在空调领域应用TBAB载冷的相变蓄冷与潜热输送技术

在空调领域应用TBAB载冷的相变蓄冷与潜热输送技术
在空调领域应用TBAB载冷的相变蓄冷与潜热输送技术

第10卷 第3期制冷与空调

2010年6月

REFRIGERA TION AND A IR -CONDITION IN G

30233

收稿日期:2010203204

通信作者:周智明,Email :davidchow @https://www.360docs.net/doc/8012920335.html,

在空调领域应用TBAB 载冷的相变蓄冷与潜热输送技术

周智明 裴清清 沈粤

(广州大学)

摘 要 介绍一种新型的相变潜热载冷剂材料四丁基溴化铵(TBAB )水溶液,以及基于应用此材料的相变蓄冷与潜热输送技术。该项技术可缩减蓄冷空调系统的建设规模,大幅降低空调载冷系统输送能耗,达到节能降耗的目的,值得在空调领域推广应用。关键词 TBAB ;CHS ;相变蓄冷;潜热输送;节能;空调

Ph ase ch ange cold storage and latent heat transfer by TBAB as second ary

refrigerant technique applied to air 2conditioning system

Zhou Zhiming Pei Qingqing Shen Yue

(Guangzhou University )

ABSTRACT Int roduces tet ra 2n 2butyl ammonium bromide (TBAB )aqueous solution which is taken as a new kind of secondary refrigerant for carrying p hase change latent heat.Based o n applying t he material ,t he technique of p hase change cold storage and latent heat t rans 2fer would shrink t he size of a cold storage air 2conditioning system ,decrease t he energy consumptio n of a cooling capacity dist ribution system ,and achieve t he goal of energy 2sav 2ing.This technique is wort hy of promotion and application to air 2conditioning field.KE Y WOR DS TBAB ;CHS ;phase change cold storage ;latent heat transfer ;energy 2saving ;air 2co nditioning

为了实现节能降耗,缓和电力供应紧张,缓解电力供求失衡的矛盾,国家出台了一系列政策措施,包括大力推行峰谷分时电价制度,采取电力需求侧管理等调控手段[1]。蓄冷空调可实现电力的“移峰填谷”,有效缩减电网容量,是国家大力推广的节能技术措施之一。目前,我国已建成了大批的蓄冷空调工程,如上海浦东机场候机楼的水蓄冷工程、广州大学城的冰蓄冷工程等,并在实践中取得了显著的经济效益和社会效益。

然而,传统的蓄冷空调技术难免存在一些瑕疵,未能尽如人意。就水蓄冷来说,系统通过载冷剂水的显热变化蓄存冷量和输送冷量。在空调名义工况的供/回水温差下,水的载冷密度仅为21

kJ /kg ,传统的冷冻水载冷系统只能通过增大循环

流量才能提高输送的冷量,于是管网系统随之增大,全年用于输送冷量所消耗的电能已成为集中式空调系统能耗的主要部分。由于载冷密度有限,导致蓄冷装置体积庞大,例如上海浦东机场水蓄冷工程所采用的蓄冷罐(直径25m ,高19m )达

5个之多

[2]

。就冰蓄冷而言,尽管发生了冰2水相

变,载冷密度有所提高,有效减小蓄冷装置体积,但是制冷机组在低温工况下运行引起了系统整体效率的下降,而且固相冰难以输送,在融冰释冷时,仍然只能通过低温冷水的显热变化输送冷量,这与传统的冷水输送系统并无本质区别。

由于传统载冷剂水在性能上的局限性,各国研究人员均欲寻找替代材料,以求达到提升载冷系统的载冷密度,缩小蓄冷装置规模,减小载冷系

 第3期周智明等:在空调领域应用TBAB 载冷的相变蓄冷与潜热输送技术?31 ? 

统循环流量,降低全年输冷能耗的目的。为此,研究人员研究了大量载冷材料,认为液2固相变材料更适合用于空调载冷,其液相保证材料具有流动性,仍可采用常规管道系统泵送,而其固相则令材料的载冷密度大幅提高;具有代表性的材料是冰浆、包络化合物(如含丁基(-C 4H 9)或异戊基(iso -C 5H 11)等烃基的铵盐溶液)、水溶性水合物(如四氢呋喃C 4H 8O ?12H 2O )、胺类水合物(如三甲基胺(C H 3)N ?10-1/4H 2O )等。在众多候选材料中,四丁基铵盐包络化合物(TBAB )最具应用前景,近年来引起全球众多研究人员的关注,被认为是可替代水的载冷剂之一。笔者下面介绍该项技术在空调领域的应用。

1 TBAB 溶液及其包络化合物CH S 1.1 TBAB 的化学性质

四丁基溴化铵(tet ra 2n 2butyl ammonium bro 2mide ,TBAB )分子结构如图1所示,分子式为(C 4H 9)4NBr 。该物质是离子化合物,为化工行业常用的一种催化剂,其阳离子由4个丁烷基代替铵根中的4个氢原子后形成,阴离子为一价溴离子。TB 2AB 的溶解性极强,能方便地配制出质量分数适用于空调载冷系统的水溶液。溶液p H 值为6~8,微显碱性

图1 TBAB 的分子结构

1.2 TBAB 水溶液与TBAB 包络化合物(C HS )

在常压及0~12℃(空调冷水工况)条件下,TBAB 水溶液中的水分子和TBAB 离子可通过分

子力的作用,生成一种固相状态的准笼形透明晶体微粒,均匀悬浮于剩余溶液中,形成白色浆状流体,即TBAB 包络化合物浆(TBAB clat hrate hy 2drate slurry ,C HS )。C HS 具有良好的流动性,可在管道系统中泵送。TBAB 的液2固相变过程可逆,且伴随有大量的相变潜热Q L 释放或吸收,

(C 4H 9)4NBr +n H 2O ∴(C 4H 9)4NBr ?n H 2O +Q L (1)

2 TBAB 的液2固相平衡温度———载冷工况温度

C HS 是由TBAB 水溶液与包络化合物组成

的液2固两相共存三元体系,该体系处于平衡状态时有惟一一组“相平衡温度”和“TBAB 水溶液质量分数”相互对应,即当温度降至溶液质量分数对应的相平衡温度或以下时就会有固相包络化合物

生成。将所有相平衡状态点连接可绘制出常压下TBAB 水溶液和包络化合物相平衡图,如图2所示[3]。相平衡线之上是TBAB 水溶液,之下则是剩余溶液与包络化合物的混合物,即C HS

图2 TBAB 水溶液和包络化合物相平衡图

图2表明,当质量分数为40.5%时,TBAB 水溶液相平衡温度存在最大值,约为12℃,该质量分数称为调和质量分数,该相平衡温度为调和融点。此质量分数下TBAB 水溶液和包络化合物始终保持相等的TBAB 摩尔数,因此,当液2固相变发生后,剩余溶液的质量分数不会因为相变过程的继续进行而变化。换言之,若溶液初始质量分数为调和质量分数,相平衡温度则恒定为调和融点;当初始质量分数为非调和质量分数时,剩余溶液的质量分数会发生变化,体系在新的“相平衡温度”和“溶液质量分数”下重新获得平衡。相平衡温度随剩余溶液质量分数的变化而逐渐降低

图3 添加N aC l 后TBAB (40.5%)

溶液体系的相平衡温度

若在调和质量分数的基础上添加其他溶质,如NaCl ,形成不同质量分数配比的TBAB 多元水溶液,可令调和融点在0~12℃范围内变化,此温度区间与空调载冷系统的名义工况温度吻合。图3所示为添加NaCl 后TBAB (40.5%)溶液体系的相平衡温度图。由图可见,添加6%~8%的NaCl

 ?32 ?

