微地震监测定位精度分析

微地震监测定位精度分析
微地震监测定位精度分析

微地震监测定位精度分析

作者:尹陈, 刘鸿, 李亚林, 巫芙蓉, 何光明, 陈春华, YIN Chen, LIU Hong, LI Ya-lin, WU Fu-rong, HE Guang-ming, CHEN Chun-hua

作者单位:川庆钻探工程有限公司地球物理勘探公司,成都,610213

刊名:

地球物理学进展

英文刊名:Progress in Geophysics

年,卷(期):2013,28(2)

参考文献(40条)

1.Zimmer U;Bland H;Du J Accuracy of microseismic event locations recorded with single and distributed downhole sensor arrays 2009

2.Munro K A Analysis of microseismic event picking with applications to landslide and oil field monitoring settings 2005

3.吴治涛;李仕雄STA/L TA算法拾取微地震事件P波到时对比研究[期刊论文]-地球物理学进展 2010(05)

4.Bose S;Valero H P;Liu Q An automatic procedure to detect microseismic events embedded in high noise 2009

5.吴治涛;骆循;李世雄联合小波变换与偏振分析自动拾取微地震P波到时[期刊论文]-地球物理学进展 2012(01)

6.Allen R Automatic earthquake recognition and timing from single traces 1978(05)

7.Fu Q;Luo Y Locating micro-seismic epicenters in common arrival time domain 2009

8.蔡明军;山秀明;徐彦从误差观点综述分析地震定位方法[期刊论文]-地震研究 2004(04)

9.Wilson S;Raymer D;Jones R The effects of velocity structure on microseismic location estimates:a case study 2003

10.Brown R L Horizontal velocity measurements using microearthquake data 2009

11.张小红;李星星;郭斐基于服务系统的实时精密单点定位技术及应用研究[期刊论文]-地球物理学报 2010(06)

12.田玥;陈晓非地震定位研究综述[期刊论文]-地球物理学进展 2002(01)

13.金星;张红才;李军地震预警连续定位方法研究[期刊论文]-地球物理学报 2012(03)

14.杨文东;金星;李山有地震定位研究及应用综述[期刊论文]-地震工程与工程振动 2005(01)

15.Bayuk I O Why anisotropy is important for Location of Microearthquake Events in Shale 2009

16.Bardainne T;Gaucher E;Cerda F Comparison of pieking based and waveform based location methods of microseismic events:Application to a fracturing job 2009

17.Leo E;Peter M D Uncertainties in passive seismic monitoring[外文期刊] 2009(06)

18.李辉;戴旭初;葛洪魁基于互信息量的地震信号检测和初至提取方法[期刊论文]-地球物理学报 2007(04)

19.王伟涛;倪四道;王宝善中国中东部地震台站噪声互相关函数中面波前驱信号的分析研究[期刊论文]-地球物理学报 2012(02)

20.BaileyJ R;Smith R J;Kcith C M Passive seismic data management and processing to monitor heavy oil steaming operations 2008

21.Zimmer U;Maxwell S;Waltman C Microseismic monitoring quality control (QC) reports as an interpretative tool for nonspecialists 2007(04)

22.Leonard M Comparison of manual and automatic onset time picking[外文期刊] 2000(06)

23.Bai C Y;Kennett B L N Automatic phase-detection and identification by full use of a single three component broadband seismogram 2000(01)

24.Cichowicz A An automatic S phase picker 1993(01)

25.Lomax A;Virieux J;Volant P Probabilistic earthquake location in 3D and layered models:Introduction of a Metropolis-Gibbs method and comparison with linear locations 2000

26.Pei D H;Quirein J A;Cornish B E Velocity calibration for micro seismic monitoring:A very fast simulated annealing(VFSA) approach for joint-objective optimization 2009(06)

27.Bardainne T;Gaucher E Non-linear calibration of complex velocity models in microseismic jobs:Workshop on Passive Seismic 2009

28.王辉;常旭基于图形结构的三维射线追踪方法[期刊论文]-地球物理学报 2000(04)

29.张美根;程冰洁;李小凡一种最短路径射线追踪的快速算法[期刊论文]-地球物理学报 2006(05)

30.赵爱华;张中杰三维复杂介质中转换波走时快速计算[期刊论文]-地球物理学报 2004(04)

31.张美根;贾豫葛;王妙月界面二次源波前扩展法全局最小走时射线追踪技术[期刊论文]-地球物理学报 2006(04)

32.Tarantola A;Valette B Inverse problems:Quest for information 1982

33.Stoffa P L;Sen M K Nonlinear multi-parameter optimization using genetic algorithms:Inversion of plane-wave seismograms 1991(11)

34.Chunduru R K;Sen M K;Stoffa P L Hybrid optimization methods for geophysical inversion[外文期刊] 1997(04)

