计算机知识cluster-并行计算PC机群的构建0422205901第一期

计算机知识cluster-并行计算PC机群的构建0422205901第一期
计算机知识cluster-并行计算PC机群的构建0422205901第一期

多核编程与并行计算实验报告 (1)

(此文档为word格式,下载后您可任意编辑修改!) 多核编程与并行计算实验报告 姓名: 日期:2014年 4月20日

实验一 // exa1.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include #include #include #include using namespace std; void ThreadFunc1(PVOID param) { while(1) { Sleep(1000); cout<<"This is ThreadFunc1"<

实验二 // exa2.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include #include using namespace std; DWORD WINAPI FunOne(LPVOID param){ while(true) { Sleep(1000); cout<<"hello! "; } return 0; } DWORD WINAPI FunTwo(LPVOID param){ while(true) { Sleep(1000); cout<<"world! "; } return 0; } int main(int argc, char* argv[]) { int input=0; HANDLE hand1=CreateThread (NULL, 0, FunOne, (void*)&input, CREATE_SUSPENDED,

大数据与并行计算

西安科技大学 计算机科学与技术学院 实习报告 课程:大数据和并行计算 班级:网络工程 姓名: 学号:

前言 大数据技术(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。 特点具体有: 大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。《计算机学报》刊登的“架构大数据:挑战、现状与展望”一文列举了大数据分析平台需要具备的几个重要特性,对当前的主流实现平台——并行数据库、MapReduce及基于两者的混合架构进行了分析归纳,指出了各自的优势及不足,同时也对各个方向的研究现状及作者在大数据分析方面的努力进行了介绍,对未来研究做了展望。 大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,处理速度快,1秒定律,可从各种类型的数据中快速获得高价值的信息,这一点也是和传统的数据挖掘技术有着本质的不同。第四,只要合理利用数据并对其进行正确、准确的分析,将会带来很高的价值回报。业界将其归纳为4个“V”——Volume(数据体量大)、Variety(数据类型繁多)、Velocity(处理速度快)、Value(价值密度低)。 从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。 1.大数据概念及分析 毫无疑问,世界上所有关注开发技术的人都意识到“大数据”对企业商务所蕴含的潜在价值,其目的都在于解决在企业发展过程中各种业务数据增长所带来的痛苦。 现实是,许多问题阻碍了大数据技术的发展和实际应用。 因为一种成功的技术,需要一些衡量的标准。现在我们可以通过几个基本要素来衡量一下大数据技术,这就是——流处理、并行性、摘要索引和可视化。 大数据技术涵盖哪些内容? 1.1流处理 伴随着业务发展的步调,以及业务流程的复杂化,我们的注意力越来越集中在“数据流”而非“数据集”上面。 决策者感兴趣的是紧扣其组织机构的命脉,并获取实时的结果。他们需要的是能够处理随时发生的数据流的架构,当前的数据库技术并不适合数据流处理。 1.2并行化 大数据的定义有许多种,以下这种相对有用。“小数据”的情形类似于桌面环境,磁盘存储能力在1GB到10GB之间,“中数据”的数据量在100GB到1TB之间,“大数据”分布式的存储在多台机器上,包含1TB到多个PB的数据。 如果你在分布式数据环境中工作,并且想在很短的时间内处理数据,这就需要分布式处理。 1.3摘要索引 摘要索引是一个对数据创建预计算摘要,以加速查询运行的过程。摘要索引的问题是,你必须为要执行的查询做好计划,因此它有所限制。 数据增长飞速,对摘要索引的要求远不会停止,不论是长期考虑还是短期,供应商必须对摘要索引的制定有一个确定的策略。 1.4数据可视化 可视化工具有两大类。

微机原理与接口技术知识点复习总结汇编

第一章计算机基础知识 本章的主要内容为不同进位计数制计数方法、不同进位制数之间相互转换的方法、数和字符在计算机中的表示方法、简单的算术运算以及计算机系统的组成。下边将本章的知识点作了归类,图1为本章的知识要点图,图1.2为计算机系统组成的示意图。 本章知识要点 数制 二进制数(B) 八进制数(Q) 十六进制数(H) 十进制数(D) B) 码制 带符号数编码 奇偶校验码 字符编码 原码 反码 补码 ASCII码 BCD码 压缩BCD码 非压缩BCD码计算机系统组成 计算机系统组成硬件 主机 外部设备 中央处理器(CPU) 半导体存储器 控制器 运算器 ROM RAM 输入设备 输出设备 软件 系统软件 应用软件 操作系统:如DOS、Windows、Unix、Linux等 其他系统软件 用户应用软件 其他应用软件 各种计算机语言处理软件:如汇编、解释、编译等软件