制 冷 与 空 调第10卷 

后,TBAB 溶液的相平衡温度约在6~8℃之间,且恒定不变,可满足空调领域的供冷工况要求[4],现有冷水机组无须改造即可直接使用。3 TBAB 的相变潜热和焓———载冷密度

TBAB 包络化合物的形成和分解过程是一个相变过程,伴随有大量的相变潜热产生。通过实验测得,相平衡温度区间在0~12℃时,包络化合物的相变潜热约为193~205kJ /kg 。表1对比了

水在空调供冷工况下(7~12℃

)的载冷密度,水在0℃相变时的相变潜热,以及包络化合物的相变潜热。可见,尽管相变潜热不如冰,但TBAB 包络化合物的载冷密度已是水的10倍左右。很明显,C HS 液固两相流中的固相含量越高则所携带的冷量也越大,即载冷密度也越高。

表1[5] 几种典型材料的载冷密度对比

介质材料载冷密度/

(kJ/kg )

相变潜热/

(kJ /kg )

温度工况/℃

水21

7~12冰

3340TBAB 包络化合物

193~205

0~

12

图4 TBAB 的降温过程与质量分数变化

C HS 的形成经历纯液相状态1到液2固两相状态2的纯溶液降温到固相包络化合物质量分数提高的过程,如图4所示[3]。在此过程中外界须提

供给TBAB 溶液体系的冷量包括液相显热、固相显热以及相变潜热。传统空调系统的回水温度为12℃,正好与C HS 的调和融点一致,以此温度为参照点,肖睿[5]应用热力学方法定义不同状态点的焓值,确定了初、终状态间C HS 能量变化(焓差)的数学表达式,Δh (t 0,t 1,t 2)=

t 2

[(c p s -c p l )?

x (t 0)-x (t )

x c -x (t )

+c p l ]d t +q L

x (t 0)-x (t 2)

x c -x (t 2)

+c p l (t 0-t 1)

(2)

式中:t 0为初状态1对应的相平衡温度;x (t 0)为相平衡状态下的溶液质量分数;x c 为调和融点;q L 为固相包络化合物的相变潜热;c p s 和c p l 分别为固相包络化合物和液相TBAB 溶液的定压比热容。

上式将任意2个状态间的焓差与状态参数直接联系起来,焓差仅是状态参数的函数,与变化过程无关,测出状态参数后[6],便可计算出使用TB 2AB 载冷时的换热量。以初始质量分数为25.4%的TBAB 溶液为例,采用上式计算以及实验测试的结果均表明,当相变温度为6~8℃时,C HS 的载冷密度在-70~-100kJ /kg 之间,为水的3.33~4.76倍。因此,TBAB 载冷系统的循环流量仅相当于冷冻水载冷系统的1/4~1/3。4 TBAB

在空调领域的应用

图5 以TBAB 作载冷剂的空调系统原理简图

以TBAB 作为载冷剂的空调系统原理图如图5所示,主要包括3个环节:制冷环节、C HS 制浆和蓄冷环节、冷量输送环节,其核心是C HS 制浆和蓄冷环节,其余均可利用原有的设备和系统管网。对于既有项目,仅须对现有空调系统进行部分改造,增加C HS 制浆装置;对于新建项目,按图5所示设计和建设空调系统即可;对位于有峰谷电价优惠政策地区的项目,可建造C HS 蓄浆槽,利用晚上的低谷廉价电力制取C HS 并贮存,于次日电价高峰时段将其输送至末端空调用户。可见,该技术可方便地与传统的空调系统相结合。

 第3期周智明等:在空调领域应用TBAB 载冷的相变蓄冷与潜热输送技术?33 ? 

目前,国内外已建成一些基于TBAB 载冷的空调工程项目,运行数据表明该项技术的节能效果显著。2005年,日本川崎制铁J F E 集团公司在其位于横滨的鹤见事业部综合大楼建成C HS 载冷空调系统,空调面积达17308m 2,采用1台633kW 的离心式制冷主机供冷,同时考虑利用C HS 进行夜间蓄冷,建造了1个容积为350m 3的蓄浆槽。在此项目中,C HS 的载冷密度为水的3倍,于是载冷系统的循环流量降低为原冷冻水系统的

1/3,循环能耗实现最大降幅达80%[3]

。2008年,国内某研究机构建成了一套采用C HS 载冷的模拟示范系统,为约600m 2的2层行政办公楼供冷,制冷主机为50hp 的单螺杆式冷水机组,蓄浆槽约为18m 3。经过1个空调季的运行,冷量输送泵功和平均节能效果如图6和图7所示[7]。在所有末端空调设备均运行的情况下,CHS 载冷系统的输送能耗(包括CHS 制浆消耗的泵功)仅为冷冻水系统的35%~50%;若对全空调季不同负荷下的输送能耗进行统计,累计输送能耗仅为水载冷系统的

23.8%,输送单位冷量所耗泵功则为28.3%[7]

。另外,由于相变蓄冷的载冷密度高,CHS 蓄冷系统规模也大幅减小,运行成本能再节省30%~50%

。在我国,各种不同规模的空调系统数量庞大,大型集中式区域供冷系统也开始走向工程实用,可以预见,若TBAB 载冷的相变蓄冷和潜热输送技术能在该领域普及,必将产生巨大的经济效益和社会效益。5 结束语

TBAB 溶液是一种相平衡温度适宜,相变潜热较大,生成包络化合物的热动力学条件简单,便于采用管道系统泵送的载冷剂工质;其液2固相平衡温度可在0~12℃内调整,通过加入一定质量的其他溶质(如NaCl )可实现恒温相变,能满足空调领域的供冷温度工况要求;包络化合物浆的载冷密度达到常规冷冻水载冷的3.33~4.76倍,载冷剂流量相应地可下降至1/4~1/3;在常压下即可实现可逆相变过程。

以TBAB 载冷的相变蓄冷与潜热输送技术,既可高效地利用“峰谷电价”优惠政策以降低运行成本,又可大幅节省冷量输送能耗,缩减蓄冷装置和管网系统的规模,产生巨大的经济效益和社会效益。因此,作为一种载冷剂材料,TBAB 溶液替代传统的水,将会成为空调领域最具发展前景的新兴方向之一。

参考文献

[1] 电力需求侧管理工作指南.北京:中国电力出版

社,2007.