35.徐果明反演理论及其应用 2003

36.高尔根;徐果明;赵焱一种任意界面的逐段迭代射线追踪方法 1998(01)

37.万永革;李鸿吉遗传算法在确定震源位置中的应用 1995(06)

38.宋维琪;刘军;陈伟改进射线追踪算法的微震源反演[期刊论文]-物探与化探 2008(03)

39.Bancroft J C;Wong J Sensitivity measurements for locating microseismic events using first arrival clock times

40.叶根喜;姜福兴;杨淑华时窗能量特征法拾取微地震波初始到时的可行性研究[期刊论文]-地球物理学进展 2008(05)

本文链接:https://www.360docs.net/doc/808186952.html,/Periodical_dqwlxjz201302029.aspx

地震定位基本原理

1、Hypo2000定位方法的基本原理 1.1基本原理 Hypoinverse 算法是在Geiger 法的思想上发展起来的一种单事件绝对定位方法。设n 个台站的观测到时为t 1,t 2,…,t n 求震源位置 x o ,y o ,z o 及发震时刻t o ,使得目标函数最小。 ? t 0,x 0,y 0,z 0 = r i 2n i=1 1 其中r i 为到时残差 r i =t i ?t o ?T i x o ,y o ,z o (2) T i 为震源到第i 个台站的计算走时。 使目标函数取极小值,即 ?θ? θ =0 3 其中θ= t o ,x o ,y o ,z o T ,?θ= ? ?t o ,??x o ,??y o ,??z o T 。 g θ =?θ? θ 4 在真解θ附近任意试探解θ?及其校正矢量δθ满足 g θ? + ?θg θ? T T δθ=0 5 即 ?θg θ? T T δθ=? g θ? 6 由?的定义可得公式(6)的具体表达式 ?r i ?θj ?r i ?θk +r i ?2r i ?θj ?θk θ?δθj =? r i ?r i ?θk θ?n i=1n i=1 7 若θ?偏离真解θ不大,则r i θ? 和 ?2T i ?θ j ?θk θ?较小。可忽略二阶导数项,上式被简化为线性最小二乘解: ?r i ?θj ?r i ?θk n i=1δθj =? r i ?r i ?θk θ? n i=1 8 以矩阵形式表示,上式为 A T A δθ=A T r 其中 A = 1?T 1?x 0 ?T 1?y 0 ???1?T n ?x 0 ?T n ?y 0 ?T 1?z 0??T n ?z 0 θ? ,r = r 1 ?r n 9 若二阶导数项不可忽略。则式(7)给出的非线性最小二乘解 A T ?A ?θA T r δθ=A T r 10 通常各站台的到时数据具有不同的精度,若果不加以区别,则具有较低精度的数据将影响结果的精度,这一问题可以通过引入加权目标函数来解决。设各台站到时残差r i 的方差为σi 2,引入加权目标函数 ?r θ = r i 2n i=1 θ 1 σi 2 11 按照上述同样的步骤,得到如下加权线性最小二乘解 A T C r ?1A δθ=A T C r ?1r 12 其中C r 为加权方差矩阵:C r =diag σ12,…,σn 2 。 求得δθ后,以θ=θ?+δθ作为新的尝试点,再求解相应方程。如此反复迭代,直到?或?r 足够小,此时即得估计解θ 。[4]

