中国股票市场混沌动力学预测模型

中国股票市场混沌动力学预测模型
中国股票市场混沌动力学预测模型

相关系数模型(相关系数)组合预测模型及应用

相关系数模型(相关系数)组合预测模型及应用第23卷第2期 科技通报 BULLETINOFSCIENCEANDTECHNOLOGY Vol.23No.2Mar.2007 2007年3月 组合预测模型及应用 李 (南昌航空工业学院 曦 数学与信息科学学院,江西南昌330034)

摘要:通过主成分分析的方法,将非线性预测中的二次多项式预测、指数预测及灰色预测等3种不同 的预测方法组合在一起,提出了一种新的组合预测方法,并利用该方法对江西省的国民生产总值进行了预测。 关键词:灰色预测;非线性回归;组合预测;主成分分析:O159 :A :1001-7119(2007)02-0159-04 TheApplicationofTheModelforCombinationForecasting LIXi (DepartmentofInformationandComputationalScience,NanchangInstituteofAeronauticalTechnology,

Nanchang,Jangxi,330034,China) Abstract:Basedonthetwo-polynomialregressionforecasting,exponentregressionforecastingandgrayforcasting,anewkindofcombinationforecasting(method)ispresentbyapplyingthemethodofprincipalcomponentanalysis.TheGDPofJiangxiprovinceisforecastedbythismethod. Keywords:grayforecasting;nonlinearityregression;combinationforecasting;principalcomponentanalysis 经济指标的准确预测是国家对宏观经济正确调控的必要前提,但经济系统是一个非常复杂的系非线性的、不确定性的作用关系;因此要准确地预测某一趋势,必须从多个方面统,其中存在着时变的、

股票预测模型【运用ARIMA模型预测股票价格】

股票预测模型【运用ARIMA模型预测股票价格】 [摘要]ARIMA模型是时间序列中十分常见和常用的一种模型,应用与经济的各个领域。本文基于ARIMA模型,采用了莱宝高科近67个交易日的数据,对历史数据进行分析,并且在此基础上做出一定的预测,试图为现实的投资提供一些参考信息。[关键字]ARIMA模型;股价预测;莱宝高科一、引言时间序列分析是从一段时间上的一组属性值数据中发现模式并预测未来值的过程。ARIMA模型是目前最常用的用于拟合非平稳序列的模型,对于满足有限参数线形模型的平稳时间序列的分析,ARIMA在理论上已趋成熟,它用有限参数线形模型描述时间序列的自相关结构,便于进行统计分析与数学处理。有限参数线形模型能描述的随机现象相当广泛,模型拟合的精度能达到实际工程的要求,而且由有限参数的线形模型结构可推导出适用的线形预报理论。利用ARIMA 模型描述的时间序列预报问题在金融,股票等领域具有重要的理论意义。本文将利用ARIMA模型结合莱宝高科的数据建立模型,并运用该模型对莱宝的股票日收盘价进行预测。二、ARIMA模型的建立 2.1ARIMA模型简介ARIMA是自回归移动平均结合模型的简写形式,用于平稳序列或通过差分而平稳的序列分析,简记为ARIMA(p,d,q)用公式表示为:△dZt=Xt=ψ1Xt-1+ψ2Xt-2+?+ψpXt-p+at-θ1at-1-θ2at-2-?-θqat-q 其中,p、d、q分别是自回归阶数、差分阶数和滑动平均阶数;Zt是时间序列;Xt是经过d阶差分后的时间序列值;at-q是时间为t-q的随机扰动项;ψp、θq分别是对应项前的系数。 2.2模型建立流程(1)平稳性检验以2010-3-4到2010-6-10的“莱宝高科”(002106)股票的收盘价作为模型的数据进行建立时间序列模型:做出折线图观察数据的特征:进行单位根检验,判别序列是否为平稳序列;若一阶差分后的数据为平稳序列,可以建立时间序列模型。说明原数据为一阶单整。(2)模型的选择和参数的估计根据数据的平稳性特征,初步确定建立ARIMA模型。观察一阶差分以后的序列的自相关函数和偏自相关