[2] 刘传聚,洪丽娟.浦东国际机场二期水蓄冷空调系统

的可行性分析.暖通空调,2006,36(3):1022106.

[3] 肖睿.TBAB 包络化合物浆的管内流动和传热特性研

究[D ].北京:中国科学院研究生院,2008.

[4] 巫胜术,肖睿,黄冲,等.四丁基溴化铵水合物在空调

蓄冷中的应用研究.制冷学报,2006,27(6):48251.

[5] Oyama H ,Shimada W ,Ebinuma T ,Kamata Y ,et al.

Phase diagram ,latent heat ,and specific heat of TB 2AB semiclat hrate hydrate crystals.Fluid Phase Equi 2libria ,2005,234:1312135.

[6] 青春耀,宋文吉,徐今强,等.四丁基溴化铵(TBAB )

包络化合物浆(CHS )固相含量的电导率法测量研究.仪器仪表学报,2009,30(3):5422547.

[7] 宋文吉.TBAB 包络化合物浆潜热输送的固液两相流

流动与传热模拟[D ].北京:中国科学院研究生院,2009.

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点:

相变储能材料及其应用

相变储能材料及其应用 物质的存在通常认为有三态,物质从一种状态变到另一种状态叫相变。相变的形式有以下四种:(1)固—液相变;(2)液—汽相变;(3)固—汽(4)固-固相变。相变过程个伴有能量的吸收或释放,我们就可以利用相变过程中有能量的吸收和释放的现象,利用相变材料来存储能量。比如用冰贮冷,冬天,在寒冷的地区,人们从湖面、河面冻结的厚冰层中获取冰块,贮存于“冰屋”中,利月锯末隔热、冰块可 )、溶 过冷和析出两大问题。所谓过冷是指当液态物质冷却到“凝固点”时并不结晶,而须冷却到“凝固点”以下一定温度时方开始结晶;而析出现象指在加热过程中,结晶水融化,此时盐溶解在水中形成溶液。结晶水合盐的代表有芒硝、六水氯化钙、 六水氯化镁、镁硝石等 (2)石蜡:石蜡主要由直链院烃混合而成,可用通式C n H2n+2表示,短链烷烃熔

点较低,但链增长熔点开始增长较快,而后逐渐减慢。随着链的增长,烷烃的熔解热也增大,由于空间的影响,奇数和偶数碳原子的烷烃有所不同,偶数碳原子烷烃的同系物有较高的熔解热,链更长时熔解热趋于相等。在C7H16以上的奇数烷烃和在C20H44以上的偶数烷烃在7℃一22℃范围内会产生两次相变: (1)低温的固-固转变,它是链围绕长轴旋转形成的; -固 3、有机-无机混合物 带有乙酰胺的有机和天机低共熔混合物具有较为优异的特性,而乙酰胺的熔点为80℃,潜热相当大,为251.2KJ/kg,且比较便宜。 此外乙酰胺本身及其与有机酸和盐类的低共熔混合物的化学和动力学性质都很好。乙酰胺的毒性很低。但是乙酰胺对某些塑料具有溶解作用,故在容器选择上应

谨慎小心,最好选用搪瓷或玻璃类容器。此类箱变材料也是在日常生活用品开发中 很有前途的一类。 储热相变材料的遴选原则: 作为贮热(冷)的相变材料,它们灾满足的条件是: (1)合适的相变温度; (2)较大的相变潜热; 储热相变材料的应用涉及面根广,但大致分为以下几个方面:集中空调的相变贮能系统,相变节能建筑材料和构件,相变储热在太阳能领域的应用,热电冷(或热电)联供系统中的相变储能,利出工业废热的相空贮热系统,相变日用品开发。随着相变材料基础和应用研究的不断断深入(包括新的相变材料的涌现),相变材料应用的 深度和广度都将不断拓展。

冰蓄冷技术(DOC)

1.技术原理 冰蓄冷空调技术是利用夜间电网谷电运转制冷主机制冷,并以冰的形式储存,在白天用电高峰时将冰融化提供空调用冷,从而避免中央空调争用高峰电力的一项调节负荷、节约能源的技术。 (1)削峰填谷、平衡电力负荷。 (2)改善发电机组效率、减少环境污染。 (3)减小机组装机容量、节省空调用户的电力花费。 (4)改善制冷机组运行效率。 (5)蓄冷空调系统特别适合用于负荷比较集中、变化较大的场合加体育馆、影剧院、音乐厅等。 (6)应用蓄冷空调技术,可扩大空调区域使用面积。 (7)适合于应急设备所处的环境,

计算机房、军事设施、电话机房和易燃易爆物品仓库等。 2.冰蓄冷空调系统组成 冰蓄冷空调系统包括:空调主机、冷水泵、冷却水泵、冷却塔、蓄冷水泵、释冷水泵、换热器、储冰槽等。相对于常规空调系统,冰蓄冷系统增加了储冰槽、换热器等装置 3..工艺流程 冰球式(也称封装式)冰蓄冷工艺流程:在制冰时,通常要求制冷主机蒸发器出口温度为零下5摄氏度,因此冰球外循环的介质通常采用乙二醇溶液,乙二醇溶液在冰球外流动,在制冰循环中,从制冷主机出来的低温乙二醇溶液流过冰球表面,使冰球内的水结冰;在融冰供冷时,乙二醇溶液流过冰球表面,通过换热器与流往空调末端的冷冻水热交换,被

冷却后的冷冻水流向各个房间,通过风机盘管供冷,因此,空调末端的形式可以与常规中央空调相同。 冰盘管冰蓄冷工艺流程: 、 4.适用范围: 商场、饭店、写字楼、体育馆、展览馆、影剧院、宾馆、居民小区等场所;制药、食品加工、啤酒工业、奶制品工业等;需要对现有单班、两班空调系统扩大供冷量的场所,可以不增加主机,改造成冰蓄冷系统。5.冰蓄冷空调系统的适用条件 执行峰谷电价,且差价较大的地区。(峰谷电价比至少要达到4:1,否则无经济性可言)