工程场地地震安全性评价标准

工程场地地震安全性评价标准 前言 本标准的2、3、6.1.3、6.3.4、8.2.3、9.1.2、10.5.2、11.2.1、12.1.2、12.2.1、12.4.4和13.2.4为推荐性的,其余的技术内容为强制性的。本标准代替GB 17741-1999《工程场地地震安全性评价技术规范》。本标准与GB17741-1999相比,主要有以下变化: a) 重新划分了工程场地地震安全性评价的工作分级,工作内容和适用对象调整如下: ——Ⅰ级工作的内容不变,明确了核电厂地震安全性评价属于Ⅰ级工作; ——原Ⅱ级工作为现Ⅲ级工作,原Ⅲ级工作为现Ⅱ级工作; ——Ⅳ级工作的内容由地震烈度复核变为地震动峰值加速度复核。 b) 删除了原文本的第4章“符号”和所有计算公式; c)增加了“发震构造”、“空间分布函数”、“弥散地震”、“超越概率”和“地震动反应谱特征周期”5个术语及其定义; d) 增加了“地震动峰值加速度复核”一章,并规定了具体工作要求; e) 调整了部分内容的层次和章节划分,修订了部分内容的技术要求,修改了部分文字的表述和措词。本标准由中国地震局提出。本标准由全国地震标准化技术委员会(SAC/TC 225)归口。本标准起草单位:中国地震局地球物理研究所、中国地震局地质研究所、中国地震局地壳应力研究所、中国地震局地震预测研究所、中国地震局工程力学研究所。本标准主要起草人:胡聿贤、张裕明、高孟潭、唐荣余、陈国星、李小军、赵凤新、薄景山、徐宗和、金严、鄢家全、陶夏新、吴建春、杜玮、陶裕录、韦开波、冯义钧。GB 17741-2005 引言 GB17741-1999实施4年来,在新建、扩建、改建建设工程及大型厂矿企业、城镇、经济建设开发区的选址,抗震设防要求的确定,发展规划及防震减灾政策的制定等工作中发挥了重要作用。本次修订依据 GB18306-2001《中国地震动参数区划图》及4年来地震安全性评价工作经验。对GB17741-1999进行修订的主要原因: a)GB18306-2001已不采用地震烈度表征地震动,工程场地地震安全性评价应与之协调一致; b)GB17741-1999中的工作分级已不能完全满足建设工程抗震设防的需求,应对工作分级进行调整,并对工作内容和要求作相应修改; c)按GB18306-2001的使用规定,工程场地地震安全性评价需相应增加地震动峰值加速度复核的内容。 GB 17741-2005 工程场地地震安全性评价 1 范围本标准规定了工程场地地震安全性评价的技术要求和技术方法。本标准适用于各类建设工程选址与抗震设防要求的确定、防震减灾规划、社会经济发展规划等工作中所涉及的工程场地地震安全性评价。 2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 18207.1—2000 防震减灾术语第一部分:基本术语 GB18306-2001 中国地震动参数区划图 GB50267-1997 核电厂抗震设计规范 3 术语和定义 GB/T 18207.1-2000确立的以及下列术语和定义适用于本标准。

国内外微地震检测技术现状与应用

国内外微地震检测技术现状与应用 一、国内技术应用现状 基于微震监测的裂缝评价技术正发展成为油层压裂生产过程中直观而又可靠的技术。近几年来,国内众多油气田纷纷投入人力、物力和资金,积极开展该技术的应用与研究工作,广泛用于油气勘探开发工作。 1、2011年,东方物探公司投入专项资金,积极开展压裂微地震监测技术研究,压裂微地震监测技术水平得到快速提升。截止2011年11月,东方物探公司已成功对11口钻井实施了压裂微地震监测。 2、同年,华北油田物探公司针对鄂尔多斯工区大力推广水平井分段压裂技术、不断提高储量动用率及单井产量的要求,2011年年初就对微地震检测技发展状况进行调研,并对检波器、记录仪器、处理软件进行实际考察。 他们与科研院校合作,在鄂南工区富县牛东4井与洛河4井开展微地震监测裂缝评价技术攻关,采用微地震技术对储层压裂进行监测,结果与人工电位梯度方法(ERT)监测结果一致。该公司还通过组建微地震监测项目组,加强相关专业知识的培训和学习,并与科研院校“高位嫁接”,开发微地震检测特色技术,打造差异化竞争优势。 3、近年来,胜利油田积极开展微地震压裂检测技术应用研究,并把它作为油气勘探开发的重要技术手段和技术储备。 据了解,“十二五”期间,非常规油气藏将成为胜利油田的一个重要接替阵地,而微地震压裂检测技术是非常规油气藏勘探领域中的一项重要新技术。 通过开展对国内外微地震压裂检测技术现状、微地震压裂检测采集方法、数据处理及裂缝预测方法、目前成熟的处理反演软件、微地震压裂检测技术应用实例分析等方面调查研究,全面了解和掌握微地震压裂检测技术的技术特点、技术关键、技术实用性及其发展方向,为胜利油田下一步开展非常规油气资源的勘探开发工作提供先进的技术支持,更好地为油气藏勘探开发工作服务。 二、国外技术研究与应用 在20世纪40年代,美国矿业局就开始提出应用微地震法来探测给地下矿井造成严重危害的冲击地压,但由于所需仪器价格昂贵且精度不高、监测结果不明显而未能引起人们的足够重视和推广。 近10年来,地球物理学的进展,特别是数字化地震监测技术的应用,为小范围内的、信号较微弱的微地震研究提供了必要的技术基础。为了验证和开发微地震监测技术在地下岩石工程(如地热水压致裂、水库大坝、石油、核废料处理等)中所具有的巨大潜力,国外一些公司的研究机构和大学联合,进行了一些重大工程应用实验。如1997年,在美国德州东部的棉花谷进行了一次全面而深入的水压致裂微地震成像现场实验,以验证微地震成像技术的实用价值。该实验取得了巨大成功,证明微地震成像技术相对于其它技术来讲,分辨率高、覆盖范围广、经济实用及可操作性强,很有发展潜力。 美国之所以成为目前世界上页岩油气开发的领跑者,就是因为它已经熟练掌握了利用地面、井下测斜仪与微地震检测技术相结合先进的裂缝综合诊断技术,可直接地测量因裂缝间距超过裂缝长度而造成的变形来表征所产生裂缝网络,评价压裂作业效果,实现页岩气藏管理的最佳化。该技术有以下优点: ①、测量快速,方便现场应用; ②、实时确定微地震事件的位置; ③、确定裂缝的高度、长度、倾角及方位;

