题型大全-(1)

椭圆题 1、命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件 2、已知1 F 、2 F 是两个定点,且4 2 1=F F ,若动点P 满足4 2 1 =+PF PF 则动点P 的轨迹是( ) A 、椭圆 B 、圆 C 、直线 D 、线段 3、已知1 F 、 2 F 是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长1 F P 到Q ,使得2 PF PQ =,那么动点Q 的轨迹是 ( ) A 、椭圆 B 、圆 C 、直线 D 、点 4、已知1 F 、2 F 是平面α内的定点,并且) 0(22 1>=c c F F ,M 是α 内的动点,且a MF MF 221 =+,判断动点M 的轨迹. 5、椭圆 19 252 2=+y x 上一点M 到焦点1 F 的距离为2,N 为1 MF 的中 点,O 是椭圆的中心,则ON 的值是 。 6、若方程13 52 2=-+-k y k x 表示椭圆,求k 的范围. 7、 轴上的椭圆”的 表示焦点在”是“方程“y ny mx n m 1022=+>>( ) A 、充分而不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件

8、已知方程 11 252 2=-+-m y m x 表示焦点在y 轴上的椭圆,则实数 m 的范围是 . 9、已知方程2 22 =+ky x 表示焦点在y 轴上的椭圆,则实数k 的范围是 . 10、方程2 31y x -= 所表示的曲线是 . 11、如果方程2 22 =+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围。 12、已知椭圆0 6322 =-+m y mx 的一个焦点为)2,0(,求m 的值。 13、已知方程2 22 =+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 . 14、根据下列条件求椭圆的标准方程: (1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26; (2)长轴是短轴的2倍,且过点(2,-6); (3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点) 2,3(),1,6( 21 --P P ,求椭圆方程. 15、以)0,2(1 -F 和)0,2(2 F 为焦点的椭圆经过点)2,0(A 点,则该椭 圆的方程为 。 16、如果椭圆:k y x =+22 4上两点间的最大距离为8,则k 的 值为 。 17、已知中心在原点的椭圆C 的两个焦点和椭圆 36 94:222=+y x C 的两个焦点一个正方形的四个顶点,且椭圆C

(完整版)椭圆常见题型总结

椭圆常见题型总结 1、椭圆中的焦点三角形:通常结合定义、正弦定理、余弦定理、勾股定理来解决; 椭圆 22 2 21(0)x y a b a b +=>>上一点00(,)P x y 和焦点1(,0)c F -,2(,0)c F 为顶点的12PF F ?中,12F PF α=∠,则当P 为短轴端点时α最大,且 ① 122PF PF a +=; ②22 2 12122cos 4c PF PF PF PF α=+-; ③12 121 sin 2PF F S PF PF α?= =2tan 2 b α?(b 短轴长) 2、直线与椭圆的位置关系:直线y kx b =+与椭圆22 221(0)x y a b a b +=>>交于 1122(,),(,)A x y B x y 两点,则12AB x =-=3、椭圆的中点弦:设1122(,),(,)A x y B x y 是椭圆22 221(0)x y a b a b +=>>上不同两点, 00(,)M x y 是线段AB 的中点,可运用点差法可得直线AB 斜率,且20 20 AB b x k a y =-; 4、椭圆的离心率 范围:01e <<,e 越大,椭圆就越扁。 求椭圆离心率时注意运用:c a e = ,222c b a += 5、椭圆的焦半径 若00(,)P x y 是离心率为e 的椭圆22 221(0)x y a b a b +=>>上任一点,焦点 为1(,0)c F -,2(,0)c F ,则焦半径10PF a ex =+,10PF a ex =-; 6、椭圆标准方程的求法 ⑴定义法:根据椭圆定义,确定2 a ,2 b 值,结合焦点位置直接写出椭圆方程; ⑵待定系数法:根据焦点位置设出相应标准方程,根据题中条件解出2 a ,2 b ,从而求出标准方程; ⑶在不知道焦点的情况下可设椭圆方程为221Ax By +=;

高中数学_椭圆,知识题型总结

陈氏优学 教学课题 椭圆 知识点一:椭圆的定义 平面内一个动点到两个定点 、 的距离之和等于常数( ),这个动 点 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若,则动点的轨迹为线段; 若 ,则动点 的轨迹无图形. 讲练结合一.椭圆的定义 1.若ABC ?的两个顶点()()4,0,4,0A B -,ABC ?的周长为18,则顶点C 的轨迹方程是 知识点二:椭圆的标准方程 1.当焦点在轴上时,椭圆的标准方程:,其中; 2.当焦点在轴上时,椭圆的标准方程:,其中; 注意: 1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有 和 ; 3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为, ;当焦点在 轴上时,椭圆的焦点坐标为 , 。 讲练结合二.利用标准方程确定参数