水蓄冷、冰蓄冷空调系统浅析

水蓄冷、冰蓄冷空调系统浅析 发表时间:2019-03-21T15:47:56.907Z 来源:《防护工程》2018年第34期作者:丁岳峰 [导读] 在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 中冶华天南京工程技术有限公司江苏南京 210000 引言 蓄冷技术,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并通过介质将冷量储存起来,在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 正文 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 一、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为 qc=Q/(N1+CfN2) Qs=N2Cfqc, 式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH; N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。 根据这个公式,我们结合具体的工程,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。 2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水机与蓄冰槽。 二、水蓄冷 水蓄冷是利用3-7°C的低温水进行蓄冷,可直接与常规系统区配,无需其它专门设备。 其优点是:投资省,维修费用少,管理比较简单。但由于水的蓄能密度低,只能储存水的显热,故蓄水槽上地面积大。如若利用高层建筑内的消防水池,在确定制冷机容量与蓄冷槽的容量时,可根据消防水池的容量来计算出蓄冷量,然后根据剩余负荷量来确定制冷机组的制冷量。最后校核一下冷水机组能否满足夜间蓄冷的需要。 三、冰蓄冷与水蓄冷的对比 水蓄冷系统不仅从节能而且从节省初投资方面都具有很大的优越性,它充分利用了建筑的消防水池,不再占用建筑面积,节省了机房面积,但我们不能因此而完全肯定水蓄冷,否定冰蓄冷,他们各用各自的适用范围,下面我们来分析一下:根据公式qc=Q/(N1+CfN2) Qs=N2Cfqc 我们可得出蓄冷比率: η=Qs/Q=(N2Cfqc)/Q=(N2Cfqc)/[(N1+CfN2)×(N2Cfqc)/Q] =1/[1+(N1/(CfN2)) 对于一般的办公建筑来说,N1、Cf、N2均为确定值,分别为8.5,8,0.7,则η=1(1+8.5/0.7×8)=39.7% 在这个比率下,制冷机与蓄冷槽容量配置为最佳,对冰蓄冷而言,因蓄冰槽可根据蓄冷量的大小来配置,不受任何限制,我们就可根据这一比率来确定蓄冷量,从而配置出相应的制冷机与蓄冰槽,但对水蓄冷而言,因为它利用的是消防水池,而建筑物消防水池的容积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下限制下,对于空调面积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接近于39.7%,则我们建议采用冰蓄冷系统,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接于39.7%,甚至高于39.7%,则我们应采用水蓄冷系统,同时,应与水系统的分区结合起来。 造价方面,同等蓄冷量的水蓄冷系统造价约为冰蓄冷的一半或更低。冰蓄冷需要的双工况制冷机组价格高,装机容量大,增加了配电装置的费用,且冰槽的价格高,使用有乙二醇数量多,价格贵,管路系统和控制系统均较复杂,因此总造价高。 蓄冷系统装机容量方面,水蓄冷的蒸发温度与常规空调相差不大,且可采取并联供冷等方式使装机容量减小。冰蓄冷工质的蒸发温度较低,制冷机组在蓄冰工况下的制冷能力系数Cf为0.6~0.65(制冰温度为-6℃时),其制冷能力比制冷机组在空调工况下低0.4~0.35。相同制冷量下,冰蓄冷的双工况制冷机组容量要大于常规空调工况机组。 移峰量上看在同等投入的情况下,水蓄冷系统一般设计为全削峰,节省电费大大多于冰蓄冷系统。冰蓄冷为降低造价,一般为1/2或1/3削峰,节省电费少于水蓄冷系统。

蓄冷技术

蓄冷技术 随着生活水平的日益提高,空气调节作为控制建筑室内环境质量的重要技术手段得到广泛的应用。但因为耗电量大,且基本处于用电负荷峰值期,这就为蓄冷技术的应用提供了一个重要的应用领域。 一、蓄冷技术的定义 蓄冷技术是一门关于低于环境温度热量的储存和应用技术,是制冷技术的补充和调节。低于环境温度的热量通常称作冷量。人们的生活和生产活动在许多时候要用到冷量,但是,有些场合缺乏制冷设备,有些时段不能使用制冷设备就需要借助蓄冷技术解决用冷需要。简言之,即冷量的贮存。 二、蓄冷的方法 有显热蓄冷和相变潜热蓄冷两大类。如在蓄冷空调中的水蓄冷空调是显热蓄冷,冰蓄冷空调和优态盐水合物(PCM)是相变潜热蓄冷。 三、冰蓄冷系统技术 冰蓄冷是指用水作为蓄冷介质,利用其相变潜热来贮存冷量。 冰蓄冷系统技术类型主要有冰盘管式、完全冻结式、冰球式、滑落式、优态盐式、冰晶式。 1.冰盘管式蓄冷系统 冰盘管式蓄冷系统也称直接蒸发式蓄冷系统,其制冷系统的蒸发器直接放入蓄冷槽内,冰结在蒸发器盘管上。融冰过程中,冰由外向内融化,温度较高的冷冻水回水与冰直接接触,可以在较短的时间内制出大量的低温冷冻水,出水温度与要求的融冰时间长短有关。这种系统特别适合于短时间内要求冷量大、温度低的场所,如一些工业加工过程及低温送风空调系统使用。 2.完全冻结式蓄冷系统 该系统是将冷水机组制出的低温乙二醇水溶液(二次冷媒)送入蓄冰槽(桶)中的塑料管或金属管内,使管外的水结成冰。蓄冰槽可以将90%以上的水冻结成冰,融冰时从空调负荷端流回的温度较高的乙二醇水溶液进入蓄冰槽,流过塑料或金属盘管内,将管外的冰融化,乙二醇水溶液的温度下降,再被抽回到空调负荷端使用。这种蓄冰槽是内融冰式,盘管外可以均匀冻结和融冰,无冻坏的危险。这种方式的制冰率最高,可达IPF=90%以上(指槽中水90%以上冻结成冰)。生产这种蓄冰设备的厂家较多。 3.冰球式蓄冷系统 此种类型目前有多种形式,即冰球,冰板和蕊心褶囊冰球。冰球又分为园形冰球,表面有多处凹涡冰球和齿形冰球。 冰球式以法国CRISTOPIA为代表,蓄冰球外壳有高密度聚合烯烃材料制成,内注以具高凝固---融化潜热的蓄能溶液。其相变温度为0°C,分为直径77mm(S型)和95mm(C型)两种。以外径95mm冰球为例,其换热表面积为28.2ft2/RTH(0.75m2/KWH),每立方米空间可堆放1300个冰球;外径77mm冰球每立方米空间可堆放2550个冰球。冰球结构图见下左图。

蓄冷材料相变温度与相变潜热实验研究

第18卷第5期2000年10月 低温与特气L ow T emper ature and Specialty Gases V ol.18,No.5 O ct.,2000 工艺与设备 蓄冷材料相变温度与相变潜热实验研究 X 方贵银 (中国科学技术大学热科学与能源工程系,安徽合肥 230027) 摘要:阐述了自行研制的蓄冷材料相变温度与相变潜热实验装置的特点,并在该实验装置上测试了蓄冷材料的相变温度和相变潜热,获得了较准确的结果。该方法简单易行,可用于工程上测量相变蓄冷材料的热物性。关键词:蓄冷空调;蓄冷材料;相变温度;相变潜热;实验测试 中图分类号:T B64 文献标识码:A 文章编号:1007-7804(2000)05-0019-03 1 前 言 相变蓄冷材料热物性及其工作性能的研究具有重要的意义。材料的热物性及工作性能既是衡量其性能优劣的标尺,又是其应用系统设计及性能评估的依据。 测定相变温度、相变潜热及比热的方法可分为三类: 1.一般卡计法[1,2] ; 2.差热分析法(Differential Thermal Analy sis ,简称DT A )[3]; 3.示差扫描量热计法[4](Differential Scanning Calorimetry,简称DSC),它利用示差扫描量热计, 可以绘制相变材料整个相变过程中的能量-时间曲线。由于实验条件限制,下面采用的实验方法与典型方法不完全相同,可用于工程上进行蓄冷材料的性能测试。 2 蓄冷材料相变温度的测试 2.1 实验装置与实验方法 图1为实验装置图。实验装置主要由XWC-301自动平衡记录仪、铜—康铜热电偶、冰瓶、保温瓶、蓄冷材料(PCM ) 等构成。 图1 测试蓄冷材料相变温度的实验装置 1.保温瓶; 2.高密度聚乙烯塑料球; 3.相变蓄冷材料(PCM ); 4.冰水混合物; 5.铜—康铜热电偶; 6.保温材料; 7.导热油; 8.冰瓶; 9.自动平衡记录仪。 该实验采用冷却的方法测定蓄冷材料的相变凝固温度。它是将热电偶插入相变蓄冷球内,并将相变蓄冷球放入冰水混合物内冷却,由平衡记录仪记录热电偶由于相变蓄冷材料温度变化而引起的热电 势变化,然后由热电势转换成温度,得出蓄冷材料温度变化曲线。2.2 实验结果与分析 图2为某公司生产的蓄冷球内蓄冷材料的冷却 X 收稿日期:2000-08-28