震源深度确定

张晁军等:近震震源深度测定精度的理论分析 摘要震源深度是地震学中最难准确测定的参数之一,各种方法对于震源深度的估计都具相当程度的不确定性,影响着人们对震源过程的认识。各种因素对震源深度的影响是非线性的,本文从近震走时公式入手,分析了震中距、到时残差和速度模型(地壳模型)对震源深度的影响。当地震波传播速度一定时,震源深度的误差与随着震中距或台站位置的增大和走时残差的增大而增大。走时残差一定时,震源深度误差随着震中距的增大和地震波速度的增大而增大。研究也表明,当速度已知,走时残差一定时,越浅的地震,定位误差可能越大。定位精度产生的水平误差随着震中距、到时误差和地震波速度的增大,震源深度误差也将增大。关键词震源深度h 测定精度误差 引言 震源深度是描述震源的最基本参数之一,它给出了地震发生在地球内部的具体位置,对了解地震孕育和发生的物理化学条件,以及地震能量集结、释放的活动构造背景都有重要的意义。地震学家用它来估计岩石圈板块的厚度,描绘板块边缘和内部岩石圈的变温结构和力学结构,以了解构造过程的详情,探索地震发生的力学机制和过程,震源深度的准确测定关系到对震源过程、断层构造、壳幔结构、应力场作用、板块运动等一系列的重要问题的正确认识(高原等,1997)。研究任何地震事件时,从地震宏观作用的研究到地震和核爆炸的识别,实际上都必须知道震源深度。

震源深度的精度仍是个棘手的问题,在现代地震目录中,它几乎已经成为最不准确的参数之一(高原等,1997)。因为地震定位受震相识别的观测误差和地壳模型与真实地球模型误差的双重影响,在实际工作中人们很难把它们分了开来(Billings,et al.,1994)。 许多学者用不同的方法来求取震源深度,如1)利用走时曲线的慢度变化极为灵敏的特点,从中可以提取震源深度的信息(赵珠,1992),尽管用细分的多层地壳模型和多路径P、S波到时资料综合定位可提高震源深度的测定精度(王周元,1989),但是慢度变化的过于灵敏会使结果偏离真实,其自身的准确程度也与地区的速度结构有关;2)应用动力学的方法改善测定震源深度的准确性,即用反演方法确定描述震源的矩张量及震源时间函数的同时,通过合成地震图和对观测地震图的拟合来改善震源深度的准确性(Robert, 1973; Beck and Christensen,1991;Sileny, 1992)。表面上看来这似乎更可靠更准确,但事实上,在这种情况下,震源深度的准确性又取决于计算格林函数时所采用的介质模型对实际介质的逼近程度(许力生,陈运泰,1997)。Velasco等(1993)认为,速度模型及假设的震源位置都会对矩心深度、震源持续时间和地震矩的估计造成影响。所以,即使借助于波形反演等动力学方法,震源深度仍是一个难以准确测定的参数。事实上,由于方法和资料的不同,特别是震源深度的精度同震源深度、剪切波速度、断层倾角和滑动角有关(Anderson,et al.,2009)故不同的测定者得到的震源深度也不同(许力生,陈运泰,1997);3)一些学者使用深部震相(面反射震相pP and sP)来提高测定震源深度的精度(Stroujkova, 2009),认为这有助于减小因地震波速的不确定性引起的对震源深度的计算误差,然而,深部震相的识别是个困难的问题。国际数据中心(IDC)也只有11%的地震事件的震源深度是