第二章8086微处理器 本章要从应用角度上理解8086CPU的内部组成、编程结构、引脚信号功能、最小工作模式的系统配置、8086的存储器组织、基本时序等概念。下面这一章知识的结构图。 本章知识要点 Intel 8086微处理器 时钟发生器(8284) 地址锁存器(74LS373、8282) 存储器组织 存储器逻辑分段 存储器分体 三总线(DB、AB、CB) 时序 时钟周期(T状态) 基本读总线周期 系统配置 (最小模式) 8086CPU 数据收发器(8286、74LS245) 逻辑地址物理地址 奇地址存储体(BHE) 偶地址存储体(A0) 总线周期指令周期 基本写总线周期 中断响应时序 内部组成 执行单元EU(AX、BX、CX、DX、SP、BP、SI、DI、标志寄存器) 总线接口单元BIU(CS、DS、SS、ES、IP) 地址/数据 控制 负责地址BHE/S7、ALE 引脚功能(最小模式)地址/状态 数据允许和收发DEN、DT/R 负责读写RD、WR、M/IO 负责中断INTR、NMI、INTA 负责总线HOLD、HLDA 协调CLK、READY、TEST 模式选择MN/MX=5V

课程设计报告

课程设计报告 题 目 基于数据挖掘的航电系统故障诊断 专业名称 电子信息工程 学生姓名 王腾飞 指导教师 陈 杰 完成时间 2014年3月18日

摘要 航电系统是飞机的重要组成部分,由于其综合应用了电子、机械、计算机及自动检测等许多学科的先进技术,结构层次很多,所以对其实施故障诊断具有涉及专业领域多、诊断难度大、要求时间短等特点。这对快速处理故障数据提出了很大的挑战。 从独立的联合式航电机箱的按键通电测试,到集中式飞机管理系统数据收集,飞机维修系统经过漫长的发展已演变成故障诊断工具。 现代飞机均采用了中央维修系统,用以收集所有子系统的故障报告、判断故障根源并推荐修理方法。飞机的故障信息和历史数据存放在数据库中。如果用传统的数据分析方法对这些海量的数据进行分析时会显得力不从心,不仅浪费时间而且对于隐含的知识难以有效的进行挖掘。数据挖掘技术十分符合现实的需要,它可以客观地挖掘出历史数据库中潜在的故障规则,这些规则能更好地指导故障的定位与检修,并对潜在的故障做出预测。随着数据的不断增长,如何能自动获取知识已经成为故障诊断技术发展的主要制约条件,而数据挖掘技术为解决这个“瓶颈”问题提供了一条有效的途径。 本文详细介绍了故障诊断技术与数据挖掘技术,并总结了航电系统的故障诊断的特点。拟采用聚类分析的技术对故障数据快速处理,实现对故障的快速定位。 关键词:故障诊断数据挖掘聚类分析航电系统

故障诊断技术 故障诊断技术简介 故障诊断就是指当设备系统不能完成正常的功能时,利用一定的方法找出使该功能丧失的原因及发生故障的部位,实现对故障发展趋势的预测的过程。故障诊断涉及到多方面的技术背景,主要以系统论、信息论、控制论、非线性科学等最新技术理论为基础,它是一门综合性的学科,具有重要的实用价值。 设备系统故障及故障诊断 随着现代化工业的发展,设备系统能够以最佳状态可靠地运行,对于保证产品质量、提高企业的产能、保障生命财产安全都具有极其重要的意义。设备系统的故障是指设备系统在规定时间内、规定条件下丧失规定功能的状况。故障诊断的作用则是发现并确定发生故障的部位及性质,找出故障的起因,预测故障的发展趋势并提出应对措施。故障诊断技术的使用范围不应只局限于设备系统使用和维修过程中,在设备系统的设计制造过程中也可以使用故障诊断技术,为以后的故障监测和设备系统维护创造条件。因此,故障诊断技术应该贯穿于设备系统的设计、制造、运行和维护的全过程当中。 机载设备的故障诊断流程框图:

基于FPGA的并行计算技术

基于FPGA的并行计算技术 更新于2012-03-13 17:15:57 文章出处:互联网 1 微处理器与FPGA 微处理器普遍采用冯·诺依曼结构,即存储程序型计算机结构,主要包括存储器和运算器2个子系统。其从存储器读取数据和指令到运算器,运算结果储存到存储器,然后进行下一次读取-运算-储存的操作过程。通过开发专门的数据和指令组合,即控制程序,微处理器就可以完成各种计算任务。冯·诺依曼型计算机成功地把信息处理系统分成了硬件设备和软件程序两部分,使得众多信息处理问题都可以在通用的硬件平台上处理,只需要开发具体的应用软件,从而极大地降低了开发信息处理系统的复杂性。然而,冯·诺依曼型计算机也有不足之处,由于数据和指令必须在存储器和运算器之间传输才能完成运算,使得计算速度受到存储器和运算器之间信息传输速度的限制,形成所谓的冯·诺依曼瓶颈[1];同时,由于运算任务被分解成一系列依次执行的读取-运算-储存过程,所以运算过程在本质上是串行的,使并行计算模式在冯·诺依曼型计算机上的应用受到限制。 受到半导体物理过程的限制,微处理器运算速度的提高已经趋于缓慢,基于多核处理器或者集群计算机的并行计算技术已经逐渐成为提高计算机运算性能的主要手段。并行计算设备中包含多个微处理器,可以同时对多组数据进行处理,从而提高系统的数据处理能力。基于集群计算机的超级计算机已经成为解决大型科学和工程问题的有利工具。然而,由于并行计算设备中的微处理器同样受冯·诺依曼瓶颈的制约,所以在处理一些数据密集型,如图像分析等问题时,计算速度和性价比不理想。 现场可编程门阵列(FPGA)是一种新型的数字电路。传统的数字电路芯片都具有固定的电路和功能,而FPGA可以直接下载用户现场设计的数字电路。FPGA技术颠覆了数字电路传统的设计-流片-封装的工艺过程,直接在成品PFGA芯片上开发新的数字电路,极大地扩大了专用数字电路的用户范围和应用领域。自从20世纪80年代出现以来,FPGA技术迅速发展,FPGA芯片的晶体管数量从最初的数万个迅速发展到现在的数十亿个晶体管[2],FPGA 的应用范围也从简单的逻辑控制电路发展成为重要的高性能计算平台。 FPGA芯片中的每个逻辑门在每个时钟周期都同时进行着某种逻辑运算,因此FPGA本质上是一个超大规模的并行计算设备,非常适合用于开发并行计算应用。目前,FPGA已被成功地应用到分子动力学、基因组测序、神经网路、人工大脑、图像处理、机器博弈等领域,取得了数十到数千倍的速度提高和优异的性价比[3-18]。

微机原理期末复习总结

一、基本知识 1、微机的三总线是什么? 答:它们是地址总线、数据总线、控制总线。 2、8086 CPU启动时对RESET要求?8086/8088 CPU复位时有何操作? 答:复位信号维高电平有效。8086/8088 要求复位信号至少维持 4 个时钟周期的高电平才有效。复位信号来到后,CPU 便结束当前操作,并对处理器标志寄存器,IP,DS,SS,ES 及指令队列清零,而将cs 设置为FFFFH, 当复位信号变成地电平时,CPU 从FFFF0H 开始执行程序 3、中断向量是是什么?堆栈指针的作用是是什么?什么是堆栈? 答:中断向量是中断处理子程序的入口地址,每个中断类型对应一个中断向量。堆栈指针的作用是指示栈顶指针的地址,堆栈指以先进后出方式工作的一块存储区域,用于保存断点地址、PSW 等重要信息。 4、累加器暂时的是什么?ALU 能完成什么运算? 答:累加器的同容是ALU 每次运行结果的暂存储器。在CPU 中起着存放中间结果的作用。ALU 称为算术逻辑部件,它能完成算术运算的加减法及逻辑运算的“与”、“或”、“比较”等运算功能。 5、8086 CPU EU、BIU的功能是什么? 答:EU(执行部件)的功能是负责指令的执行,将指令译码并利用内部的寄存器和ALU对数据进行所需的处理BIU(总线接口部件)的功能是负责与存储器、I/O 端口传送数据。 6、CPU响应可屏蔽中断的条件? 答:CPU 承认INTR 中断请求,必须满足以下 4 个条件: 1 )一条指令执行结束。CPU 在一条指令执行的最后一个时钟周期对请求进行检测, 当满足我们要叙述的4 个条件时,本指令结束,即可响应。 2 )CPU 处于开中断状态。只有在CPU 的IF=1 ,即处于开中断时,CPU 才有可能响应可屏蔽中断请求。 3 )没有发生复位(RESET ),保持(HOLD )和非屏蔽中断请求(NMI )。在复 位或保持时,CPU 不工作,不可能响应中断请求;而NMI 的优先级比INTR 高,CPU 响应NMI 而不响应INTR 。 4 )开中断指令(STI )、中断返回指令(IRET )执行完,还需要执行一条指令才 能响应INTR 请求。另外,一些前缀指令,如LOCK、REP 等,将它们后面的指令看作一个总体,直到这种指令执行完,方可响应INTR 请求。 7、8086 CPU的地址加法器的作用是什么? 答:8086 可用20 位地址寻址1M 字节的内存空间,但8086 内部所有的寄存器都是16 位的,所以需要由一个附加的机构来根据16 位寄存器提供的信息计算出20 位的物理地址,这个机构就是20 位的地址加法器。 8、如何选择8253、 8255A 控制字? 答:将地址总线中的A1、A0都置1 9、DAC精度是什么? 答:分辨率指最小输出电压(对应的输入数字量只有最低有效位为“1 ”)与最大输出电压(对应的输入数字量所有有效位全为“1 ”)之比。如N 位D/A 转换器,其分辨率为1/ (2--N —1 )。在实际使用中,表示分辨率大小的方法也用输入数字量的位数来表示。 10、DAC0830双缓冲方式是什么?