相变储能材料在建筑方面的研究与应用

相变储能材料在建筑方面的研究与应用 摘要:随着建筑行业的向前发展,当前人们对于居住的要求也变得越来越高,对于居住条件的舒适性、安全性成为居民居住的主要考虑因素。正因如此,智能化、生态化已经成为当前建筑材料发展的趋势。相变储能材料作为传统建筑材料与相变材料复合而成的一中新型材料,由于其具有储能密度大、能够近似恒温下的吸放热而发展迅速。另一方面,相变储能材料的应用可以保持环境舒适,节省采暖制冷所需能源而受到建筑界的欢迎。本文将从多个方面对相变储能材料进行具体的分析,为后期的深入研究奠定基础。 关键词:建筑材料;相变材料;储能技术 Energy storage materials research and application of phase change in architecture Abstract:With forward the construction industry, the current requirement for people to live has become increasingly high, the comfort of living conditions, security has become a major consideration residents. For this reason, intelligent, ecological building materials has become the current trend of development. Phase change material as traditional building materials and phase change materials in a composite made of a new material, because of its large energy density, can be approximated under constant heat absorption and rapid development. On the other hand, application of energy storage phase change material can be kept comfortable, energy-saving heating and cooling needed and welcomed by the construction industry. This article from the multiple aspects of the phase change material specific analysis, to lay the foundation for further research later. Key words:construction materials; phase change material; energy storage technology

冰蓄冷技术及其应用

研 究 生 课 程 论 文 (2008 -2009 学年第二学期) 课程论文题目:冰蓄冷技术及其应用 研究生:欧阳光 学 号 学 院 课程编号 课程名称 学位类别 硕士 任课教师 制冷空调过程的节能新技术 教师评语: 成绩评定: 分 任课教师签名: 年 月 日

冰蓄冷技术及其应用 摘要:本文在介绍了冰蓄冷技术的特点的基础上,论述了冰蓄冷技术对电力调峰、平衡电网及节能减排的意义;并结合工程实际,分析了与冰蓄冷空调相结合的低温送风系统的经济性;并简要介绍了冰蓄冷与热泵组合式空调系统的优势。展望了新型冰蓄冷系统的发展前景。 关键词:冰蓄冷削峰填谷节能低温送风系统 1 引言 改革开放以来,我国经济的高速发展和人民物质生活水平的不断提高,对电力供应不断提出新的挑战。尽管全国发电装机容量不断增大,然而,电力供应仍很紧张,尤其是夏季有些地方不得不采用拉闸限电的办法解燃眉之急。因而,改善电力供应的紧张状况和电力负荷环境已成为一些大中城市的首要任务。长期以来空调系统是能耗大户,而空调系统用电负荷一般集中在电力峰段,因此对城市电网具有很大的“削峰填谷”潜力。基于这种“削峰填谷”的想法,空调系统中出现了冰蓄冷机组,它利用午夜以后的低谷电制冰,储存到白天用电高峰时供冷。而冰蓄冷技术和低温送风空调系统相结合则更能增强它的竞争力,对于电力生产部门和用户都会产生良好的经济效益和社会效益,并可以实现整个能源系统的节能和环保。因而随着国内冰蓄冷技术的成熟,它在我国将有更广阔的发展前景。 2 冰蓄冷空调系统简介 冰蓄冷空调就是利用水或一些有机盐溶液作为蓄冷介质,在夜间电力供应的低谷期(同时也是空调负荷很低的时间)开机制冷,将它们制成冰或冰晶,到白天电力供应的高峰期(同时也是空调负荷高峰时间),利用冰或冰晶融解过程的潜热吸热作用,再将

中国蓄冷空调项目汇总(1995~2004)

中国蓄冷空调工程汇总(1995~2004) 中国从70年代起,在体育馆建筑中多处采用水蓄冷空调系统。在90年代初,开始建造、并投入运行的冰蓄冷空调系统以来,截止到2002年底,已建成和正在建的水蓄冷和冰蓄冷空调系统共计259项,取得了初步成效,在某些方面具有自己特点和经验。 中国在90年代初,建造和投入运行的蓄冷空调系统有下列四例: (1)深圳电子科技大厦,建筑面积6.5万m2,设计冷负荷3,200RT,蓄冷量8,750RTH,采用法国Cristopia冰球,CIAT单螺杆冷水机组,1993年5月投入运行。 (2)北京日报社,建筑面积1.52万m2,综合办公楼,设计冷负荷560RT,蓄冷量1,280RTH,采用北京西冷工程公司的"有压罐式齿球蓄冷器",卧式蓄冷罐Φ2,400×6,000三台,1993年6月投入运行。 (3)广东清远市新北江制药有限公司,工艺用冷,发酵所产生的热量由10℃的冷水吸收。正常生产时,耗冷496RT,利用低谷电蓄存冷水,贮水槽容积1,083m3,占地110 m2,蓄冷密度达6.09RT/m3,蓄(调荷)冷量达6,600RTH,1992年5月投入运行。(徐威高工设计) (4)广州黄埔区红山街供电承装公司二层办公楼,建筑面积210m2,北京西冷冰球,小系统进行蓄冷运行。 1995年建成和投入运行的项目: (1)广东东莞生化药厂,水蓄冷系统,空调用冷,贮水槽750m3,蓄冷密度3.3 RT/m3(10,000大卡/m3),蓄冷量达2475RTH,1995年4月投入运行。(徐威高工设计) (2)北京京信大厦,水蓄冷系统,利用原有有效容积998m3消防水池兼作蓄冷池,蓄冷密度1.59 RT/m3,蓄冷量为1,587RTH,减少了一台原打算增添的60万大卡/时的冷水机组。(清华设计) (3)烟台大酒店,改建成水蓄冷式中央空调系统,水泥蓄冷水池400m3(消防水池),冷水温度4-6℃。(华源总承包) (4)浙江肖山城乡镇政府大楼,建筑面积5,000m2,办公楼,设计冷负荷165RT,蓄冷量为433RTH,采用CIAT冰球,立式蓄冷罐26m3,CIAT双螺杆冷水机组。

