浅谈从“一题多解”角度培养学习数学兴趣-精选文档

浅谈从“一题多解”角度培养学习数学兴趣-精选文档
浅谈从“一题多解”角度培养学习数学兴趣-精选文档

浅谈从“一题多解”角度培养学习数学兴趣

浓厚的数学兴趣对于数学知识的积累、数学基本方法的灵活应用起着奠基性的作用。根据作者多年从事中学数学教学的一些心得积累,认为在中学数学教学的适时地灌输一定的开放性的思想方法,将对教学起到事半功倍的效果。下面结合一些例子来逐一讨论。

例1:已知如图1:等腰梯形ABCD中,AC、BD交于O点,AD = 4,BC = 6,AC⊥BD,求这个等腰梯形的面积。

剖析:此题关键是求梯形的高。

解法一:如图2,过D作DE∥AC,延长BC与DE交于E点,作DH⊥BC。∵ABCD是等腰梯形,∴AD∥CE, AC=DE, ∴ BD=DE, ∵AC⊥BD, ∴BD⊥DE , ∴?SBDE是等腰直角三角形,∵AD = 4,BC = 6 ,∴

剖析:此法是由等腰直角三角形利用勾股定理求出DE,再利用直角三角形面积相等求出梯形的高DH。

解法二:如图2,依照解法一, 求出?SBDE是等腰直角三角形后,DH⊥BC,

剖析:此法是利用等腰三角形三线合一和直角三角形斜边上

的中线等于斜边的一半求出DH 。

解法三:如图3,过O作OE⊥AD,OF⊥BC, ∵AD∥BC, ∴E,O,F 共线。又∵ABCD是等腰梯形,AC⊥BD,∴OA=OD, OB=OC, ∴OE =AD=2,OF=BC=3。∴等腰梯形的高EF = 5,

剖析:此法依然是利用等腰三角形三线合一的性质进行,只是辅助线做法不同。在此解法中,要特别注意先证明E、O、F三点共线。

解法四:如图4,作AE⊥BC, DG⊥BC ,延长AD,作CF⊥AD 于F点,∵ABCD是等腰梯形,∴AE = DG = CF, AD = EG = 4, BE = CG = 1, ∵AC⊥BD,∴<ACB<DBC=45°, ∴AE = CE = 5,

剖析:此法是利用拼接法,把Rt?SABE拼接到Rt?SDCF处,使得AECF是一个正方形。

解法五:如图5,∵ABCD是等腰梯形,AC⊥BD,AC、BD交于O点,∴AO = DO,BO = CO ,

∴Rt?SAOD和 Rt?SBOC是等腰直角三角形,

剖析:此法是利用勾股定理,直接分为四个直角三角形求面积。

例2:已知:矩形纸片ABCD中,AB = 6,BC = 8,让B、D 两点重合后,对折纸片,折痕为EF。求:EF的长。

初中数学一题多解与一题多变详解

初中数学一题多解与一题多变 时代在变迁,教育在进步,理念在更新。前两年提出考试要改革,有了《指导意见》,于是一批批探索性、开放性和应用性试题不断涌现;如今又提出课程要改革,有了《课程标准》,其中突出了学生自主探索的学习过程,强调应用数学和创新能力的培养,鼓励教师创造性教学,学生学会学习。 面临这种崭新的教育形势,我们会思考这样一些问题:教学要如何从静态转为动态?怎样有效地指导学生独立地分析问题、解决问题,形成有效的学习策略,提高效益?该如何引导和组织学生从事观察、实验、猜想、验证、推理与交流等数学活动,激发学生的学习兴趣和创新意识,培养创新能力?等等。我个人在实际教学过程中,对这些问题作过一些深思和一些尝试,其中比较突出的是引导学生进行一题多解和一题多变的训练。下面,我提出几个实例来分析其引导过程与方法,抛砖引玉,仅供参考。 一、一题多解,多解归一 对于"一题多解",我是从两个方面来认识和解释的:其一,同一个问题,用不同的方法和途径来解决;其二,同一个问题,其结论是多元的,即结论开放性问题。一题多解,有利于沟通各知识的内涵和外延,深化知识,培养发散性和创造性思维;多解归一,有利于提炼分析问题和解决问题的通性、通法,从中择优,培养聚合思维。 例1:如图,已知D 、E 在BC 上,AB=AC ,AD=AE , 求证:BD=CE. E D C B A

(本题来自《几何》第2册69页例3) 思路与解法一:从△ABC和△ADE是等腰三角形这一角度出发,利用"等腰三角形底边上的三线合一"这一重要性质,便得三种证法,即过点A作底边上的高,或底边上的中线或顶角的平分线。其通法是"等腰三角形底边上的三线合一",证得BH=CH. 思路与解法二:从证线段相等常用三角形全等这一角度出发,本题可设法证△ABD≌△ACE或证△ABE≌△ACD,于是又得两种证法,而证这两对三角形全等又都可用AAS、ASA、SAS进行证明,所以实际是六种证法。其通性是"全等三角形对应边相等"。 思路与解法三:从等腰三角形的轴对称性这一角度出发,于是用叠合法可证。 例2:已知,如图,在⊙O中,AD是直径,BC是弦,AD⊥BC,E 添加字母,不写推理过程) D 思路与解法一:从相等的线段这一角度出发,可得如下结论: 1.OA=OD; 2.BE=CE; 3.AB=AC; 4.BD=CD.