股市预测特点

中国股市预测学的基本特点中国的预测思维技术,实质上是一种运用“思维模型”的技术,是充分调动和发挥意识的能动作用和创造性的技术模式借助某种思维工具(数字、干支模型和预测工具)提取“脑信息”(包括感性认识和理性认识等),以五行、六亲、干支等概念体系和卦象、爻(音摇)象、课象、局象等思维模型(类似列方程式),反映主体与客体相互关系及其变化规律的一门科学技术。从信息论、认识论、脑科学角度看,中国预测思维学堪称“脑信息预测学”。预测思维学不但研究意识的能动作用、主体对客体的认识过程、认识方法,探求正确预测的途径和手段,解决主观与客观的关系问题,而且研究预测思维的逻辑形式(概念、模型、判断、推理)和方法(归纳与演绎、分析与综合、抽象与具体、类比等),并运用这些逻辑形式(思维模型)和方法去揭示事物发展变化的基本趋势和规律。 中国的预测思维技术,是开发大脑潜能和创造性、充分发挥和调动意识的能动作用、挑战大脑思维的极限、增强人的智慧、提高认识能力特别是思维判断能力的技术。它有以下突出特点: 1.模型性、抽象性、科学性 预测思维学和股市预测学的科学性主要表现在它科学地揭示了预测思维的基本规律,它具有一系列科学的范畴、公理定理、完整严密的数理思维模型和逻辑体系,它的知识理论体系具有科学的抽象性、逻辑性、规律性、全息性、无矛盾性的完备性。 模型化方法是股市预测学的根本的核心的思维方法。善于运用思维模型进行逻辑推测和数学演算,是中国股市预测技术的优点和优势。思维模型是人们对认识对象所进行的抽象简化的描述和模拟。中国传统的预测思维模型(干支象数符号模型)是远古时期劳动人们长期实践经验的总结和关于预测思维规律知识的抽象概括,它的发明为预测思维学和股市预测学的全部内容只有两个方面:如何建立预测思维模型(列预测分析方程式或预测行列式)和如何解析预测思维模型(解预测方程式或求预测行列式的值)。北京大学教授、博士生导师于希贤先生在《中国古代风水与建筑选址》一书中说:“凡是能建立数理模型的知识,它一定是科学的。”预测思维学和股市预测学的各种思维模型(卦爻象、六壬课象、奇门局向)都是预测思维的工具(如同电脑软件),它能够帮助人们更深刻地认识事物的本质、特点和规律。它的应用,依靠的是人的意识的能动作用、人的智力、认得思维、人的功能和物质的手段、逻辑的方法和科学的定理,没有半点对神鬼的祈求等迷信内容。 中国祖先发明的思维模型(包括八卦模型、大六壬模型、奇门模型等),是进行预测思维的“计算机软件”(而预测实物工具则是硬件),它的本质上是辅助人脑思维的“外脑”技术,是运用“阴阳二进制”的思维模型来加工、处理客观信息和“脑信息”(即主观信息)的技术。“外脑”思维与人脑思维,都具有自己的特点和优势,二者可以互相补充。仅仅使用人脑进行思维,而没有“外脑”协助思维,这是低级的、

非线性回归预测法——高斯牛顿法(詹学朋)

非线性回归预测法 前面所研究的回归模型,我们假定自变量与因变量之间的关系是线性的,但社会经济现象是极其复杂的,有时各因素之间的关系不一定是线性的,而可能存在某种非线性关系,这时,就必须建立非线性回归模型。 一、非线性回归模型的概念及其分类 非线性回归模型,是指用于经济预测的模型是曲线型的。常见的非线性回归模型有下列几种: (1)双曲线模型: i i i x y εββ++=1 2 1 (3-59) (2)二次曲线模型: i i i i x x y εβββ+++=2321 (3-60) (3)对数模型: i i i x y εββ++=ln 21 (3-61) (4)三角函数模型: i i i x y εββ++=sin 21 (3-62) (5)指数模型: i x i i ab y ε+= (3-63) i i i x x i e y εβββ+++=221110 (3-64) (6)幂函数模型: i b i i ax y ε+= (3-65) (7)罗吉斯曲线: i x x i i i e e y εββββ++=++1101101 (3-66) (8)修正指数增长曲线: i x i i br a y ε++= (3-67) 根据非线性回归模型线性化的不同性质,上述模型一般可细分成三种类型。 第一类:直接换元型。 这类非线性回归模型通过简单的变量换元可直接化为线性回归模型,如:(3-59)、(3-60)、(3-61)、(3-62)式。由于这类模型的因变量没有变形,所以可以直接采用最小平方法估计回归系数并进行检验和预测。 第二类:间接代换型。 这类非线性回归模型经常通过对数变形的代换间接地化为线性回归模型,如:(3-63)、(3-64)、(3-65)式。由于这类模型在对数变形代换过程中改变了因变量的形态,使得变形后模型的最小平方估计失去了原模型的残差平方和为最小的意义,从而估计不到原模型的最佳回归系数,造成回归模型与原数列之间的较大偏差。 第三类:非线性型。