JOPENS系统地震分析定位模块MSDP常用功能简介

JOPENS系统交互分析定位模块MSDP常用功能简介 段刚 (福建省地震局监测中心) 摘要:介绍JOPENS系统中交互分析软件MSDP常用功能 关键词:JOPENS MSDP 常用功能 0.引言 JOPENS系统是广东省地震局开发的数字化地震观测系统,地震交互分析软件MSDP 是其系统中的重要组成部分。地震交互分析软件是地震记录从模拟向数字化转变的产物,是数字化地震观测系统的重要组成部分,它与数字测震摆、数据采集器、实时记录系统一起构成数字化地震观测体系。随着技术的不断改进,功能的不断完善,现在已到了较成熟的阶段,被广泛应用于全国地震台网的地震观测中,主要功能有文件处理、震相标识、地震定位和报告的生成管理。福建测震台网从2008年10月1日起正式使用JOPENS系统的人机交互分析软件MSDP进行日常地震速报、地震编目等工作。 1.MSDP简介 1.1 运行环境 MSDP是用Java语言开发的,Java具有平台无关性、多线程、可靠安全的特点,它能在不同的平台下运行。因此, MSDP能在Unix 、Linux 以及Windows下运行,对系统硬件要求不高,目前大部分计算机配置足以满足需求 1.2 数据存储 在采用文件存储方式的软件系统中,数据以特定的文件名存放于硬盘,MSDP采用数据库的存储方式,文件名为事件发生时刻的时间命名,利用Mysql数据库的强大管理功能,轻松处理检索、删除等操作,克服了文件存储方式的种种问题,尤其在文件数目剧增时可使得用户在处理数据时感到轻松便捷。 1.3 数据管理 快速查询地震事件,可通过日期、分析人员、震级、震中位置、经纬度方式查询,同时还拥有事务日志功能,查看日志可清楚数据存储过程。利用备份与恢复功能,可自动对数据进行复制,以防止数据丢失;利用导入功能可恢复数据的完整性。Mysql数据库提供了网络服务,支持数据共享,其他计算机可按权限进行访问,第三方软件或Web页面可直接按需求进行查询。 2. 常用功能 任何一款软件都十分重视操作界面的设计,它是面对用户的直接窗口,它的设计是否合理关系到用户的体验和应用效率。交互分析软件是地震行业专用,像这种专业化程度较高的软件,不需要华丽的界面,而应该把更直观、更快捷、更方便视为设计目标,MSDP很好的把握了这一理念,在主界面安排了文件处理、震相标识、地震定位等常用快捷键,整体简洁

微地震检测技术简介

微地震监测技术及应用 随着非常规致密砂岩气、页岩气藏的开采开发,压裂技术在储层改造中起着举足轻重的作用,而微地震监测技术是评价压裂施工效果的关键且即时的技术之一。根据微地震监测处理高精度地反演微震位置,从而预测压裂裂缝的发展趋势及区域,对压裂施工效果进行跟踪及评判,同时也为后期油气藏的开采和开发提供技术指导。 第一节微地震监测技术原理与发展 微地震监测技术是通过观测、分析生产活动中所产生的微小地震事件来监测生产活动的影响、效果及地下状态的地球物理技术,其基础是声发射学和地震学。与地震勘探相反,微地震监测中震源的位置、发震时刻、震源强度都是未知的,确定这些因素恰恰是微地震监测的首要任务。微地震是一种小型的地震(mine tremor or microseismic)。在地下矿井深部开采过程中发生岩石破裂和地震活动,常常是不可避免的现象。由开采诱发的地震活动,通常定义为,在开采坑道附近的岩体内因应力场变化导致岩石破坏而引起的那些地震事件。开采坑道周围的总的应力状态。是开采引起的附加应力和岩体内的环境应力的总和。 一、技术背景 岩爆是岩石猛烈的破裂,造成开采坑道的破坏,只有那些能够引起矿区附近的地区都受到破坏的地震事件才叫做冲击地压或煤爆、“岩爆”。对地下开采诱发的地震活动性的研究表明,矿震不一定全都发生在开采的地点,且不同地区的最大震级也不相同,但矿震深度一般对应于开采挖掘的深度。每年在一些矿区的地震台网能记录到几千个地震事件,只有几个是岩爆。在由开采引起的地震事件的大的系列里,岩爆只是其中很小的一个分支。对矿山地震、微地震及冲击地压的观测具有一致性,但应用到实际生产中必须区别对待。 二、微地震技术的发展 基于微震监测的裂缝评价技术正发展成为油层压裂生产过程中直观而又可靠的技术。近几年来,国内众多油气田纷纷投入人力、物力和资金,积极开展该技术的应用与研究工作,广泛用于油气勘探开发工作。2011年,东方物探公司投入专项资金,积极开展压裂微地震监测技术研究,压裂微地震监测技术水平得