小学数学一题多解浅见

小学数学一题多解浅见内容摘要: 在数学教学中,我们常遇到同一道题有几种解法的现象,人们通常称之为一题多解。一题多解确实是一种在各级数学教学中都常见到的数学现象,怎样才能提高学生以题多解的能力呢?我认为可以从四个方面入手,要告诉学生一题多解是一种常见的数学现象;要教育学生充分认识培养一题多解对学好数学的重要意义;要指导学生一题多解的方法;引入竞争机制,鼓励一题多解;从而调动学生一题多解的积极性,达到逐步提高学生一题多解能力的目的。 关键词:小学数学一题多解方法与技巧积极性 在数学教学中,我们常遇到同一道题有几种解法的现象,人们通常称之为一题多解。如“一千零一针,仨半孩子分,每人分几根?”解法一,用整数计算,可得1001÷7×2= 286;解法二,用小数计算,可得出1001÷3.5 =286;解法三,用列方程计算,设每个孩子分ⅹ根针,可列方程

3.5ⅹ=1001,解之,得ⅹ=286由此可见,一题多解确实是一种在各级数学教学中都常见到的数学现象。 数学教学是以各种数学现象作为教学内容的,既然一题多解是一种常见的数学现象,就不能不引起我们每位数学教师的高度重视,而且大量的教学实践已经证明,加强对学生一题多解能力的培养,对大面积提高数学成绩确实大有好处。由于同一道数学题大多有几种解法,并能在最短的时间内拿出最正确的答案。如果不放心还可以用其他方法来验证。这样既能开拓学生的思路,节省学生的时间,还能提高学生做题的准确率。 那么怎样才能提高学生以题多解的能力呢?我认为可以从几个方面入手: 一、要告诉学生一题多解是一种常见的数学现象,虽然并非每道数学题都有几种解法,但多种数学题有多种解法却是事实。 二、要教育学生充分认识培养一题多解对学好数学的重要意义,引起学生对自己一题多解能力的高度重视。 三、要指导学生一题多解的方法。这就要求数学教师

例谈高中数学一题多解和一题多变的意义

例谈高中数学一题多解和一题多变的意义 杨水长 摘 要:高中数学教学中,用一题多解和一题多变的形式,可以使所学的知识得到活化,融会贯通,而且可以开阔思路,培养学生的发散思维和创新思维能力,从而达到提高学生的学习兴趣,学好数学的效果。 关键词:一题多变 一题多解 创新思维 数学效果 很大部分的高中生对数学的印象就是枯燥、乏味、不好学、没兴趣.但由于高考“指挥棒”的作用,又只能硬着头皮学.如何才能学好数学?俗话说“熟能生巧”,很 多人认为要学好数学就是要多做.固然,多做题目可以 使学生提高成绩,但长期如此,恐怕也会使学生觉得数学越来越枯燥。 我觉得要使学生学好数学,首先要提高学生的学 习兴趣和数学思维能力。根据高考数学“源于课本, 高于课本”的命题原则,教师在教学或复习过程中可 以利用书本上的例题和习题,进行对比、联想,采取 一题多解与一题多变的形式进行教学.这是提高学生数学学习兴趣和思维能力的有效途径。下面举例说明: 例题: 已知tanα=4 3 ,求sinα,cosα的值 分析:因为题中有sinα、cosα、tanα,考虑他们之间的关系,最容易想到的是用同角三角函数关系式和方程解此题: 法一 根据同角三角函数关系式tanα= 4 3= α αcos sin , 且sina2α + cos2α =1。 两式联立,得出:cos2α=2516,cosα= 5 4 或者 cosα= -54 ;而sinα=53或者sinα=-53 。 分析:上面解方程组较难且繁琐,充分利用用同角三角函数关系式“1”的代换,不解方程组,直接求解就简洁些: 法二 tanα=4 3 :α在第一、三象限 在第一象限时: cos2α = ααcos sin cos 2 2 2 5+=αtan 2 11+=2516 cosα=5 4 sinα=αcos 21-=5 3 而在第三象限时: cosa=- 5 4 sina=- 53 分析:利用比例的性质和同角三角函数关系式,解此题更妙: 法三 tanα= 43= αα cos sin ?4cos α= 3sin α ?4cos α= 3sin α= ± 3 4cos sin 2 2 2 2 ++α α ∴sinα=53,cosα= 54 或sinα=-53,cosα=-54 分析: 上面从代数法角度解此题,如果单独考虑sinα、cosα、tanα,可用定义来解此题。初中时,三角函数定义是从直角三角形引入的,因此我们可以尝试几何法来解之: 法四 当α为锐角时,由于tana=4 3,在直角△ABC 中,设α=A,a=3x,b=4x ,则勾股定理,得,c=5x sinA=AB BC = 53 ,cosA=AB AC =5 4