冰蓄冷中央空调技术原理及经济性分析

冰蓄冷中央空调技术原理及经济性分析 江苏安厦工程项目管理有限公司□卢义生 摘要:由于冰蓄冷中央空调系统具有节能环保等诸多优点,近几年在我国得到了迅速发展。以滁州第一人民医院为例,通过冰蓄冷中央空调系统与常规中央空调系统的经济性分析对比,可以看出冰蓄冷中央空调系统在实际应用中的优势。 关键词:冰蓄冷空调系统常规空调系统经济性分析 国外利用机械制冷机的蓄能空调最早出现在二十世纪三十年代,但随着机械制造业的进步,蓄能技术的发展很快停滞下来。直到二十世纪八十年代初期,蓄能空调在美国、日本等发达国家再次得到研究推广。到九十年代中后期,美国、日本、欧洲等国家和我国台湾地区的蓄能空调系统已得到广泛的应用,并取得了良好的经济效益。我国于九十年代中期正式引入冰蓄冷空调系统,近年来国家及地方电力部门相继制定了峰谷电价政策及优惠措施以促进冰蓄冷空调的发展。2000年,国家电力公司国电财[2000]114号文件明确要求加大峰谷电价推广力度,为此,全国多个省市纷纷出台了分时电价政策,一般低谷电价只相当于高峰电价的1/2甚至1/5,而且有取消电力增容费、电贴费等不同程度的优惠,在政策上支持冰蓄冷空调的发展。近两年来,随着我国节能减排政策的不断推广,冰蓄冷空调技术得到了迅猛发展。中国建筑设计研究院机电专业设计研究院总工程师、北京制冷学会常务理事宋孝春表示:“冰蓄冷空调系统是人类在面对能源危机时优化资源配置、保护生态环境的一项技术革新,能产生良好的社会效应和经济效益……。我国冰蓄冷空调市场已走向成熟,全国范围内,近两年的工程几乎等于前十年的总和。未来一段时间内,这个数字仍以几何级数字向上递增……” 1冰蓄冷技术介绍 1.1冰蓄冷系统原理 冰蓄冷中央空调是在夜间利用制冷主机制冰,将冷量以冰的形式蓄存起来,然后在白天根据空调负荷要求释放这些冷量,这样在电力低谷段蓄冰,在用电高峰时期就可以少开甚至不开主机。这样就可以将电网高峰时间的空调用电量转移至电网低谷时使用,从而利用峰谷电价政策,达到为用户节约电费的目的。 在一般大楼中,空调系统用电量占总耗电量的35%~65%,而制冷主机的电耗在空调系统耗电量中又占65%~75%。在常规空调设计中,冷水主机及辅助设备容量均按尖峰负荷来选配,这不仅使空调系统的电力容量增大,而且使得主机等空调设备在大部分情况下都处于低效率的部分负荷状态运行,设备利用率也低,投资效益低。

冰蓄冷技术

冰蓄冷技术 目录 技术发展史 一,产品原理 二,适用范围 三,使用效益 四,突出特点 五,高灵桶式蓄冰系统优点突出 在没有实行集中供热前,冬天时家家户户烧火取暖,这种原始的用能方式既浪费能源,又污染环境。北方实行热力站集中供热方式后,在节约能源的同时也保护了环境。南方地区冬天烧火取暖的时间很短或基本不烧火取暖,但夏天却要用空调降温。目前,不管是南方和北方的住宅、宾馆、酒店、商店、办公楼等几乎所有的建筑物,都安装了分体式空调或中央空调,特别在南方地区尤其是在海南,一年四季使用空调降温的时间都很长,空调降温需要消耗大量的能源。 区域供冷站的供冷方式与北方冬季时的集中供热方式十分类似。这种供冷方式实际上就是以区域冷站作为冷源和能量中心,通过区域空调管网向周边建筑提供调温用的冷水,满足会议厅、展厅、酒店、大学、医院、商场、写字楼、住宅楼等不同用户的用冷需求,而且,还可以利用制冷时产生的热量,向建筑物供应热水。很明显,与集中供热一样,集中供冷方式将会大大提高能源的利用率。 实际应用证明,区域供冷的能源效远低于预期,输送能耗增加,不同于区域供热,输送泵的功耗转化为热添加到传输介质中,但对于供冷,对输冷介质的传热是一种副作用。广州一个集中个供冷失败的案例能很好的说明问题。 冰蓄冷在制冷过程中同样也需要能源,这种供冷方式实现能源的节约与电厂发电、电网供电和供冷的集中方式有密切的联系。 技术发展史 这项技术是上世纪初在美国研制并开始应用,但开始并不普及。直到八十年代世界性的能源危机,冰蓄冷的节能优势才被世人所瞩目,而得到广泛的推广使用。日本能源贫乏,冰蓄冷的市场颇好。目前该项技术已经成为很多发达国家解决电网供电压力不平衡的重要强制手段。 我国从九十年代开始引进国外冰蓄冷技术,全国现有几百家单位在使用,而目前拥有核心自主知识产权冰蓄冷技术的只有高灵能源科技有限公司,其自主研发的ICEBANK蓄冰技术系统打破了国外技术垄断,是唯一达到国际先进水平的冰蓄冷民族品牌。其最早实施的再运营项目浙江绍兴大通商城使用冰蓄冷技术后,每年能为用户节省空调运行费用117.7万元,节约费用比率为36.6%,为国家电 1

冰蓄冷空调原理

冰蓄冷空调原理 冰蓄冷空调技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 用电高峰) 把。由此可以实现对电网的“移峰填谷”, 有利于降低发电装机容量, 维持电网的安全高效运行。 一、蓄冰空调系统组成部分 (1)制冷主机。 ①作用:制冷主机(双工况机组)负责对载冷剂(乙二醇)降温,输出冷源。 ②工作原理:制冷剂经过压缩机变成液态,在蒸发器气化吸热把冷量传递到盘管系统。(2)蓄冷设备。 ①作用:蓄冷设备(蓄冰罐、槽)主要功能是储存冷源并阻隔与外界冷热交换。 ②工作原理:蓄冰罐、槽外壁采用保温隔热材料层,隔绝与外界冷热交换,保持罐、 槽内的温度 (3)用户风机盘管系统。 ①作用:把冷源送到需要制冷房间。 ②工作原理:水经过换热板吸收冷量,经过冷冻泵输送到需要制冷的房间。 ③④⑤⑥二、蓄冰空调系统工作原理 (1)制冷机组(双工况机组)运行,将载冷剂(20%浓度的乙二醇液)流经主机降温,再输送至蓄冰罐对蓄冰罐中的水降温,降温一般降至-3℃左右,于此同时蓄冰罐的另一侧管道把乙二醇输送出,经过冷冻泵回流主机中,就这样低温的乙二醇对蓄冰罐的水进行循环降温。 (2)另一方面,经过主机降温的乙二醇液流经融冰式换热板,向风机盘管输送冷量,进入换热板前3.5℃,通过换热板后载冷剂温度上升到10.5℃,载冷剂通过冷冻泵回流制冷机组。