数学建模预测股市走向

2012年A股市场涨跌预测 摘要 本文主要解决了预估未来一年时间内A股市场的涨跌变化的问题。 首先通过收集2011年的上证A股指数每天开盘后的收盘价,对其进行分析处理,作出A股收盘价指数的走势图观察后,然后对数据作级比分析,得知一部分级比数据不在区间() 0.9474中,故先对数据进行变换,变换后的数据 , 1.0555 的级比都落在了上述区间中。然后通过分析建立灰色预测)1,1( GM模型,代入数据求解模型,并进行参数检验,先进行残差检验,得出预测模型的精度为:96.69%;然后进行相关度检验,检验合格;但是在进行后验差检验中的小概率检验时不合格,故又对模型进行残差修正后,用修正模型预测出2012年的上证A股指数的收盘价,但是由于灰色预测模型在预测长期数据时误差有可能增大,故用2011年的实际数据与用灰色预测模型预测2011年收盘价值之间的误差值修正了2012年A股指数的预测值。为使预测值更准确,又采用了马尔科可夫链模型预测出每天的涨幅情况来进一步修正预测值,得到了更精确的预测结果。预测上证A 股指数在2012年233天的收盘价分别为:2236.5 2221.5…1574.7 1601.9。其收盘价走势图为: 关键词:A股灰色预测马尔可夫链模型预测

问题重述 未来一年时间A股市场涨跌的评估预计 A股即人民币普通股票,是中国大陆机构和个人投资的主要股票。A股市场的涨跌受经济形势,国家政策,外部环境以及投资者心态等多个因素影响。2011年A股市场的上证指数和深成指数都出现暴跌,使投资者蒙受了很大的损失。 请查阅网上的资料和数据。建立数学模型,定量分析并预估未来一年时间内A股市场的涨跌变化。 符号说明 α----------为发展灰度数 μ---------为内生控制灰度 )(t X------表示在时间244 ... 2,1 ,= t t时的股票收盘价 r----------表示关联度 S1-------- 表示序列)(t X的标准差 S2--------表示绝对误差序列的标准差 C----------表示方差比 A i---------表示对数据划分区间,244) 1,2, (i? = p ij --------表示第i状态转移到第j状态的概率18 .... 2,1 ,= j i I0------------表示时刻0处于状态18 ... 2,1 = j的概率 i k j1+-----------表示经过k步转移后处于状态18 ... 2,1 = j的概率 模型假设 (1)运用的数据的来源是有效的,在统计过程中无错误 (2)假设无人为操纵股市的走向,为随机数据 (3)假设2009年到2011年无统计数据的日期为股市休息日 模型分析 一、问题的分析 因为A股指数包括上证A股指数与深成A股指数,选择其中一个进行分析即可,所以就不妨选择上证A股指数2011年1月4日到2011年12月30日的每天

基于BP网络的股票数据预测模型

基于BP网络的股票数据 预测模型 姓名:江政 班级:控制2015级 学号:2015028081100015 2016 年6月 26日

需求分析和网络结构设计 根据我们对自然神经系统的构造和机理的认识,神经系统是由大量的神经细胞(神经元)构成的复杂的网络,人们对这一网络建立一定的数学模型和算法,设法使它能够实现诸如基于数据的模式识别,函数映射等带有“智能”的功能,这种网络就是神经网络。其中,BP (Back Propagation )神经网络是1986年由Rumelhart 和McCelland 为首的科学家小组提出,是一种按误差反向传播算法训练的多层前馈网络。BP 网络能学习和存贮大量的输入—输出模式映射关系,而 其他神经网络具有重要作用。 针对150组股票数据进行拟合(详细数据请见《附件1》),选取其中的开盘、最高、最低、收盘和成交次数五组数据,用当日的这五组数据来预测次日的收盘数据,从而等效建立一个股票数据预测模型。采用包括输入层、隐含层和输出层的三层BP 网络结构,如图1所示,输入层包含五个神经元,隐含层包含三个神经元,输出层为一个神经元。其中,隐含层神经元的激活函数采用非对称型Sigmoid 函数,函数表达式为:))exp(1/(1)(x x f -+=,输出层神经元的激活函数采用线性函数,表达式为:x x f =)(。将150组数据分为三等份,其中两份作为训练样本,用来对网络进行训练学习;另外一份作为测试样本,用来检验所训练出的网络的泛化能力。采用BP 算法对隐含层和输出层权值进行修正,以达到计算输出和实际样本输出相差最小,最终实现较精确预测的目的。 图1 预测模型的网络结构