八年级数学经典错题分析

八年级错题集 1、如图11-1,,12,,ABE ACD B C ???∠=∠∠=∠指出对应边和另外一组对应角。 错解:对应边是AB 与AD ,AC 与AE ,BD 与CE ,另一组对应角是∠BAD 与∠CAE 。 错误原因分析:对全等三角形的表示理解不清,在全等三角形的表示中对应顶点的位置需 要对齐,不能根据对应顶点来确定对应角和对应边。同时对全等三角形中对应角与对应边之间的对应关系也没有理解,对应角所对的边应该是对应边,如∠2所对的边是AB ,∠1所对的边是AC ,因为∠1=∠2,即∠1与∠2是对应角,所以AB 与AC 是对应边。 正解:对应边是AB 与AC ,AE 与AD ,BE 与CD ,另一组对应角是∠BAD 与∠CAE 。 2、如图11-2,在ABD ACE ??和中,AB=AC ,AD=AE ,欲证ABD ACE ???,须补充的条 件是( )。 A 、∠B=∠C ; B 、∠D=∠E ; C 、∠BAC=∠DAE ; D 、∠CAD=∠DA E 。 错解:选A 或B 或D 。 错误原因分析:对全等三角形的判定定理(SAS )理解不清,运用SAS 判定定理来证明两 三角形全等时,一定要看清角必须是两条对应边的夹角,边必须是夹相等角的两对应边。上题中AB 与AC ,AD 与AE 是对应边,并且AB 与AD 的夹角是∠BAD ,AC 与AE 的夹角是∠CAE,而∠B 与∠C ,∠D 与∠E 不是AB 与AC ,AD 与AE 的夹角,故不能选择A 或B 。∠CAD 与∠DAE 不是ABD ?和ACE ?中的内角,故不能选择D 。所以只有选择C ,因为∠BAC+∠CAD=∠DAE+∠CAD ,即:∠BAD=∠CAE 。 正解:选C 。 3、如图11-3所示,点0为码头,A ,B 两个灯塔与码头的距离相等,0A 、OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行是否偏离指定航线? 错解:不能判断,因为应该是到角两边距离相等(即垂线段相等)的点才在角平分线上。 错误原因分析:生搬硬套“角的内部到角的两边的距离相等的点在角的平分线上”,而忽 略了角平分线的实质是所分得的两个角相等,本题由OA=OB ,轮船到两灯塔的距离相等,再加上已行的航线,可构造出一对全等三角形,从而可得到已行航线把∠AOB 分成相等的两个角,即没有偏离指定航线。 正解:没有偏离指定航线,如图11-4,依题意可得:OA=OB ,AC=BC ,OC=OC ,AOC BOC ???, ∴∠AOC=∠BOC ,即OC 平分∠AOB ,∴没有偏离指定航线。 4、如图11-5,,CAB DBA C D ∠=∠∠=∠,E 为AC 和BD 的交点,ADB ?与BCA ?全等吗?说明理由。 错解:ADB BCA ???。理由如下: ,, , () CAB DBA C D CBA DBA ADB BCA AAA ∠=∠∠=∠∴∠=∠∴???Q

小学数学一题多解与一题多变

小学数学一题多解与一题多变B 摘要:在本文里,一题多用特指渗透于同一数学问题里的不同的数学思想;而一题多变则是指对同类数学问题的不同问法与解答的归纳,并进而构建数学模型。在小学数学教学过程中,教师可结合教学内容和学生的实际情况,采取多种形式的训练,培养学生思维的敏捷性和灵活性,以达到诱导学生思维发散,培养发散思维能力的目的。 关键词:数学,一题多解,一题多变,创造性,创设思维 思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。教师在教学过程中,不能只重视计算结果,要针对教学的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题。要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。 一、一题多解,有利于加强学生的思维训练 一题多解,指对同一数学问题的结论可以由多种途径获得。就是启发和引导学生从不同角度、不同思路,运用不同的方法和不同的运算过程,解答同一道数学问题,它属于解题的策略问题。上这种课的主要目的有三条:一是为了充分调动学生思维的积极性,提高他们综合运用已学知识解答数学问题的技能技巧;二是为了锻炼学生思维的灵活性,促进他们长知识、长智慧;三是为了开阔学生的思路,引导学生灵活地掌握知识的纵横联系,培养和发挥学生的创造性。 心理学研究表明,在解决问题的过程中,如果主体所接触到的不是标准的模

高三数学《一题多解 一题多变》试题及详解答案

高三《一题多解 一题多变》题目 一题多解 一题多变(一) 原题:482++=x mx x f )( 的定义域为R ,求m 的取值范围 解:由题意0482≥++x mx 在R 上恒成立 0>∴m 且Δ0≤,得4≥m 变1:4823++=x mx x f log )(的定义域为R ,求m 的取值范围 解:由题意0482>++x mx 在R 上恒成立 0>∴m 且Δ0<,得4>m 变2:)(log )(4823++=x mx x f 的值域为R ,求m 的取值范围 解:令=t 482++x mx ,则要求t 能取到所有大于0的实数, ∴ 当0=m 时,t 能取到所有大于0的实数 当0≠m 时,0>m 且Δ0≥4≤0?m < 40≤≤∴m 变3:182 23++=x n x mx x f log )(的定义域为R,值域为[]20,,求m,n 的值 解:由题意,令[]911 82 2,∈+++=x n x mx y ,得0-8--2=+n y x x m y )( m y ≠时,Δ0≥016-)(-2≤++?mn y n m y - ∴ 1和9时0162=++-)(-mn y n m y 的两个根 ∴ 5==n m ∴ 当m y =时,08 ==m n x - R x ∈ ,也符合题意 ∴5==n m 一 题 多 解- 解不等式523<<3-x 解法一:根据绝对值的定义,进行分类讨论求解