地震定位研究综述概要

防灾科技学院毕业设计(论文、综合实践报告)结论从数学上讲,地震定位问题的实质在于求目标函数的极小值。各种定位方法产生于对目标函数的构造、处理,以及求极小值方法的不同。影响地震定位精度的主要因素有:台网布局,震相识别,到时读数,地壳结构等。在数值计算中,常遇到下列问题:走时的计 算,偏导数的计算,方程的反演求解等。由于台网分布在地表,给深度定位带来一定的困难。各种定位方法正是针对其中的某几个问题而设,各有优、缺点。相对 定位所得的震源相对位置精度较高。对于主事件,可以利用改进后的经典方法进 行单事件定位。二者结合将可以得到较好的定位结果。 JHD 方法中引入的台站校 正过于简单,不足以反映地壳的复杂结构;而 SSH 方法中的三维速度模型会带来巨大的运算量。如果我们能够构造一种介于二者之间的校正参数,比如将台站校 正作为有方向的矢量,进行联合反演,可能效果更好。在 DDA 方法中,当事件对i, j 相距较近时,可以将(23式化简,反演得到 i, j 的相对距离。同时我们可以选取较少的事件,用联合反演进行绝对定位。将二者结合可以减少运算量,提高定位 效率。致谢本文是在陈晓非老师的悉心指导下完成的。陈老师优秀的科学修养,深厚的数理功底,严谨的治学态度都给我留下了极其深刻的印象,也成了我努力 奋斗的榜样。本文同样凝聚了陈老师的心血,仅此向陈老师表示深深的谢意。周 仕勇博士后以其丰富的理论背景和实践经验,对本文提出了建设性意见并提供了 诸多及时的信息。张海明、张伟、邹最红、曹军等师兄师姐手把手地领我入门, 令我受益匪浅。均在此一并致谢! 参考文献 [1] 傅淑芳, 刘宝诚. 地震学教程[M]. 北京:地震出版社,1991,447-480. [2] Geiger L. Probability method for the determination of earthquake epicenters from arrival time only[J]. Bull.St.Louis.Univ, 1912, 8: 60-71. [3] Lee W H K, J C Lahr. HYPO71: A computer program for determining hypocenter, magnitude, and firs t motion pattern of local earthquakes[J]. U.S.Geol.Surv. Open-File Rept, 1975, 75-311. [4] Klein F W. Hypocenter location program HYPOINVERSE Part I: Users guide to versions 1,2,3 and 4[J]. U.S.Geol.Surv. Open-File Rept, 1978, 78-694. 防灾科技学院毕业设计(论文、综合实践报告) [5] Lienert B R,Berg E, Frazer L N. Hypocenter: An earthquake location method using centered, scaled, and adaptively damped least squares[J]. Bull.Seism.Soc.Am, 1986,76(3: 771-783 . [6] Nelson G D, John

微地震技术与压裂效果评价

微地震技术与压裂效果评价 摘要:本文就油田不同开发阶段,利用微地震监测技术对水力压裂人工裂缝实时监测,根据裂缝监测结果应用科学的评价方法,定量计算水力压裂措施前后渗流阻力及产量,是一项十分必要评价压裂效果的可靠方法。 关键词:微地震;监测;油气藏;地应力;储层;评价 目前提高低渗透油藏单井产量最有效的方法是对油层进行水力压裂改造。通过微地震监测技术,监测压裂人工裂缝形成过程中所诱发的微地震事件,通过对微地震事件反演及震源定位,就可以了解裂缝的产状,进而客观的描述压裂裂缝的再生作用导致的应力改变,以有效地提高油田开发水平。 1.微地震监测技术 微震动(包括微地震)监测技术是20世纪90年代发展起来的一项地球物理勘探新技术,应用于油气藏勘探开发、煤矿“三带”(冒落带,裂缝带和沉降带)监测,矿山断裂带监测,地质灾害监测等多个领域。目前微地震监测技术在国内外油气田勘探开发中的应用已经比较普遍。 1.1监测原理 油气水井新井投产或后期改造进行水力压裂时,在射孔位置,当迅速升高的井筒压力超过岩石抗压强度,岩石遭到破坏,形成裂缝,裂缝扩展时,必将产生一系列向四周传播的微震波,微震波被布置在压裂井周围的多个监测分站接收到,根据各分站微震波的到时差,会形成一系列的方程组,求解这一系列方程组,就可确定微震震源位置,进而计算出裂缝分布的方位、长度、高度及地应力方向等地层参数;同时结合井口压力监测可获得闭合压力、液体滤失系数、液体效率、裂缝宽度等参数。 1.2压裂效果评价方法 根据目前国际上通常评价系统,水力压裂前后几何渗流阻力(ΩrP)、产油量(q ) 、渗流阻力下降率(V )分别为: 2.微地震监测技术在青海柴达木地乌南油田应用实例 2.1乌南油田基本概况 乌南油田位于青海省柴达木盆地西部南区,为柴达木盆地茫崖坳陷区昆北断阶亚区乌北-绿草滩断鼻带上的一个三级构造,构造面积130km2 ,构造整体为一由东南向北西方向倾没的鼻状构造,构造轴向为北西向,构造西南翼地层倾角较大,东北翼地层倾角相对较小,主体部位轴向330度。区内断裂发育,大小断裂20余条,

地震预防及避震知识

地震预防及避震知识

————————————————————————————————作者:————————————————————————————————日期: ?