1.椭圆22 14x y m + =的焦距为2,则m = 。 2.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。 知识点三:椭圆的简单几何性质 椭圆的的简单几何性质 (1)对称性 对于椭圆标准方程,把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方 程都不变,所以椭圆是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的 中心对称图形,这个对称中心称为椭圆的中心。 (2)范围 椭圆上所有的点都位于直线x=±a 和y=±b 所围成的矩形内,所以椭圆上点的坐标满足|x|≤a ,|y|≤b 。

(3)顶点 ①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0), A2(a,0),B1(0,―b),B2(0,b)。 ③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。a和b分别叫做椭圆的长半轴长 和短半轴长。 (4)离心率 ①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。 ②因为a>c>0,所以e的取值范围是0<e<1。e越接近1,则c就越接近a,从而 越小,因 此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。当且仅当 a=b时,c=0,这时两个焦点重合,图形变为圆,方程为x2+y2=a2。 椭圆的图像中线段的几何特征(如下图):

圆锥曲线题型归纳经典含答案

椭圆题型总结 一、 椭圆的定义和方程问题 (一) 定义: 1. 命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦 点的椭圆,则命题甲是命题乙的 ( B ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 2. 已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P 的轨迹是( D ) A.椭圆 B.圆 C.直线 D.线段 3. 已知1F 、2F 是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长P F 1到Q ,使得2PF PQ =,那么动 点Q 的轨迹是( B ) A.椭圆 B.圆 C.直线 D.点 4. 椭圆 19 252 2=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 4 。 5. 选做:F 1是椭圆15 92 2=+y x 的左焦点,P 在椭圆上运动,定点A (1,1),求||||1PF PA +的最小值。 解:26||2||2||||||221-=-≥-+=+AF a PF a PA PF PA (二) 标准方程求参数范围 1. 试讨论k 的取值范围,使方程1352 2=-+-k y k x 表示圆,椭圆,双曲线。 (略) 2. 轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 102 2=+>>( C ) A.充分而不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 3. 若方程1cos sin 2 2 =+ααy x 表示焦点在y 轴上的椭圆,α所在的象限是( A ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限 4. 方程2 31y x -=所表示的曲线是 椭圆的右半部分 . 5. 已知方程22 2 =+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 k>1 (三) 待定系数法求椭圆的标准方程 1. 根据下列条件求椭圆的标准方程: (1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26; (2)长轴是短轴的2倍,且过点(2,-6); (3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点)2,3(),1,6(21--P P ,求椭圆方程. 2. 简单几何性质 1. 求下列椭圆的标准方程(1) 32,8= =e c ; (2)过(3,0)点,离心率为 36 = e 。 (3)椭圆的对称轴为坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆的最近距离是3。 (4)椭圆短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则椭圆的标准方程为 (5)已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为 354和3 52,过P 作长轴的

高考数学-直线和椭圆(圆锥曲线)常考题型

高考数学 直线和圆锥曲线常考题型 运用的知识: 1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =r r g 2、韦达定理:若一元二次方程2 0(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a +=-=。 3、中点坐标公式:1212,y 22 x x y y x ++= =,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。 4、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上, 则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一, AB = 或者AB = 例题1、已知直线:1l y kx =+与椭圆22 : 14x y C m +=始终有交点,求m 的取值范围 解: 14m m ≤≠且。 例题2、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2 (1)y k x y x =+?? =?消y 整理,得2222 (21)0k x k x k +-+= ① 由直线和抛物线交于两点,得 2242(21)4410k k k ?=--=-+> 即2 1 04 k << ② 由韦达定理,得:212221 ,k x x k -+=-121x x =。 则线段AB 的中点为22211 (,)22k k k -- 。 线段的垂直平分线方程为:2 21112()22k y x k k k --=--

高中数学椭圆练习题

椭圆标准方程典型例题 例1 已知椭圆0632 2=-+m y mx 的一个焦点为(0,2)求m 的值. 例2 已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和3 52,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 例5 已知椭圆方程()0122 22>>=+b a b y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示). 例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内 切,求动圆圆心P 的轨迹方程 例7 已知椭圆1222=+y x ,(1)求过点?? ? ??2121,P 且被P 平分的弦所在直线的方程;

(2)求斜率为2的平行弦的中点轨迹方程; (3)过()12, A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=?OQ OP k k , 求线段PQ 中点M 的轨迹方程. 例8 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为 5 102,求直线的方程. 例9 以椭圆13 122 2=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程. 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范 例10 已知1cos sin 2 2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.