(1)当03-≥x 2时,不等式可化为53-<x x x x ?-3-或且 综上:解集为}{0x 1-<<<<或43x x 解法三:利用等价命题法 原不等式等价于 -33-2x 5-53-<<<<或x 23,即0x 1-<<<<或43x 解集为}{0x 1-<<<<或43x x 解法四:利用绝对值的集合意义 原不等式可化为 2 5 23<<23-x ,不等式的几何意义时数轴上的点23到x 的距离大于 23,且小于2 5 ,由图得, 解集为} {0x 1-<<<<或43x x 一题多解 一题多变(二) 已知n s 是等比数列的前n 想项和,963s s s ,,成等差数列,求证: 852a a a ,,成等差数列 法一:用公式q q a s n n 一一111)(=,

初中数学一题多解题

初中数学一题多解题 例题一、两个连续奇数的积是323,求出这两个数 方法一、 设较小的奇数为x,另外一个就是x+2 x(x+2)=323 解方程得:x1=17,x2=-19 所以,这两个奇数分别是: 17、19,或者-17,-19 方法二、 设较大的奇数x,则较小的奇数为323/x 则有:x-323/x=2 解方程得:x1=19,x2=-17 同样可以得出这两个奇数分别是: 17、19,或者-17,-19 方法三、 设x为任意整数,则这两个连续奇数分别为: 2x-1,2x+1 (2x-1)(2x+1)=323 即4x^2-1=323 x^2=81 x1=9,x2=-9 2x1-1=17,2x1+1=19 2x2-1=-19,2x2+1=-17 所以,这两个奇数分别是: 17、19,或者-17,-19 方法四、 设两个连续奇数为x-1,x+1 则有x^2-1=323 x^2=324=4*81 x1=18,x2=-18 x1-1=17,x1+1=19 x2-1=-19,x2+1=-17 所以,这两个奇数分别是: 17、19,或者-17,-19 例题二、某人买13个鸡蛋、5个鸭蛋、9个鹌鹑蛋,共用去9.25元;如果买2个鸡蛋,4个鸭蛋,3个鹌鹑蛋,则共用去3.20元,试问只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需多少

钱? 解:设鸡、鸭、鹌鹑三种蛋的单价分别为x 、y 、z 元,则根据题意,得 1359925 1243320 2x y z x y z ++=<> ++=<> ?? ?.. 分析:此方程组是三元一次方程组,由于只有两个三元一次方程,因而要分别求出x 、y 、z 的值是不可能的,但注意到所求的是x y z ++的代数和,因此,我们可通过变形变换得到多种解法。 1. 凑整法 解1: <>+<> 123 ,得5344153x y z ++=<>. <>+<>23,得7735().x y z ++= ∴++=x y z 105. 答:只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需1.05元(下面解法后的答均省略) 解2:原方程组可变形为 1342925 22320 ()().()().x y z y z x y z y z ++-+=++++=?? ? 解之得:x y z ++=105. 2. 主元法 解3:视x 、y 为主元,视z 为常数,解<1>、<2> 得x z =-0505..,y z =-05505.. ∴++=+-+=x y z z z 05505105... 解4:视y 、z 为主元,视x 为常数,解<1>、<2> 得y x z x =+=-00512., ∴++=+-+=x y z x x x 1052105.. 解5:视z 、x 为主元,视y 为常数,解<1>、<2> 得x y z y =-=-00511 2.., ∴++=-++-=x y z y y y 005112105... 3. “消元”法 解6:令x =0,则原方程组可化为 599254332005 1 y z y z y z +=+=?? ??==?? ?... ∴++=x y z 105. 解7:令y =0,则原方程组可化为 1399252332000511x z x z x z +=+=????=-=?? ? .... ∴++=x y z 105.