并行计算第一次实验报告

并行计算上机实验报告题目:多线程计算Pi值 学生姓名 学院名称计算机学院 专业计算机科学与技术时间

一. 实验目的 1、掌握集群任务提交方式; 2、掌握多线程编程。 二.实验内容 1、通过下图中的近似公式,使用多线程编程实现pi的计算; 2、通过控制变量N的数值以及线程的数量,观察程序的执行效率。 三.实现方法 1. 下载配置SSH客户端 2. 用多线程编写pi代码 3. 通过文件传输界面,将文件上传到集群上 4.将命令行目录切换至data,对.c文件进行编译 5.编写PBS脚本,提交作业 6.实验代码如下: #include

#include #include #include #include #include static double PI=0; static int N=0; static int numOfThread=0; static int length=0; static int timeUsed=0; static int numOfThreadArray[]={1,2,4,6,8,10,12,14,16,20,24,30}; static int threadArraySize=12; static int nTime=4; static int repeatTime=30; static double totalTime=0; struct timeval tvpre, tvafter; pthread_mutex_t mut; clockid_t startTime,endTime;

微机原理知识点汇总

微机原理知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

微机原理复习总结 第1章基础知识 ?计算机中的数制 ?BCD码 与二进制数11001011B等值的压缩型BCD码是11001011B。 F 第2章微型计算机概论 ?计算机硬件体系的基本结构 计算机硬件体系结构基本上还是经典的冯·诺依曼结构,由运算器、控制器、存储器、输入设备和输出设备5个基本部分组成。 ?计算机工作原理 1.计算机由运算器、控制器、存储器、输入设备和输出设备5个基本部分组成。 2.数据和指令以二进制代码形式不加区分地存放在存储器重,地址码也以二进制形式;计算机自动区 分指令和数据。 3.编号程序事先存入存储器。 ?微型计算机系统 是以微型计算机为核心,再配以相应的外围设备、电源、辅助电路和控制微型计算机工作的软件而构成的完整的计算机系统。 ?微型计算机总线系统 数据总线 DB(双向)、控制总线CB(双向)、地址总线AB(单向); ?8086CPU结构 包括总线接口部分BIU和执行部分EU BIU负责CPU与存储器,,输入/输出设备之间的数据传送,包括取指令、存储器读写、和I/O读写等操作。 EU部分负责指令的执行。 ?存储器的物理地址和逻辑地址 物理地址=段地址后加4个0(B)+偏移地址=段地址×10(十六进制)+偏移地址 逻辑段: 1). 可开始于任何地方只要满足最低位为0H即可 2). 非物理划分 3). 两段可以覆盖 1、8086为16位CPU,说明(A ) A. 8086 CPU内有16条数据线 B. 8086 CPU内有16个寄存器 C. 8086 CPU内有16条地址线 D. 8086 CPU内有16条控制线 解析:8086有16根数据线,20根地址线; 2、指令指针寄存器IP的作用是(A ) A. 保存将要执行的下一条指令所在的位置 B. 保存CPU要访问的内存单元地址 C. 保存运算器运算结果内容 D. 保存正在执行的一条指令 3、8086 CPU中,由逻辑地址形成存储器物理地址的方法是(B ) A. 段基址+偏移地址 B. 段基址左移4位+偏移地址 C. 段基址*16H+偏移地址 D. 段基址*10+偏移地址 4、8086系统中,若某存储器单元的物理地址为2ABCDH,且该存储单元所在的段基址为2A12H,则该

并行计算课程设计报告

并行计算与多核多线程技术 课程报告 专业 班级 学号 姓名 成绩___________________ 年月日

课程报告要求 手写内容:设计目的、意义,设计分析,方案分析,功能模块实现,最终结果分析,设计体会等。 允许打印内容:设计原理图等图形、图片,电路图,源程序。硬件类的设计,要有最终设计的照片图;软件类设计,要有各个功能模块实现的界面图、输入输出界面图等。 评价 理论基础 实践效果(正确度/加速比) 难度 工作量 独立性

目录 1. 设计目的、意义(功能描述) (1) 2. 方案分析(解决方案) (1) 3. 设计分析 (1) 3.1 串行算法设计 (1) 3.2 并行算法设计 (1) 3.3 理论加速比分析 (2) 4. 功能模块实现与最终结果分析 (2) 4.1 基于OpenMP的并行算法实现 (2) 4.1.1 主要功能模块与实现方法 (2) 4.1.2 实验加速比分析 (3) 4.2 基于MPI的并行算法实现 (3) 4.2.1 主要功能模块与实现方法 (3) 4.2.2 实验加速比分析 (4) 4.3 基于Java的并行算法实现 (4) 4.3.1 主要功能模块与实现方法 (4) 4.3.2 实验加速比分析 (5) 4.4 基于Windows API的并行算法实现 (5) 4.4.1 主要功能模块与实现方法 (5) 4.4.2 实验加速比分析 (6) 4.5 基于.net的并行算法实现 (6) 4.5.1 主要功能模块与实现方法 (6) 4.5.2 实验加速比分析 (6) 4.6并行计算技术在实际系统中的应用 (6) 4.6.1 主要功能模块与实现方法 (6) 4.6.2 实验加速比分析 (7) 5. 设计体会 (7) 6. 附录 (9) 6.1 基于OpenMP的并行程序设计 (9) 6.1.1 代码及注释 (9) 6.1.2 执行结果截图 (11) 6.1.3 遇到的问题及解决方案 (12) 6.2 基于MPI的并行程序设计 (12)