地震预防及避震知识 一、地震形势 二、地震术语 三、地震灾害 四、监测预报 五、震害防御 六、创建防震减灾示范城市 七、应急避震 一、地震形势 (一)前言 (二)全球及我国地震带的分布 (三)概述 我国是一个多地震的国家,地震活动具有频度高、强度大、分布广、震源浅的特征。唐山地震死亡人数超过24万;汶川地震死亡69000多人,失踪17000多人,直接经济损失8451亿元。所有的省、自治区、直辖市在历史上都遭受过5级以上地震的袭击。 广东省位于东南沿海地震带较活跃地段,是华南地区地震相对多发,灾害最严重的省份。近百年来,广东及其附近海域有过9次6级以上地震(其中7级以上地震2次),死数千人,伤数千人,倒塌房屋数万间。近10年来就有5次地震造成灾害。 东南沿海地震带4次7级地震: 1600年南澳7级 1604年泉州7.5级 1605年海口7.5级 1918年南澳7.3级 深圳位于东南沿海地震带中段,具有发生破坏性地震的地质构造背景和潜在危险,地震基本烈度为七度,是国家确定的地震重点监视防御区。 (四)形势分析

全球地震活动包括我国、东南沿海已进入一个相对活跃时段,有必要强化监测预报,灾害预防,宣传教育,增强减灾意识,提高防震避险能力。 二、地震术语 (一)震级和烈度 震级:释放能量的大小 烈度:破坏或者影响的程度 我国将地震烈度划分为十二等级: 小于三度:人无感受,只有仪器能记录到?三度:夜深人静时人有感受?四-五度:睡觉的人惊醒,吊灯摆动 六度:器皿倾倒、房屋轻微损坏 七-八度:房屋破坏,地面裂缝 九-十度:房倒屋塌,地面破坏严重?十-十二度:山崩地裂,毁灭性的破坏 (二)二者关系 震源深度10-30公里 震级3 4 5 678-9 烈度三-四四-五六-七七-八九-十十一-十二三、地震灾害 (一)特征 突发性、瞬时性、连锁性 (二)分类 直接灾害: 次生灾害: 四、地震监测预报 (一)、地震监测 1、监测技术的发展(从模拟时代到数字时代) 2、地震监测的基础性作用 经济社会生活离不开(人工地震);为抗震救灾赢得时间;

GPS技术与地震监测

GPS技术与地震监测 2008-01-09 12:59 来源: 作者: 大中小 地球动力学是从地球的整体运动出发,由地球内部和表层的构造运动来探讨其动力演化 板块构造概念带动了地学的一次重大革命,板间构造和板块运动理论能否成立或被人接受,均需得到全球板块运动的最新直接测量结果的支持。此外,板块运动的动力学机制、板 中国大陆东部受西太平洋洋型板块俯冲、削减的影响,造成了一系列与弧后扩张有关的陆缘海伸展和断陷盆地;西部和西南受印度板块与青藏块体陆壳碰撞后的构造效应,形成不同地质构造时期的推覆构造带。现代地壳运动则以青藏高原的快速隆起和沿巨型活动带的走滑或逆走滑的强烈变动为特征。据有限的观测,其水平运动速率每年高达l~4cm,垂直运动速率每年达1cm。这说明同时存在当代板块构造学说两种最具代表性的边界,即陆-陆壳 里的现代地壳运动类型多样,性质复杂,地貌清晰,是全球动力学研究中具有重要特殊地位的实验场 因此,不论从地球动力学、板块运动还是青藏高原隆起,运用高精度、高时空分辨率、动态实时定量的观测技术,建立符合实际的地球动力学基础的全国统一的观测网络,势在必 对于地震监测预报而言,这种紧迫性尤为显著,因为我国地震台网,尤其是地震前兆网, 第一,自1988~1999年,我国大陆共发生6级以上地震53次,其中7级以上地震9次,若以东经105°为界,西部地区发生8次,东部地区为1次,为8∶1。可是,在东经105°以西,由于人烟稀少,交通不便,台网布局极为稀少。一个释放地震能量90%以上的地区,台网过稀,无疑浪费了宝贵的地震信息的天然资源,大大延迟了人类的实践,从而延缓了提 第二,全国地震前兆台网都是以“点测”形式进行相对变化量的日常观测,各台站的观测数据都是相对独立的,台站之间数据没有相互关系。一旦出现异常时,由于是点结构观测,没有面上的联系,则难以判断其真伪。 第三,地震活动是区域性和全球性的,而前兆观测是独立的,不相关的,则难以研究其

微地震监测技术(公开)

微地震监测技术
北京阳光杰科科技有限公司 2012年6月
GNT International Inc.