三、夜间蓄冰 夜间,用户风机盘管系统停止运行,前段只运行工况机组,打开V3、V1节流阀,关闭V2、V4、V5节流阀,让-3~-3.5℃低温20%浓度的乙二醇溶液被主机运送到蓄冰罐,在蓄冰罐中吸收热量,然后通过冷冻泵回流工况机组,一直循环,让蓄冰罐中的水冰化90%以上,白天高峰负荷时,储冰罐中0℃的水被输送到融冰板式换热器,换热后的高温水回流到储冰罐,被洒在冰上直接进行融冰,只要罐中有冰就可以一直保持出水温度在3.5℃左右,为融冰板式换热器的另一侧提供5-7℃的冷冰用于供冷

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

相变储能材料在建筑节能中的应用

相变储能材料及其在建筑节能中的应用摘要:相变材料具有储能密度大、效率高以及近似恒定温度下吸热与放热等优点。将该材料用于墙体天花板和地板,可提高建筑物热容量,从而可以降低室内温度波动,提高舒适度。本文介绍了相变储能材料的机理及其分类,综述了目前国内外相变节能材料的研究进展,分析了相变材料用于建筑上的应用方面,列举了相变材料在示范性建筑中的使用情况,最后提出相变储能材料的不足之处及应用前景。 关键词:建筑节能,相变,蓄能,建筑材料 Phase Change Materials and Its Application in the Construction of Energy-efficient Ji yongyu (Xi'an University of Architecture and Technology, Xi’an 710055) Abstract: A phase change material having a large energy density, high efficiency, and other advantages approximately constant temperature of the endothermic and exothermic. The materials used for walls ceilings and floors, the building thermal capacity can be increased, which can reduce the indoor temperature fluctuations and improve comfort. This paper describes the mechanism of phase change material and its classification, review the progress of the current domestic and international research phase change energy-saving materials, analysis of phase change materials for applications in buildings, citing the phase change material in an exemplary buildings usage, concludes the phase transition inadequacies energy storage materials and application prospects. Keywords: building energy efficiency, phase transformation, storage, construction materials 0 引言 近年来随着中国的经济快速发展以及人们生活水平的日益提高,人们对室内环境舒适度的要求也越来越高。在影响室内环境舒适度的诸多因素中,室温是一个非常关键的因素,而维持室温在 16.0~28.0°C 是保持室内环境舒适度的关键。为达到这一标准,人们通过利用空调和供暖系统来调节温度,但是相应的会造成能耗大幅度增加和能源消耗过快、环境污染加剧等问题。如何在室内环境舒适度、节能、环保中保持平衡已经成为建筑设计以及节能领域的热点问题 在众多的节能方法中, 近年新出现的相变储能材料, 逐渐走进人们的视野, 成为建筑节能开发的新宠。相变储能材料在很多领域都有应用, 但应用于建材的研究始于1982 年, 由美国能源部太阳能公司发起, 在我国才刚刚起步。相变储能材料的英文全称为Phase Change Material, 简称为PCM。相变储能材料是指随温度变化而改变物理性质并能提供潜热的物质,在一定的温度范围内,利用材料本身相态或结构的变化, 当环境温度升高或降低时, 它可以向环境自动吸收多余热量储存起来或释放储存的热量能起到保温作用。 1 相变储能材料介绍

相变蓄冷

广州赛能冷藏科技有限公司 北京绿浩然环保科技有限公司 广州齐天冷藏技术有限公司 南通昊川工贸有限公司 上海苏振能源科技有限公司 北京优冷科技有限公司 1、北京建筑工程学院环境与能源工程系 《低温相变蓄冷材料蓄冷热力特性实验研究》-本文采用实验方法测试了低温相变蓄冷材料(水合盐A 和B 二元盐溶液)蓄冷过程中温度场的分布, 用间接法测试了相变容器不同半径序列下的浓度值, 对选定的两种相变水合盐体系的相变过程进行了研究, 得出了两种体系给定浓度下的凝固点、过冷度等信息。研究结果对低温相变蓄冷材料的选择具有指导作用。 2、清华大学 《低温相变蓄冷材料蓄冷特性实验研究》-为使蓄冷技术能在医药、食品等行业对环境温度有特殊要求( 低于0 ) 的场所得到应用, 扩大蓄冷技术的应用范围, 对一种相变温度约为- 12的低温相变蓄冷材料TH -12进行了蓄放冷性能的实验研究。结果表明, 该材料具有很好的重复性, 是一种适于工业应用的低温蓄冷材料。 3、顺德职业技术学院机电工程系 《纳米TiO2- BaCl2- H2O 复合低温相变蓄冷材料的制备》-研究了TiO2 纳米颗粒在共晶盐BaCl2 水溶液中的分散行为, 考察了分散剂的种类和浓度以及溶液的pH 值对TiO2 悬浮液的分散性及其稳定性的影响规律。采用TiO2 粒子的体积分数表征纳米TiO2 在共晶盐水溶液中的分散状态,并利用稳定机理对共晶盐水溶液中TiO2 分散稳定性作了解释。最后

获得了一种较好的制备纳米复合蓄冷材料的方法。 《低温相变蓄冷纳米流体粘度特性实验研究》-测量了TiO2-BaCl2-H2O 纳米流体的粘度,分析了粒子体积分数、温度对纳米流体粘度影响的变化规律。结果表明,纳米流体的粘度随TiO2粒子体积分数的增加呈加速上升的趋势,随温度呈反比变化; 体积分数越高的纳米流体,在较低温度下的粘度增幅比高温时大。流变曲线表明,在所配制的体积分数内,TiO2-BaCl2-H2O 纳米流体的粘度不随剪切速率的变化而变化,为典型的牛顿型流体。 《DSC 法测量低温相变蓄冷纳米流体的比热容》-介绍差示扫描量热仪( DSC) 测量液体比热容的原理和方法, 并测量4 种不同体积分数的TiO2-BaCl2-H2O纳米流体比热容。结果表明, 加入纳米粒子后其比热容都有所降低, 并随TiO2 体积分数的增大而逐渐减小。 4、重庆大学刘玉东[7]、何钦波[8-9]把纳米TiO2粉体加入BaCl2共晶盐水溶液中,配制成TiO2-BaCl2-H2O纳米流体相变蓄冷材料,并研究了复合相变蓄冷材料的热物性和蓄/ 释冷特性,其导热系数显著增加,并且能大大降低过冷度。 上海交通大学李金平博士[10]研究了制冷剂气体水合物在纳米流体中的生成过程,表明纳米粒子的加入使得气体水合物快速结晶和生长,通过此方法得到的HCFC141b气体水合物具有生成速度快、水合率高、静态生成过程等特点。 Khanafer[11]等人建立了纳米流体在二维封闭腔内的对流换热模型,模拟结果表明纳米流体具有优良的对流换热性能。 Khodadadi[6]等人利用数值计算和模拟的方法研究了Cu-H2O纳米流体的相变过程,纳米流体显示出较好的蓄/释冷特性,结冰速率比纯水明显加快。 5、华南理工大学传热强化与过程节能教育部重点实验室 《Al2O3-H2O纳米流体相变蓄冷特性研究》-在水介质中悬浮少量的纳米氧化铝颗粒(粒径20nm),通过添加分散剂和超声波振荡,制备成均匀分散的Al2O3-H2O纳米流体。对水和Al2O3-H2O纳米流体的相变蓄冷特性进行了实验比较。结果表明,加入纳米Al2O3可降低水的过冷度,缩短结冰时间;在相同的时间内,纳米流体的蓄冷量要大于纯水。 6、浙江工业大学生环学院