大数据与云计算的区别与关系

大数据与云计算的区别与关系 胡经国 一、大数据与云计算的区别 大数据与云计算是两个有着本质区别的科学概念和范畴。它们主要在其定义和特点(特性或特征)以及体系架构、理论技术、服务模式和应用领域等方面都具有本质的区别。对此,本文作者已经或将要作专文论述,在此仅例举一二。 1、定义区别 根据著名的麦肯锡全球研究所给出的定义,大数据是指一种规模大到在获取、存储、管理、分析方面大大超出传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低4大特征。 而云计算则是指一种基于互联网的计算模式;通过这种模式,共享的软硬件资源和信息,可以按需求提供给计算机和其他设备。 2、定义范围区别 从二者的定义范围来看,大数据要比云计算更加广泛。大数据这一概念从2011年诞生以来,已历经8个年头。中国从积极推动两化融合到深度融合,也有14年之久。再者,从各地纷纷建设大数据产业园可以看出,中国极其看重大数据的发展契机。 3、作用区别 云计算改变了IT,而大数据则改变了业务。当然,大数据必须有“云”作为基础架构,才能得以顺畅运营。 4、目标受众区别 云计算是CIO(Chief Information Officer,首席信息官——一种新型的信息管理者)等所关注的技术层;而大数据则是CEO(Chief Executive Officer,首席执行官)所关注的业务层产品。 二、大数据与云计算的关系 1、大数据与云计算的关系概述 通常,人们把大数据与云计算的关系比着一个硬币的两面。云计算是大数据的IT基础,而大数据则是云计算的一个杀手级应用。云计算是大数据成长的驱动力;而另一方面,由于数据越来越多、越来越复杂、越来越实时,因而就更加需要云计算去加以处理。所以,二者之间的关系是相辅相成的。

并行计算综述

并行计算综述 姓名:尹航学号:S131020012 专业:计算机科学与技术摘要:本文对并行计算的基本概念和基本理论进行了分析和研究。主要内容有:并行计算提出的背景,目前国内外的研究现状,并行计算概念和并行计算机类型,并行计算的性能评价,并行计算模型,并行编程环境与并行编程语言。 关键词:并行计算;性能评价;并行计算模型;并行编程 1. 前言 网络并行计算是近几年国际上并行计算新出现的一个重要研究方向,也是热门课题。网络并行计算就是利用互联网上的计算机资源实现其它问题的计算,这种并行计算环境的显著优点是投资少、见效快、灵活性强等。由于科学计算的要求,越来越多的用户希望能具有并行计算的环境,但除了少数计算机大户(石油、天气预报等)外,很多用户由于工业资金的不足而不能使用并行计算机。一旦实现并行计算,就可以通过网络实现超级计算。这样,就不必要购买昂贵的并行计算机。 目前,国内一般的应用单位都具有局域网或广域网的结点,基本上具备网络计算的硬件环境。其次,网络并行计算的系统软件PVM是当前国际上公认的一种消息传递标准软件系统。有了该软件系统,可以在不具备并行机的情况下进行并行计算。该软件是美国国家基金资助的开放软件,没有版权问题。可以从国际互联网上获得其源代码及其相应的辅助工具程序。这无疑给人们对计算大问题带来了良好的机遇。这种计算环境特别适合我国国情。 近几年国内一些高校和科研院所投入了一些力量来进行并行计算软件的应用理论和方法的研究,并取得了可喜的成绩。到目前为止,网络并行计算已经在勘探地球物理、机械制造、计算数学、石油资源、数字模拟等许多应用领域开展研究。这将在计算机的应用的各应用领域科学开创一个崭新的环境。 2. 并行计算简介[1] 2.1并行计算与科学计算 并行计算(Parallel Computing),简单地讲,就是在并行计算机上所作的计算,它和常说的高性能计算(High Performance Computing)、超级计算(Super Computing)是同义词,因为任何高性能计算和超级计算都离不开并行技术。