整理小学数学一题多解行程问题

小学数学一题多解行程问题

1.简案 1课时

师引导学生对两道题目进行表述,根据表述内容列式计算,明确用除法计算的两种情况。(播放动画,单击)探究一:平均分 (1)呈现问题,出示教科书第23页例3左图。(播放动画,单击) 引导学生明确数学信息和数学问题。学生先独立思考,画图并列式计算,然后小组内交流方法。教师巡视,对画图有困难学生进行指导。 (2)反馈交流 学生可能会有画一画,摆一摆,分一分,列算式的方法得出结果。教师在评价中予以肯定,重点讲解算式,配合学生的图予以理解。请学生说一说15、3、5分别指什么,算式15÷3=5表示什么意思。 师生共同分析明确,这个问题实际上就是在解决把15平均分成3份,每份是多少的问题。(播放动画,单击)在回顾与反思环节,请学生说一说他们的方法,师生共同得出可以用乘法帮助检验结果是否正确。 探究二:按给定的每几个为一份分 教学方法同例3左图,引导学生明确数学信息和数学问题。学生独立思考,画图并列式计算。 学生列式:15÷5=3(个)。师追问为什么要用除法计算,这

个问题实际是在解决什么。分析得出这个问题就是在求15里面有 几个5,用除法计算。 在回顾与反思环节,请学生说一说他们的方法,师生共同得出可以用乘法检验结果是否正确。(播放动画,单击) 探究三:比较异同,体会内在联系 师引导学生对比两题的异同,明确用除法计算的两种情况。 求把一个数平均分成几份,每份是几和求一个数里有几个几的问 题。(播放动画,单击) 练习一:教科书第24页,练习五第1题。(单击) 练习二:教科书第24页,练习五第3题。(单击) 2.详案 课前预习:

初一数学一题多解

例题一、如图1,已知AB//CD ,试找出B ∠、BED ∠和D ∠的关系并证明。 我们找出他们的关系是:D B BED ∠+∠=∠。证明如下: 方法一:如图2,过点E 作EF//AB 。因为EF AB //,所以B BEF ∠=∠;因为CD AB //, EF AB //,所以 CD EF //,所以D FED ∠=∠,所以 D B F E D B E B E D ∠+∠=∠+∠=∠。 方法二:如图3,过点E 作EF//AB 。 因为EF AB //,所以 180=∠+∠B BEF ,即B BEF ∠-=∠ 180;因为CD AB //, EF AB //,所以CD EF //,所以 180=∠+∠D FED ,即D FED ∠-=∠ 180;因为 ? =∠+∠+∠360FED BED BEF , 所 以 )180180(360)(360D B FED BEF BED ∠-+∠--=∠+∠-=∠?? D B ∠+∠=。 方法三:如图4,连接BD 。因为CD AB //,所以 180=∠+∠BDC ABD ,即 ) (180EDB EBD EDC ABE ∠+∠-=∠+∠ ;在ΔBED 中, )(180EDB EBD BED ∠+∠-=∠ ,所以EDC ABE BED ∠+∠=∠。 方法四:如图5,过点E 做AB FG ⊥,垂足为点F ,交CD 于点G 。因为CD AB //,所以 90180=∠-=∠EFB EGD ;在直角ΔEGD 中,D GED ∠-=∠ 90,在直角ΔEFB

中,B F E B ∠-=∠ 90,所以 )9090(180)(180B D FEB GED BED ∠-+∠--=∠+∠-=∠ D B ∠+∠=。 方法五:如图6,延长BE 交CD 于点F 。因为CD AB //,所以B EFD ∠=∠;在ΔEFD 中,F E D D E F D ∠-=∠+∠ 180,又因为FED BED ∠-=∠ 180,所以D B D E F D B E D ∠+∠=∠+∠=∠。 例题二、证明: 如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 已知:如图1,在△ABC 中,AD=BD=CD . 求证:△ABC 是直角三角形. 证法1 如图1,利用两锐角互余. ∵AD=CD ,CD=BD , ∴∠1=∠A ,∠2=∠B 。 在△ABC 中,∵∠A+∠B+∠ACB=180°, ∴∠A+∠B+∠1+∠2=180°, ∴2(∠A+∠B )=180°, ∴∠A+∠B=90°, ∴∠ACB=90°,∴△ABC 是直角三角形。 证法2 如图2,利用等腰三角形的三线合一. 延长AC 到E 使CE=AC ,连接BE . ∵AD=BD , ∴CD 是△ABE 的中位线. ∴BE 2 1 CD =。

2019-2020年高考数学一题多解含17年高考试题(III)

2019-2020年高考数学一题多解含17年高考试题(III) 1、【2017年高考数学全国I 理第5题】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 【答案】D 【知识点】函数的奇偶性;单调性;抽象函数;解不等式。 【试题分析】本题主要考察了抽象函数的奇偶性,单调性以及简单的解不等式,属于简单题。 【解析】 解析二:(特殊函数法)由题意,不妨设()f x x =-,因为21()1x f --≤≤,所以121x -≤-≤,化简得13x ≤≤,故选D 。 解析三:(特殊值法)假设可取=0x ,则有21()1f --≤≤,又因为1(12)()f f ->=-,所以与21()1f --≤≤矛盾,故=0x 不是不等式的解,于是排除A 、B 、C ,故选D 。 2、【2017年高考数学全国I 理第11题】设xyz 为正数,且235x y z ==,则 A .235x y z << B .523z x y << C .352y z x << D .325y x z << 【答案】D 【知识点】比较大小;对数的运算;对数函数的单调性; 【试题分析】本题主要考察了对数的比较大小,其中运用到了对数的运算公式,对数的单调性等。属于中档题。 【解析】 解析一:令()2350x y z t t ===>,则2log x t =,3log y t =,5log z t =, 2lg 22log 1lg 22t x t ==,3lg 33log 1lg33t y t ==,5lg 5log 1lg55 t z t ==, 要比较2x 与3y ,只需比较1lg 22,1lg 33,即比较3lg 2与2lg3,即比较lg 8,lg 9,易知lg8lg9<,故23x y >.