FTC相变蓄能保温材料

一、产品概述 FTC自调温相变节能材料是利用植物临界萃取、真空冷冻析层、蒸馏、皂化等新工艺复合而成,是根据不同温度相变点调节室温的纯天然原创科技新材料。 本材料突破传统保温材料单一热阻性能,具有热熔性和热阻性两大绝热性。通过二元相变原理,相变潜热值大,具有较高蓄热密度,蓄、放热过程近似等温的特点,节能效果明显。经国家建设部科技成果鉴定,专家一致认为“该产品引进了相变蓄能机理,潜热值较大,通过材料相变,熔化吸热,凝结放热使室内温度相对平衡,达到建筑节能,推广后会有较好的社会和经济效益,该项研究成果对相变蓄能在建筑相关应用领域有技术方面的推进,具有国内先进水平。” 二、综合特性 1、潜热节能 利用相变调温机理,通过蓄能介质的相态变化实现对热能储存和释放,从而改善室内热循环质量。当环境温度低于一定值时,相变材料由液态凝结为固态,释放热量;当环境温度高于一定值时,相变材料由固态熔化为液态,吸收热量,使室温相对平衡。 经国家权威部门检测达到节能65%要求。 相变材料可收集多余热量,适时平稳释放,梯度变化小,有效降低损耗量,室温可趋于稳定。 利用相变调温机理,可使电负荷“削峰平谷”,充分利用低谷电价,降低住户用能成本,减少能源浪费,具有可观的社会效益和经济效益。 利用相变调温机理,对建筑分户采暖,具有广泛推动作用,特别是对首层、顶层、边角处居住环境的室温,夏季隔热、冬季保温均可起到平衡作用。 在新楼装饰和旧楼改造中,克服墙面裂缝、结露、发霉、起皮等先天不足弊病。 2、安全可靠 与基底整体粘结,随意性好,无空腔,避免负风压撕裂和脱落。有效克服板材拼接后边肋、阳角外翘变形面砖脱落等问题。 材料中有机物与主墙基底存在的游离酸反应形成化合物,渗入主墙微孔隙中,形成共同体,确保干态粘结性,并改善湿态粘结保值率,具有极好粘结性。

冰蓄冷空调常识

冰蓄冷空调系统常识 冰蓄冷是利用冰的熔解热进行蓄冷,因此蓄冷密度较水蓄冷大,相同蓄冷能力的蓄冰槽与蓄水槽之体积比1:8~10。与水蓄冷相比,冰蓄冷系统的优点是:蓄冷密度高,使用蓄冷槽体积较小;温度稳定,便于控制。 常见的冰蓄冷系统形式: 1、冰球式(Ice Ball):将溶液注入塑胶球内但不充满,预留一膨胀空间。将塑料球放入蓄冰罐内,再注入冷水机组制出的低温乙二醇水溶液,使冰球内的溶液冻结起来。融冰时,让从空调负荷端流回的温度较高的乙二醇水溶液通过冰罐内塑胶球将冰球内的冰融化而释冷。 2、完全冻结式(Total-Freeze-Up):是将塑料或金属管伸入蓄冰筒(槽)内,管内通以冷水机组制出的低温乙二醇水溶液(也称二次冷剂),使蓄冰筒内90%以上的水冻结起来。融冰时,让从空调负荷端流回的温度较高的乙二醇水溶液通过塑料或金属管内部,将管外的冰融化而释冷。 冰蓄冷空调系统是怎样运行的? 夜间,冷水机组保持乙烯乙二醇溶液在-3℃~ -4℃运行,此时的乙烯乙二醇溶液会在机组与冰筒的热交换之间对流,慢慢的将冰筒内的水结成冰块。在制冰运行时,乙烯乙二醇溶液是不通过空气处理机组的。 日间,由冷水机组回来的11℃部分溶液通过冰筒冷却至1℃;另一部分11℃的溶液则与冰筒出来的1℃溶液混合在一起而成为6℃,再而进入空气处理机组,约在13℃离去。设定在6℃的三通控制阀操作此混合状态。空气处理机组将24℃的空气冷却到13℃﹙常温系统﹚。 春秋季的日间,可以随意由冷水机组或蓄冰筒提供建筑物的全部冷量。 市场应用较成熟的有盘管式、冰球式、冰晶式。 盘管式特点:蓄冷及放冷过程稳定,水力管网易于平衡。蓄冰及融冰速度较慢;盘管管道较细,流动阻力大。 冰球式特点:设备结构简单,阻力小,技术要求低。蓄冰及融冰速度较快。缺点:冰球需密集堆放,会造成冰球外冷媒水的流量不均及旁通,易引起传热的不稳定,冰球间反复挤压影响寿命。 蓄冰装置中使用塑料换热管与金属换热管之比较 金属管的导热系数比之塑料管要大很多,但是,在对冰筒的影响方面,这只是一个并不重要的方面。 (1)如果对蓄冰筒的整体换热效果进行考虑,会发现绝大部分热阻(也即影响结冰/融冰的根本原因) 是在蓄冷材料方面,即水这一侧。换热盘管材料本身对于总热阻的影响非常之小。 (2)高灵已经公布了在多种条件下蓄冰筒蓄冷/释冷的运行性能数据。这些数据都是由实际测量得出的结果,而不是由模拟或计算所得。可以完全参考这些测试结果去评价材料不同所导致的结果。 (3)传热不仅取决于盘管材料本身的导热系数,而且和换热面积有关。这也是高灵冰筒要在190型蓄冰筒中使用长达4300米塑料盘管的原因。高灵蓄冰筒中结冰厚度平均只有12mm (4)除了换热面积和材料性质外,冰筒中的传热还和盘管中液体流动状态及盘管粗细、盘管间距等因素有关。 (5)如果把高灵产品和其它产品的制冰温度进行比较,会发现在多项能效指标中,高灵产品是最高的。要知道,正是结冰过程决定了效率以及制冷机的运行费用。 (6)高灵冰筒盘管中的逆流设计(相邻管中的液体流动方向相反),保证了全长度盘管都是有效换热面积。

相关文档
最新文档