椭圆常见题型与典型方法归纳

椭圆常见题型与典型方法归 纳 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

椭圆常见题型与典型方法归纳 考点一 椭圆的定义 椭圆的第一定义:我们把平面内与两个定点12,F F 的距离的和等于常数 1.22(2)a a F F >的点的轨迹叫做椭圆.这两 定点12,F F 叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距. 椭圆的第二定义:我们把平面内与一个定点的距离和它到一条定直线的距离的比是常数e= a c (0>焦点的坐标分别为 (,0),(,0)c c - 2焦点在y 轴上 标准方程是:22 221y x a b +=(其中222,0).b a c a b =->>焦点的坐标分别为 (0,),(0,)c c - 3焦点位置判断 哪项分母大焦点就在相应的轴上 如 求22 179 x y + =的焦点坐标 4 椭圆过两定点,焦点位置不确定时可设椭圆方程为221mx ny +=(其中0,0m n >>) 例 已知椭圆过两点1),(2)42 A B --,求椭圆标准方程 5 与122 22=+b y a x (a >b >0)共焦点的椭圆为12222=+++k b y k a x 二 重难点问题探析: 1.要有用定义的意识

椭圆常考题型汇总及练习进步

椭圆常考题型汇总及练习 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距 ()c 2. 椭圆的几何性质:以 ()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用 于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e =,()10,0<<∴>>e c a Θ (2)22F OB Rt ?, 2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且 22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -= 越小, 椭圆越扁;当e 接近于0时,c 越接近于0,从而2 2c a b -=越大,椭圆越接近圆。

高中数学-椭圆经典练习题-配答案

椭圆练习题 一.选择题: 1.已知椭圆 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( D ) A .2 B .3 C .5 D .7 2.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( C ) A. B. C. D. 3.与椭圆9x 2 +4y 2 =36有相同焦点,且短轴长为4的椭圆方程是( B ) A 4.椭圆的一个焦点是,那么等于( A ) A. B. C. D. 5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( B ) A. B. C. D. 6.椭圆两焦点为 , ,P 在椭圆上,若 △的面积的最大值为12,则椭圆方程为( B ) A. B . C . D . 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2| 的等差中项,则该椭圆方程是( C )。 A +=1 B +=1 C +=1 D +=1 8.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( C ) (A)450 (B)600 (C)900 (D)120 9.椭圆 上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( A ) A. 4 B . 2 C. 8 D . 116 252 2=+y x 22143x y +=22134x y +=2214x y +=22 14 y x +=5185 8014520125201 20 252222222 2=+=+=+=+y x D y x C y x B y x 2 2 55x ky -=(0,2)k 1-1512 21(4,0)F -2(4,0)F 12PF F 221169x y +=221259x y +=2212516x y +=22 1254 x y +=16x 29y 216x 212y 24x 23y 23x 24 y 222 1259 x y +=2 3

高中数学椭圆题型完美归纳(经典)

椭圆题型归纳 一、知识总结 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形, 可设方程为221(0,0)mx ny m n +=>>不必考虑焦点位置,求出方程。 3.范围. 椭圆位于直线x =±a 和y =±b 围成的矩形里.|x|≤a ,|y|≤b . 4.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 5.顶点 椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ). 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴.。 长轴的长等于2a . 短轴的长等于2b .

|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2,即c 2=a 2-b 2. 6.离心率 7.椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8.椭圆22 221x y a b +=(a >b >0)的焦半径公式10||MF a ex =+,20 ||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ). 9.AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2 OM AB b k k a ?=-,即0 2 02y a x b K AB -=。 )10(<<= e a c e

椭圆题型归纳大全

椭圆题型归纳大全

椭圆典型题型归纳 题型一. 定义及其应用 例1.已知一个动圆与圆2 2:(4)100 C x y ++=相内切,且 过点(4,0)A ,求这个动圆圆心M 的轨迹方程; 例2. 方程 2 x =++所表示的曲线是 练习: 1.方程 6 =对应的图形是 ( ) A.直线 B. 线段 C. 椭圆 D. 圆 2. 10=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 3.方程 10 =成立的充要条件是 ( ) A. 2 2 12516x y += B.2 2 1 259 x y += C. 22 11625 x y += D. 22 1925 x y +=