初中数学几何:一题多解

初中数学培优专题:一题多解 一题多解是数学学科的奇妙所在,尤其体现在几何的学习过程之中. 很多学生会从喜 欢上几何从而喜欢上数学的原因,就在于几何图形的变换中,对“多解”的追求给他们带来思 维创造的快乐. 数学教师在解题教学中也会通过“多解”的呈现和对比来调动学生思维的积极 性、激发学生思维的灵活性. 笔者在教学过程中,通过对几何的“多解”探索,使笔者 又有了新的认识. C 1 题目呈现 如图1,在等腰直角三角形ABC 中,点P 为斜边AB 上一个动点( 不 与A 、B 两点重合) ,以CP 为斜边在直线CP 的左侧作等腰直角D CDP ,判断ADP 的形状并证明. A P B 2 教学过程简录 方法一:如图2,过C 点作CQ 图1 AB ,连接DQ . 易证DQ 平分CQA ,∴CQD DQA 45 ∴CQD ≌AQD (SAS ),∴AD CD , 又∵CD PD ∴AD DP ∴ADP 是等腰三角形 图2方法二:如图3,过C 点作CQ AB ,连接DQ . 易证CDQ ∽CPB ,∴DQC B 45 ∴CQD ≌AQD (SAS )以下同方法一. 方法三:如图4,过C 点作CQ 图3 CP 交PD 的延长线于点Q , 连接AQ . 易证CQA ≌CPB ∴AQ PB ,CAQ CBP 45 ∴QAP90 . 在等腰直角CPQ 中,D 点是PQ 的中点,图4 ∴在Rt PAQ 中,AD 1 PQ ,∴AD 2 DP ∴ADP 是等腰三角形. 方法四:如图5,过点C 作CM CD ,过P 点作PM PD 交CM 于点M ,过C 点作CQ AB 交AB 于点Q , 连接QM ,BM . 易证四边形CDPM 为正方形,

小学数学“一题多解”的探究

小学数学“一题多解”的探究 数学是一种应用非常广泛的学科,它将数与量、结构和空间关系在生活中具体应用和体现。“一花独放不是春,百花齐放春满园”。数学自身同样存在“百花齐放”的状态。数学中存在的“百花齐放”,指的是数学的多种表现形式,数学题中的一题多解便是其中之一。一题多解表现了思维的灵活性和广阔性,对沟通知识引起多路思维大有益处,它是激发学生学习兴趣,调动学生学习积极性的有效方法,与此同时,它也是数学教学的一种重要方法,是在不改变条件和问题的情况下,让学生多角度、多侧面地进行分析和思考,探求不同的解题思路。在探求的过程中,由于学生思维发散点不同,因而能找出多种解题途径,收到培养求异思维的效果。六至十二岁的小学生新鲜感强,目的性不够明确,爱动、好问,注意力不够稳定,很难长时间把注意力集中到同一学习活动上;教师教给学生的是现成的结论、现成的论证、现成的说明,一切都是现成的,无需学生动手实践就可以将知识快速地储存于自己的大脑。因此,教师付出再多辛苦劳动的结果却是学生学习完许多知识便忘。此时巧妙地引入一题多解,更好地好地体现了以学生为本的主导思想,同时又减轻教师教学负担,转变教师教学模式。 例如,有这样一题“两辆汽车同时从甲、乙两地相对开出,5小时后相遇。一辆汽车的速度是每小时55千米,另一辆汽车的速度是每小时45千米,甲、乙两地相距多少千米?”它的解法就有多种。 【分析1】先求两辆汽车各行了多少千米,再求两辆汽车行驶路程的和,即得甲、乙两地相距多少千米。 【解法1】一辆汽车行驶了多少千米? 55×5=275(千米) 另一辆汽车行驶了多少千米? 45×5=225(千米) 甲、乙两地相距多少千米? 275+225=500(千米) 综合算式:55×5+45×5 =275+225=500(千米) 【分析2】先求出两辆汽车每小时共行驶多少千米,再乘以相遇时间,即得甲、乙两地相距多少千米。 【解法2】两车每小时共行驶多少千米? 55+45=100(千米) 甲、乙两地相距多少千米? 100×5=500(千米) 综合算式:(55+45)×5 =100×5 =500(千米) 【分析3】甲、乙两地的距离除以相遇时间,就等于两辆汽车的速度和。由此可列出方程,求甲、乙两地相距多少千米。 【解法3】设甲乙两地相距x千米。 x÷5=55+45 x=100×5 x=500 【分析4】甲乙两地距离减去一辆汽车行驶的路程,就等于另一辆汽车行驶的路程,由此列