微机原理知识点总结

第一章概述 1.IP核分为3类,软核、硬核、固核。特点对比 p12 第二章计算机系统的结构组成与工作原理 1. 计算机体系结构、计算机组成、计算机实现的概念与区别。P31 2. 冯·诺依曼体系结构: p32 硬件组成五大部分 运算器、存储器、控制器、输入设备、输出设备,以存储器为中心 信息表示:二进制计算机内部的控制信息和数据信息均采用二进制表示,并存放在同一个存储器中。 工作原理:存储程序/指令(控制)驱动编制好的程序(包括指令和数据)预先经由输入设备输入并保存在存储器中 3.接口电路的意义 p34 第二段 接口一方面应该负责接收、转换、解释并执行总线主设备发来的命令,另一方面应能将总线从设备的状态或数据传送给总线主设备,从而完成数据交换。 4.CPU组成:运算器、控制器、寄存器。P34 运算器的组成:算术逻辑单元、累加器、标志寄存器、暂存器 5.寄存器阵列p35 程序计数器PC,也称为指令指针寄存器。存放下一条要执行指令的存放地址。 堆栈的操作原理应用场合:中断处理和子程序调用 p35最后一段 6. 计算机的本质就是执行程序的过程p36 7. 汇编语言源程序——汇编——>机器语言程序 p36 8. 指令包含操作码、操作数两部分。执行指令基本过程:取指令、分析指令、执行指令。简答题(简述各部分流程)p37 9. 数字硬件逻辑角度,CPU分为控制器与数据通路。P38 数据通路又包括寄存器阵列、ALU、片上总线。 10. 冯·诺依曼计算机的串行特点p38 串行性是冯·诺依曼计算机的本质特点。表现在指令执行的串行性和存储器读取的串行性。也是性能瓶颈的主要原因。 单指令单数据 11. CISC与RISC的概念、原则、特点。对比着看 p39、40

并行与串行数据结构与算法课程设计报告

课程实验报告课程名称:并行与串行数据结构与算法 专业班级:ACM1301 学号:U201315057 姓名:李海锋 指导教师:陆枫 报告日期:2015.9.23 计算机科学与技术学院

目录 1、课程设计概述 (2) 1.1 课设目的 (2) 1.2 课设要求 (2) 1.3 实验环境 (3) 2、系统总体设计 (4) 2.1 系统主模块结构体 (4) 2.2 找附近的最近的三个某地 (5) 2.3 找两点之间最短路径 (6) 2.4 数据录入模块 (7) 3、数据结构和算法详细设计 (7) 3.1 地图的存储 (7) 3.1.1 地图背景图片的存储 (7) 3.1.2 地图点 (7) 3.2 找附近的最近的特定地点(findNearby) (8) 3.3 找最短路径 (8) 4、程序实现简要说明 (9) 4.1开发环境 (9) 4.2 支持包 (9) 4.3 函数原型 (10) MainActivity.java:实现了地图主要功能 (10) Setting.java:地图数据的录入 (12) 4.4 函数功能调用关系 (14) MainActivity.java:地图主要功能程序 (15) Setting.java:数据录入程序 (15) 5、程序测试及结果分析 (16) 5.1 功能测试 (16)

5.2 测试结果分析 (22) 6、复杂度分析 (22) 6.1 输入地点名查找,鼠标点击显示 (22) 6.2 找两点之间的最短路径(dijkstra) (22) 6.3 找附近最近的三个某地 (22) 7、软件的用户使用说明 (23) 8、特色与不足 (23) 8.1 特色 (23) 8.2 不足 (23) 九、主要参考文献 (24)

电力系统综合课程设计

电力系统分析 综合课程设计报告 电力系统的潮流计算和故障分析 学院:电子信息与电气工程学院 专业班级: 学生姓名: 学生学号: 指导教师: 2014年 10月 29 日

目录 一、设计目的 (1) 二、设计要求和设计指标 (1) 2.1设计要求 (1) 2.2设计指标 (2) 2.2.1网络参数及运行参数计算 (2) 2.2.2各元件参数归算后的标么值: (2) 2.2.3 运算参数的计算结果: (2) 三、设计内容 (2) 3.1电力系统潮流计算和故障分析的原理 (2) 3.1.1电力系统潮流计算的原理 (2) 3.1.2 电力系统故障分析的原理 (3) 3.2潮流计算与分析 (4) 3.2.1潮流计算 (4) 3.2.2计算结果分析 (8) 3.2.3暂态稳定定性分析 (8) 3.2.4暂态稳定定量分析 (11) 3.3运行结果与分析 (16) 3.3.1构建系统仿真模型 (16) 3.3.2设置各模块参数 (17) 3.3.3仿真结果与分析 (21) 四、本设计改进建议 (22) 五、心得总结 (22) 六、主要参考文献 (23)

一、设计目的 学会使用电力系统分析软件。通过电力系统分析软件对电力系统的运行进行实例分析,加深和巩固课堂教学内容。 根据所给的电力系统,绘制短路电流计算程序,通过计算机进行调试,最后成一个切实可行的电力系统计算应用程序,通过自己设计电力系统计算程序不仅可以加深学生对短路计算的理解,还可以锻炼学生的计算机实际应用能力。 熟悉电力系统分析综合这门课程,复习电力系统潮流计算和故障分析的方法。了解Simulink 在进行潮流、故障分析时电力系统各元件所用的不同的数学模型并在进行不同的计算时加以正确选用。学会用Simulink ,通过图形编辑建模,并对特定网络进行计算分析。 二、设计要求和设计指标 2.1设计要求 系统的暂态稳定性是系统受到大干扰后如短路等,系统能否恢复到同步运行状态。图1为一单机无穷大系统,分析在f 点发生短路故障,通过线路两侧开关同时断开切除线路后,分析系统的暂态稳定性。若切除及时,则发电机的功角保持稳定,转速也将趋于稳定。若故障切除晚,则转速曲线发散。 图1 单机无穷大系统 发电机的参数: SGN=352.5MWA,PGN=300MW,UGN=10.5Kv,1=d x ,25.0'=d x ,252.0''=x x ,6.0=q x , 18.0=l x ,01.1'=d T ,053.0"=d T ,1.0"0=q T ,Rs=0.0028,H(s)=4s;TJN=8s,负序电抗:2.02=x 。 变压器T-1的参数:STN1=360MVA,UST1%=14%,KT1=10.5/242; 变压器T-2的参数:STN2=360MVA,UST2%=14%,KT2=220/121;