4. 1 m =+表示椭圆,则 m 的取值范围是 5.过椭圆2 2941 x y +=的一个焦点1 F 的直线与椭圆相 交于,A B 两点,则,A B 两点与椭圆的另一个焦点2 F 构成的2 ABF ?的周长等于 ; 6.设圆2 2(1) 25 x y ++=的圆心为C ,(1,0)A 是圆内一定点, Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点 M ,则点M 的轨迹方程 为 ; 题型二. 椭圆的方程 (一)由方程研究曲线 例 1.方程 22 11625 x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程 例 2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程 例 3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点 1 P 、2 (P ,求椭圆的方程;

(完整版)椭圆练习题(含答案)

解析几何——椭圆精炼专题 一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆6322 2 =+y x 的焦距是( ) A .2 B .)23(2- C .52 D .)23(2+ 2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)2 3,25(-,则椭圆方程是 ( ) A .14 8 2 2=+x y B .16102 2=+x y C .18 42 2=+x y D .16 102 2=+y x 4.方程22 2 =+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( ) A .),0(+∞ B .(0,2) C .(1,+∞) D .(0,1) 5. 过椭圆1242 2 =+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ?,那么2 ABF ?的周长是( ) A . 22 B . 2 C . 2 D . 1 6.已知椭圆的对称轴是坐标轴,离心率为 3 1 ,长轴长为12,则椭圆方程为( ) A . 112814422=+y x 或114412822=+y x B . 14 62 2=+y x C . 1323622=+y x 或1363222=+y x D . 16422=+y x 或1462 2=+y x 7. 已知k <4,则曲线 14 92 2=+y x 和14922=-+-k y k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴 8.椭圆 19 252 2=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) A .9 B .12 C .10 D .8 9.椭圆13 122 2=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( ) A .4倍 B .5倍 C .7倍 D .3倍 10.椭圆144942 2 =+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( ) A .01223=-+y x B .01232=-+y x C .014494=-+y x D . 014449=-+y x 11.椭圆14 162 2=+y x 上的点到直线022=-+y x 的最大距离是 ( ) A .3 B .11 C .22 D .10 12.过点M (-2,0)的直线M 与椭圆12 22 =+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ) ,直线OP 的斜率为k 2,则k 1k 2的值为( ) A .2 B .-2 C . 21 D .-2 1 二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.) 13.椭圆 2214x y m +=的离心率为1 2 ,则m = . 14.设P 是椭圆2 214 x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 . 15.直线y =x -2 1被椭圆x 2+4y 2=4截得的弦长为 . 16.已知圆Q A y x C ),0,1(25)1(:2 2及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程 为 .

椭圆与双曲线常见题型总结(附答案)

椭圆与双曲线常见题型总结(附答案)

椭圆与双曲线常见题型归纳 题型一:弦的垂直平分线问题 弦的垂直平分线问题和对称问题是一种解题思维,首先弄清楚哪个是弦,哪个是对称轴,用到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)。 例题1、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点, 在x 轴上是否存在一点E(0 x ,0),使得ABE ?是等边三角形,若存在,求出0 x ;若不存在,请说明理由。 分析:过点T(-1,0)的直线和曲线N :2 y x =相交A 、B 两点, 则直线的斜率存在且不等于0,可以设直线的方程,联立方程组,消元,分析类一元二次方程,看判别式,运用韦达定理,得弦的中点坐标,再由垂直和中点,写出垂直平分线的方程,得出E 3 倍。运用弦长公式求弦长。 解:依题意知,直线的斜率存在,且不等于0。设直线:(1)l y k x =+, k ≠,1 1 (,)A x y ,2 2 (,)B x y 。 由2 (1) y k x y x =+?? =? 消y 整理,得2 2 22(21)0 k x k x k +-+= ① 由直线和抛物线交于两点,得2 242(21)4410 k k k ?=--=-+>即2 104 k << ② 由韦达定理,得: 2122 21 ,k x x k -+=-121 x x =。则线段AB 的中点为

22 211(,)22k k k --。 线段的垂直平分线方程为:2 2 1112()22k y x k k k --=-- 令y=0,得0 211 22x k = -,则2 1 1 (,0)22E k -ABE ?Q 为正三角形,∴2 1 1(,0)22 E k -到 直线AB 的距离d 为 32 AB 。 2 2 1212()()AB x x y y =-+-Q 22141k k -= +g 212k d k +=222 23141122k k k k k -+∴+=g 解得39 13 k =± 满足②式此时0 53 x = 。 思维规律:直线过定点设直线的斜率k ,利用韦达定理法,将弦的中点用k 表示出来,再利用垂直关系将弦的垂直平分线方程写出来,求出了横截距的坐标;再利用正三角形的性质:高是边长的 3倍,将k 确定,进而求出0 x 的坐标。 例题2、已知椭圆 12 22 =+y x 的左焦点为F ,O 为坐标原点。 (Ⅰ)求过点O 、F ,并且与2x =-相切的圆的方程; (Ⅱ)设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围。

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结 椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在x 轴上时12222=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? (ABC ≠0,且A ,B ,C 同号,A ≠B )。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个 焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离: 0?