数学解题之一题多解与多题一解

摘要 本文意在明确一题多解和多题一解与学生思维能力发展之间的关系,从而使教师在数学解题教学过程中更加重视解题方法对学生思维能力的培养。本文通过两种典型例题即一题多解型和多题一解型的讲解,阐述了通过不同的例题可以达到对学生思维能力的训练培养的目的。通过一题多解,可以开阔学生思路、发散学生思维,让学生学会多角度分析和解决问题;通过多题一解,能够加深学生的思维深度,分析事物时学会由表及里,抓住事物的本质,找出事物间内在的联系。与此同时,对一题多解和多题一解的运用,要注意相互结合,灵活运用,不可只求一技,失之偏颇。 关键词:一题多解多题一解思维能力

Abstract A multi solution with multi-title, a solution is a commonly used method in the teaching of mathematical problem solving. To a given problem, can mathem ati cal kn owl edg e h as been an org an i c gath eri ng of stu den ts' di v erg en t thin kin g i s a good opportunity for its exercise; a solution of the multi-title, students can digest the knowledge, but also training the students of the Idea. In this paper, two typical example that is a question to the multi-solution and multi-title solution-based explanation on the purpose of training the training of the students' thinking abilities can be achieved through different examples. To a given problem, you can broaden the horizons of the students 'thinking, divergent thinking of the students, for students to learn multi-angle analysis and problem solving; a solution more than the question, can enhance students' depth of thinking, learn to analyze things from outside to inside, to seize the the nature of things, find things intrinsically linked. This article is intended relationship between the development of the ability to clear a given problem and a solution of the multi-title, with students thinking, so that teachers pay more attention to the culture of problem-solving approach to students' thinking ability in mathematical problem solving teaching process. Key words:Multiple solutions for one question A solutions of the multi-title Thinking ability

2017年高考数学一题多解——江苏卷

江苏卷 2017年江苏卷第5题:若tan 1-=46πα?? ???,则tan α= 【答案】75 【知识点】两角和与差的正切公式 【试题分析】本题主要考查了两角和与差的正切公式,属于基础题。 解法一:直接法 由61)4tan(=-π α,得6 1tan 4tan 14tan tan =+-αππ α,故可知57tan =α 解析二:整体代换 11tan()tan 7644tan tan[()]1445 1tan()tan 1446 ππαππααππα+-+=-+===---. 解法三:换元法 令t =-4π α,则61tan =t ,t +=4πα.所以57tan 11tan )4tan(tan =-+=+=t t t πα 2017年江苏卷第9题(5分)等比数列{a n }的各项均为实数,其前n 项为S n ,已知S 3=,S 6= ,则a 8= . 法二:65436144 7463a a a s s ++==-=- 84 71433 21654===++++q a a a a a a

S 3=,∴ ,得a 1=,则a 8==32. 法三:9133 2165432136=+=+++++++=q a a a a a a a a a s s ∴q=2 ∴,得a 1=,则a 8==32. 2017年江苏卷第15题.(14分)如图,在三棱锥A ﹣BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC . 法二: 在线段CD 上取点G ,连结FG 、EG 使得FG ∥BC ,则EG ∥AC , 因为BC ⊥BD ,所以FG ⊥BD , 又因为平面ABD ⊥平面BCD ,

初中数学一题多解精彩题集

初中数学一题多解精彩题集 1.(2009年中山市)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt Rt ABM MCN △∽△; (2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并 求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值. 解:(1)在正方形ABCD 中,490AB BC CD B C ===∠=∠=,°, AM MN ⊥, 90AMN ∴∠=°, 90CMN AMB ∴∠+∠=°. 在Rt ABM △中,90MAB AMB ∠+∠=°, CMN MAB ∴∠=∠, Rt Rt ABM MCN ∴△∽△. · ·········································· 2分 (2)Rt Rt ABM MCN △∽△, 44AB BM x MC CN x CN ∴ =∴= -,, 244 x x CN -+∴=, ···························································································· 4分 2221411 4428(2)102422ABCN x x y S x x x ??-+∴==+=-++=--+ ??? 梯形, 当2x =时,y 取最大值,最大值为10. ································································· 6分 (3)方法一: 90B AMN ∠=∠=°, ∴要使ABM AMN △∽△,必须有AM AB MN BM = , ··················································· 7分 由(1)知AM AB MN MC = , BM MC ∴=, ∴当点M 运动到BC 的中点时,ABM AMN △∽△,此时2x =.····························· 9分 方法二:作ME 垂直AN 于E ,可证MB=ME,MC=ME ,则MB=MC 。 方法三:延长NM 与直线AB 交于点E,利用全等三角形,可证MB=MC 。 方法四:设MB=x ,列方程。 2.(2009年烟台市)如图,AB ,BC 分别是O ⊙的直径和弦,点D 为BC 上一点,弦DE 交O ⊙于点E , 交AB 于点F ,交BC 于点G ,过点C 的切线交ED 的延长线于H ,且HC HG =,连接BH ,交O ⊙于点M ,连接MD ME ,. N D A C B M 第1题图