微机原理与接口技术 知识点总结

《微机原理与接口技术》复习参考资料 教师:万显荣 复习资料说明: 1、标有红色星号“ ”的内容为重点内容 3、本资料末尾附有“《微机原理与接口技术》综合练习题与答案错误修正”和“《微机原理与接口技术》综合练习题与答案中不作要求的部分”,请注意查看。 第一章概述 一、计算机中的数制 1、无符号数的表示方法: (1)十进制计数的表示法 特点:以十为底,逢十进一; 共有0-9十个数字符号。 (2)二进制计数表示方法: 特点:以2为底,逢2进位; 只有0和1两个符号。 (3)十六进制数的表示法: 特点:以16为底,逢16进位; 有0--9及A—F(表示10~15)共16个数字符号。 2、各种数制之间的转换 (1)非十进制数到十进制数的转换 按相应进位计数制的权表达式展开,再按十进制求和。(见书本1.2.3,1.2.4)(2)十进制数制转换为二进制数制 ●十进制→二进制的转换: 整数部分:除2取余; 小数部分:乘2取整。 ●十进制→十六进制的转换: 整数部分:除16取余; 小数部分:乘16取整。 以小数点为起点求得整数和小数的各个位。 (3)二进制与十六进制数之间的转换 用4位二进制数表示1位十六进制数 3、无符号数二进制的运算(见教材P5) 4、二进制数的逻辑运算 特点:按位运算,无进借位 (1)与运算 只有A、B变量皆为1时,与运算的结果就是1 (2)或运算 A、B变量中,只要有一个为1,或运算的结果就是1 (3)非运算 (4)异或运算 A、B两个变量只要不同,异或运算的结果就是1 二、计算机中的码制(重点 ) 1、对于符号数,机器数常用的表示方法有原码、反码和补码三种。数X的原码记作[X]原,反码记作[X]反,补码记作[X]补。

微机原理与接口技术知识点总结材料整理

《微机原理与接口技术》复习参考资料 第一章概述 一、计算机中的数制 1、无符号数的表示方法: (1)十进制计数的表示法 特点:以十为底,逢十进一; 共有0-9十个数字符号。 (2)二进制计数表示方法: 特点:以2为底,逢2进位; 只有0和1两个符号。 (3)十六进制数的表示法: 特点:以16为底,逢16进位; 有0--9及A—F(表示10~15)共16个数字符号。 2、各种数制之间的转换 (1)非十进制数到十进制数的转换 按相应进位计数制的权表达式展开,再按十进制求和。(见书本1.2.3,1.2.4)(2)十进制数制转换为二进制数制 ●十进制→二进制的转换: 整数部分:除2取余; 小数部分:乘2取整。 ●十进制→十六进制的转换: 整数部分:除16取余; 小数部分:乘16取整。 以小数点为起点求得整数和小数的各个位。 (3)二进制与十六进制数之间的转换 用4位二进制数表示1位十六进制数 3、无符号数二进制的运算(见教材P5) 4、二进制数的逻辑运算 特点:按位运算,无进借位 (1)与运算 只有A、B变量皆为1时,与运算的结果就是1 (2)或运算 A、B变量中,只要有一个为1,或运算的结果就是1 (3)非运算 (4)异或运算 A、B两个变量只要不同,异或运算的结果就是1 二、计算机中的码制 1、对于符号数,机器数常用的表示方法有原码、反码和补码三种。数X的原码记作[X]原,反码记作[X]反,补码记作[X]补。

注意:对正数,三种表示法均相同。 它们的差别在于对负数的表示。 (1)原码 定义: 符号位:0表示正,1表示负; 数值位:真值的绝对值。 注意:数0的原码不唯一 (2)反码 定义: 若X>0 ,则[X]反=[X]原 若X<0,则[X]反= 对应原码的符号位不变,数值部分按位求反 注意:数0的反码也不唯一 (3)补码 定义: 若X>0,则[X]补= [X]反= [X]原 若X<0,则[X]补= [X]反+1 注意:机器字长为8时,数0的补码唯一,同为00000000 2、8位二进制的表示围: 原码:-127~+127 反码:-127~+127 补码:-128~+127 3、特殊数10000000 ●该数在原码中定义为:-0 ●在反码中定义为:-127 ●在补码中定义为:-128 ●对无符号数:(10000000)2= 128 三、信息的编码 1、十进制数的二进制数编码 用4位二进制数表示一位十进制数。有两种表示法:压缩BCD码和非压缩BCD码。(1)压缩BCD码的每一位用4位二进制表示,0000~1001表示0~9,一个字节表示两位十进制数。 (2)非压缩BCD码用一个字节表示一位十进制数,高4位总是0000,低4位的0000~1001表示0~9 2、字符的编码 计算机采用7位二进制代码对字符进行编码 (1)数字0~9的编码是0110000~0111001,它们的高3位均是011,后4位正好与其对应的二进制代码(BCD码)相符。