高中数学 椭圆 知识点与例题

椭圆 知识点一:椭圆的定义 第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和为定值 )2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹不存在. 知识点二:椭圆的标准方程 1.当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -= 2.当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=. 注意:①只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; ②在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; ③椭圆的焦点总在长轴上. 当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 题型一、椭圆的定义 1、方程()()10222222=++++-y x y x 化简的结果是 2、若ABC ?的两个顶点()()4,0,4,0A B -,ABC ?的周长为18,则顶点C 的轨迹方程是 3、椭圆19 252 2=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为( ) A .4 B .2 C .8 D .2 3

4、椭圆22 12516 x y +=两焦点为12F F 、,()3,1A ,点P 在椭圆上,则1PF PA +的最大值为_____,最小值为 ___ 题型二、椭圆的标准方程 5、方程Ax 2+By 2=C 表示椭圆的条件是 (A )A , B 同号且A ≠B (B )A , B 同号且C 与异号 (C )A , B , C 同号且A ≠B (D )不可能表示椭圆 6、若方程22 153 x y k k +=--, (1)表示圆,则实数k 的取值是 . (2)表示焦点在x 轴上的椭圆,则实数k 的取值范围是 . (3)表示焦点在y 型上的椭圆,则实数k 的取值范围是 . (4)表示椭圆,则实数k 的取值范围是 . 7、椭圆22 14x y m +=的焦距为2,则m = 8、已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值. 9、已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 10、求与椭圆224936x y +=共焦点,且过点(3,2)-的椭圆方程。 11、已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为 354和3 52,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.

椭圆各类题型分类汇总修订稿

椭圆各类题型分类汇总 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

椭圆经典例题分类汇总 1. 椭圆第一定义的应用 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 例2 已知椭圆 19822=++y k x 的离心率2 1 =e ,求k 的值. 例3 已知方程 1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 例4 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 例5 已知动圆P 过定点()03, -A ,且在定圆()64322 =+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程. 2.焦半径及焦三角的应用 例1 已知椭圆13 42 2=+ y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由. 例2 已知椭圆方程()0122 22>>=+b a b y a x ,长轴 端点为 1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点, θ=∠21PA A ,α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示). 3.第二定义应用 例1 椭圆112 162 2=+ y x 的右焦点为F ,过点() 31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.

例2 已知椭圆1422 22=+b y b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距 离. 例3 已知椭圆15 92 2=+ y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点. (1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求22 3 PF PA + 的最小值及对应的点P 的坐标. 4.参数方程应用 例1 求椭圆13 22 =+y x 上的点到直线06=+-y x 的距离的最小值. 例2 (1)写出椭圆1492 2=+ y x 的参数方程;(2)求椭圆内接矩形的最大面积. 例3 椭圆122 22=+b y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使 AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围. 5.相交情况下--弦长公式的应用 例1 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为 5 10 2,求直线的方程. 例2 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为 3 π 的直线交椭圆于A ,B 两点,求弦AB 的长. 6.相交情况下—点差法的应用

《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例 典型例题一 例1 椭圆的一个顶点为()02,A , 其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+ y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+ y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 典型例题二 例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 解:3 1 222??=c a c ∴223a c =, ∴3 331- = e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可. 典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点, M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 解:由题意,设椭圆方程为1222 =+y a x , 由?????=+=-+1012 22y a x y x ,得()021222=-+x a x a , ∴22 2112a a x x x M +=+=,2111a x y M M +=-=,

4 1 12=== a x y k M M OM ,∴42=a , ∴14 22 =+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题. 典型例题四 例4椭圆19252 2=+y x 上不同三点()11y x A ,,?? ? ??594,B ,()22y x C ,与焦点()04,F 的 距离成等差数列. (1)求证821=+x x ; (2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知: a c x c a AF =-12 , ∴ 115 4 5x ex a AF -=-=. 同理 25 4 5x CF - =. ∵ BF CF AF 2=+,且5 9= BF , ∴ 51854554521=??? ??-+??? ? ? -x x , 即 821=+x x . (2)因为线段AC 的中点为??? ? ?+2421y y ,,所以它的垂直平分线方程为 ()422 12 121---= +- x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 () 2122 21024x x y y x --=-

相关文档
最新文档