一题多解之五种方法解一道经典数学题

1 O B C D ① A 一题多解之五种方法解一道经典数学题 江苏海安紫石中学 黄本华 一题多解是我们学习数学的特好方法!通过一题多解,我们可以多角度、多方位地去思考解题的方案,这样不仅能加强知识间的联系,同时也增添新颖性和趣味性,优化我们的思维结构,提升我们的思维能力。更重要的是,一题多解让我们不仅只满足解题目标的实现,而是让我们拥有了研究学问的态度! 例题 如图,在平面直角坐标系中,点A (-1,0),B (0,3),直线BC 交坐标轴于B , C 两点,且∠CBA =45°.求直线BC 的解析式. 【分析】要求BC 解析式,现在已经知道了B 点坐标,所以只要求到C 点坐标就好了。这就要用到条件∠CBA =45°。但这个条件如何用呢?这是本题的难点,也是关键点。考虑到这个角是45°,我们可以尝试做垂线,构造等腰直角三角形。如图①,作AD ⊥BC 于D ,由A 、B 的坐标可知1OA =,3OB =,根据勾股定理2 2 10AB OA OB =+=, 5BD AD ==AC x =,则1OC x =+,25DC x =-255BC x =-,在 RT OBC ?中, 根据勾股定理得出222OC OB BC +=,即()2 222 13(55)x x ++=-,解得15 2 x =- (舍去),25x =,求得6OC =,得出C (﹣6,0),然后根据待定系数法即可求得BC 的解析式. 解法一:如图①,作AD ⊥BC 于D , ∵点A (﹣1,0),B (0,3), ∴1OA =,3OB =,∴2 2 10AB OA OB =+=, ∵∠CBA =45°,∴△ABD 是等腰直角三角形, ∴5BD AD == 设AC x =,则1OC x =+, ∴25DC x =-,∴BC=+255BC x = -+, 在152 x =- 中,222OC OB BC +=2 ,即()222213(55)x x ++=-), 解得x 1=﹣ (舍去),25x =, ∴5AC =,6OC =,∴C (﹣6,0), 设直线BC 的解析式为3y kx =+,

高中数学真题与经典题一题多解解法与解析

函数篇 【试题1】(2016全国新课标II 卷理16)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln (1)y x =+的切线,b = . 【标准答案】1ln 2- 解法一:设直线y kx b =+与曲线ln 2y x =+和ln (1)y x =+切点分别是 11(,ln 2)x x +和22(,ln (1))x x +. 则切线分别为:111ln 1y x x x =?++,()2 2221ln 111x y x x x x = ++-++ ∴()12 2 12 21 11ln 1ln 11x x x x x x ?=?+?? ?+=+-?+? 解得112x = 21 2x =- ∴解得1ln 11ln 2b x =+=- 解法二:设直线y kx b =+与曲线ln 2y x =+和ln (1)y x =+切点分别是11(,)x y 和 22(,)x y . ∵曲线ln 2y x =+通过向量()1,2平移得到曲线()ln 1y x =+ ∴2121(,)(1,2)x x y y --= ∴两曲线公切线的斜率2k =,即112x =,所以1 ln 11ln 22 b =+=- 【试题2】【2015新课标12题】设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A.32[,1)e - B 33,24e - ()C.33[,)24e D.3 [,1) 2e

解法一:由题意可知存在唯一的整数0x 使得000(21)x e x ax a -<-,设 ()(21),()x g x e x h x ax a =-=-由'()(21)x g x e x =+,可知()g x 在1(,)2 -∞-上单调递减, 在1 (,)2-+∞上单调递增,故 (0)(0) (1)(1)h g h g >-≤-?? ?得312a e ≤< 解法二:由题意()0f x <可得(21)(1)x e x a x -<- ①当1x =时,不成立; ②当1x >时,(21)1x e x a x ->-,令(21) ()1 x e x g x x -=-,则22 (23)'()(1)x e x x g x x -=-, 当3(1,)2x ∈时,()g x 单调递减,当3(,)2 x ∈+∞时,()g x 单调递增 所以32 min 3()()42 g x g e ==,即3 24a e >,与题目中的1a <矛盾,舍去。 ③当1x <时,(21)1x e x a x -<-,令(21) ()1 x e x g x x -=- 同理可得:当(,0)x ∈-∞时,()g x 单调递增,当(0,1)x ∈时,()g x 单调递减 所以max ()(0)1g x g ==,即1a <,满足题意。 又因为存在唯一的整数0x ,则3(1)2a g e ≥-= 此时3 [ ,1)2a e ∈ 综上所述,a 的取值范围是3[ ,1)2e 解法三:根据选项,可以采取特殊值代入验证,从而甄别出正确答案。 当0a =时,()(21)x f x e x =-,'()(21)x f x e x =+,可知()f x 在1(,)2 -∞-递减,在1(,)2 -+∞递增,又(0)10f =-<,1(1)30f e --=-<,不符合题意,故0a =不成立,排除答案A 、B. 当34 a =时,33()(21)4 4 x f x e x x =--+,3'()(21)4 x f x e x =+-,因为3'()(21)4 x f x e x =+-为增函数,且31'(0)104 4 f =-=>,13'(1)04 f e --=--<,所以存在(1,0)t ∈-,使得'()0f t =,则()f x 在(,)t -∞递减,在(,)t +∞递增,又3 (0)104 f =-+<,13(1)302 f e --=-+>,

相关文档
最新文档