多核编程与并行计算实验报告 (1)

多核编程与并行计算实验报告 姓名: 日期:2014年 4月20日 实验一 // exa1.cpp : Defines the entry point for the console application.

// #include"stdafx.h" #include #include #include #include using namespace std; void ThreadFunc1(PVOID param) { while(1) { Sleep(1000); cout<<"This is ThreadFunc1"<

实验二 // exa2.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include #include using namespace std; DWORD WINAPI FunOne(LPVOID param){ while(true) { Sleep(1000); cout<<"hello! "; } return 0; } DWORD WINAPI FunTwo(LPVOID param){ while(true) { Sleep(1000); cout<<"world! ";

课后作业答案云计算与大数据

第一章 1.硬件驱动力网络驱动力 2. 西摩·克雷( ) 3.约翰·麦卡锡 4.蒂姆·博纳斯·李 5.吉姆·格雷 6 7.基础设施即服务平台即服务软件即服务 8. (1) 超大规模 “云”具有相当的规模,云计算已经拥有100多万台服务器,、、微软、等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。 (2) 虚拟化 云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。 (3) 高可靠性 “云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。

(4) 通用性 云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。 (5) 高可扩展性 “云”的规模可以动态伸缩,满足应用和用户规模增长的需要。 (6) 按需服务 “云”是一个庞大的资源池,你按需购买;云可以像自来水,电,煤气那样计费。 (7) 极其廉价 由于“云”的特殊容错措施可以采用极其廉价的节点来构成云,“云”的自动化集中式管理使大量企业无需负担日益高昂的数据中心管理成本,“云”的通用性使资源的利用率较之传统系统大幅提升,因此用户可以充分享受“云”的低成本优势,经常只要花费几百美元、几天时间就能完成以前需要数万美元、数月时间才能完成的任务。 云计算可以彻底改变人们未来的生活,但同时也要重视环境问题,这样才能真正为人类进步做贡献,而不是简单的技术提升。 (8) 潜在的危险性 云计算服务除了提供计算服务外,还必然提供了存储服务。但是云计算服务当前垄断在私人机构(企业)手中,而他们仅仅能够提供商业信用。对于政府机构、商业机构(特别像银行这样

微机原理知识点整理

8086/8088微处理器的编程结构 编程结构:是指从程序员和使用者的角度看到的结构,亦可称为功能结构。从功能上来看,8086CPU可分为两部分,即总线 接口部件BIU和执行部件EU。 总线接口部件(BIU 组成:①段寄存器(DS、CS、ES、SS ②16 位指令指针寄存器IP(指向下一条要取出的指令代码;③20位地址加法器(用来 产生20位地址; ④6字节(8088为4字节指令队列缓冲器;

⑤总线控制逻辑。 功能:负责从内存中取指令,送入指令队列,实现CPU与存储器和I/O接口之间的数据传送。 执行部件(EU 组成:①ALU(算术逻辑单元;②数据寄存器(AX、BX、CX、DX; ③指针和变址寄存器(BP、SP、SI、DI;④标志寄存器(PSW;⑤EU控制系统。 功能:负责分析指令和执行指令。 BIU和EU的动作协调原则 BIU和EU按以下流水线技术原则协调工作,共同完成所要求的任务: ①每当指令队列中有两个空字节,BIU就会自动把指令取到指令队列中。其取指的顺序是按指令在程序中出现的前后顺序。 ②每当EU准备执行一条指令时,它会从BIU部件的指令队列前部取出指令的代码,然后用几个时钟周期去执行指令。在执行指令的过程中,如果必须访问存储器或者I/O端口,那么EU就会请求BIU,进入总线周期,完成访问内存或者I/O端口的操作;如果此时BIU正好处于空闲状态,会立即响应EU的总线请求。如BIU正将某个指令字节取到指令队列中,则BIU将首先完成这个取指令的总线周期,然后再去响应EU发出的访问总线的请求。 ③当指令队列已满,且EU又没有总线访问请求时,BIU便进入空闲状态。 ④在执行转移指令、调用指令和返回指令时,由于待执行指令的顺序发生了变化,则指令队列中已经装入的字节被自动消除,BIU会接着往指令队列装入转向的另一程序段中的指令代码。 8086/8088内部的寄存器可以分为通用寄存器和专用寄存器两大类,

相关文档
最新文档