内容提要
? 微地震技术三种数据采集方法 ? 微地震数据处理 ? 微地震解释与应用 ? 微地震应用实例
GNT International Inc.
https://www.360docs.net/doc/808186952.html,

微地震监测技术
微地震监测技术是采集地下岩石破裂所产生的地震波,通过处理、解释以 了解地下岩石破裂的位置、破裂程度、破裂的几何形态等的技术;可用于 石油工业的压裂监测,以及矿山、大坝、地下结构等的长期监测
GNT International Inc.
https://www.360docs.net/doc/808186952.html,

微地震监测的三种探测方法 微地震技术三种数据拾取方法
井下 地表 埋置
井下探测区域 地表系统探测区域
井下系统探测装置 系统设计 (平坦地形 ) 系统设计 (多山地形 )
预警系统监测区域
? 地震检波器串 ?径向排列系统, 8-16 臂, 1000 道 ?井筒中储层段放置10-50 个3-C 地震检波器 ?采取初至处理 ?监测井距压裂井距小于200米 ?可用于观测多井压裂 ?用于标定地表系统 ?灵活和快速的探测
大面积油藏监测系统
?埋于100-300英尺(约30-90米) 的3-C 检波器 ?每个排列配备80 – 100个检波器
?由客户数据建立速度模型 ?标定速度模型 ?事件可能发生区域的数据叠加 ?在叠加数据中搜寻裂缝事件 ?按时间和空间输出事件位置
?大面积覆盖 ?长期监测的最佳商业和技术选择
预备埋入的3C地震检波器
3C 井下地震检波器
准备井下系统
用于调配的四轮摩托 为直升机调 配准备的地 震检波器和 电缆
录音舱
直升机调配
用于系统 部署的直 升机
进行中的浅孔钻探
埋入式3C地震检波器站
埋入式 3C 地震检波器站
在靠近作业井较近距离内,井下监测具有较高的精度
用于短期微地震震监测的灵活技术
用于长期和大范围监测的最具经济有效的方法
GNT International Inc.
https://www.360docs.net/doc/808186952.html,

微地震监测技术及应用

微地震监测技术及应用 摘要微地震监测工艺包括近震研究的定位与地壳构架成像,微地震监测各类定位手段需创建不同目标函数,地震定位情况的实质为求得目标函数的极小值。NA拥有不依靠于模型初始值选用,不会收敛与部分极小值,比以往线性近似手段有更大的精度与稳定性。经过地震信息的震相研究,走时拾取反演能够得到地震干扰区的地震波速度系统,当前已推行使用在石油、气田勘察开发和页岩开发领域;矿山开挖中矿震、岩爆,煤和瓦斯突出,承压水突水检测;水利项目施工坝址、边坡可靠性以及天然滑坡检测等诸多方面。 关键词微地震;监测方法;运用;研究 1 微地震具体定位手段 微震监测方法是在地震监测方法的前提下发展起来的,其在原理上和地震监测、声发射监测方法一样,是依靠岩体受力损坏阶段破裂的声、能原理。 近震3D空间微地震定位忽视深度后能视为平面微地震定位情况,使用三点定位几何手段,在已知三个测量点坐标与地层介质传递速度基础上,经过三点到时就能够明确震源部位[1]。O0是坐标原点,以R,R+ΔR1,R+ΔR2分别是半径作圆,三圆交点就是震源,如图1所示。 天然微地震出现频率相对偏低,地震震相容易区别,常体现出单事件特点。精确的定位手段均是创建在3D空间前提下,常见的微地震震源定位基本手段包括Geiger法、网格检索手段等线性优化途径;还有遗传算法、模拟退火以及邻近算法等非线性优化手段[2]。 2 微地震监测运用 2.1 矿山安全开挖微地震监测 伴随开挖深度增大,地压、瓦斯以及地下承压水等安全情况突出,微地震监测技术起到关键的作用。冲击地压属于矿山内损坏行最大的地压问题,出现时大小不同的煤块以较大的速度飞向巷道,对矿山设备以及人员生命的威胁较大,因此对其研究具有重要作用[3]。统计结构显示,大概50%的矿震是因为沙砾岩等重点层损害造成的,僅有少数矿震造成了冲击地压情况,表示矿震和冲击地压的差异。冲击地压与地震一样均是和地球中物理损坏相关联的岩体可靠性现象,其出现时均表现为较短时间内散发大量的应变能。 使用弹性波和岩体破裂的相关观念和技术,探究地下采空区不明水体的蓄积与成灾过程,研究显示,在突水问题前存在明确的弹性波波束比低值异常、振幅比高值异常、振动主频低值异常、波形变异和隔水岩墙破裂出现前的微震频度异常。

相关文档
最新文档