多模型拟合与组合预测

多模型拟合与组合预测 对时间序列建模好比替人物画速写;简单几笔素描突出人的特点并由此推测人物个性。时间序列模型也能模拟数据特征、提炼数据信息、预测数据规律。然而,正如每张素描仅能反映人物某一侧面,多个角度的素描才能完整逼真人物形象,非线性复杂时间序列的数学模型仅是该序列的某种简化和抽 象,其所包含 的变量和参数必定是有所选择并十分有限的。不同模型对同一序列的描述往往各有特点、各有适用场合、也各有不足之处。理论和实践表明,多模型的拟合与组合预测能提高模拟的功效和预测的精度。 事实上,在预测实践中,对于同个问题,我们常采用不同的预测方法。不同的预测方法其预测精度往往也不相同。一般是以预测误差平方和作为评价预测方法优劣的标准,从各种预测方法中选取预测误差平方和最小的预测方法。不同的预测方法往往能提供不同的有用信息,如果简单地将预测误差平方和较大的方法舍弃,将推动一些有用的信息。科学的作法是将不同的预测方法进行适当组合,形成组合预测方法。其目的是综合利用各种预测方法所提供的信息,以提高预测精度。 早在1954年,美国人Schmitt 曾经采用组合预测方法对美国37个最大城市的人口进行预测使预测精度提高。1959年,J.M.Bate t C 。W 。J 。G 拒有对组合预测方法进行比较系统的研究,研究成果引起预测学者的重视。此后,国外关于组合预测的研究成果层出不究,我国近十几年也很重视组合预测的研究,取得一系列研究成果。 采用组合预测的关键是确定单个预测方法的加权系数。设对于同一个问题有 )2(≥n 种预测方法。给出如下记号:t y 为实际观察值;it f 为第i 种方法的预测值; it t it f y e -=为第i 种方法的预测误差;i k 为第i 种方法的加权系数, ∑∑====n i n i it i t i f k f k 1 1 ;1为组合预测方法的预测值;t t t f y e -=为组合预测方法的预测 误差,于是∑==-=n i it i t t t f k f y e 1 。其中,N t n i ,,2,1;,,2,1 ==。 记组合预测方法的预测误差平方和∑==N i t e J 1 2,则 ?? ????=∑∑ ∑ ===)(11 1 N t jt it j i n j n i e e k k J 记组合预测方法的预测加权系数向量为T n n k k k ],,,[21 =K ,第i 种预测方法的预测误差向量为T iN i i i e e e ],,,[21 =E ,预测误差矩阵为,,[21E E e = ],n E ,于是

用GARCH模型预测股票指数波动率

用GARCI模型预测股票指数波动率 目录 Abstract ......................................................................... 1.引言........................................................................... 2.数据........................................................................... 3.方法........................................................................... 3.1.模型的条件平均............................................................ 32模型的条件方差............................................................... 3.3预测方法.................................................................... 3.4业绩预测评价............................................................... 4.实证结果和讨论................................................................. 5.结论........................................................................... References ....................................................................... Abstract This paper is designed to makea comparison between the daily conditional varianee through seven GRAChhodels. Through this comparison, to test whether advaneed GARCH models are outperform ing the sta ndard GARCH models in predict ing the varia nee of stock in dex. The database of this paper is the statistics of 21 stock in dices around the world from 1 January to 30 November 2013. By forecast ing one —step-ahead con diti onal varia nee within differe nt models, the n compare the results within multiple statistical tests. Throughout the tests, it is found that the sta ndard GARCH model outperforms the more adva need GARCH models, and recomme nds the best

组合预测方法中的权重算法及应用.

组合预测方法中的权重算法及应用 [ 08-09-19 16:57:00 ] 作者:权轶张勇 传编辑:Studa_hasgo122 摘要系统地分析了组合预测模型的权重确定方法,并估计各种权重的理论精度,以此指导其应用。文章还首次提出用主成分分析确定组合模型权重的方法,最后以短期(1年)负荷预测为例,检验各种权重下组合预测模型的精度。 关键词组合模型权重预测精度负荷预测 1 常用的预测方法及预测精度评价标准 正确地预测电力负荷,既是社会经济和居民生活用电的需要,也是电力市场健康发展的需要。超短期负荷预测,可以合理地安排机组的启停,保证电网安全、经济运行,减少不必要的备用;而中长期负荷预测可以适时安排电网和电源项目投资,合理安排机组检修计划,有效降低发电成本,提高经济效益和社会效益。 常用的负荷预测方法有算术平均、简单加权、最优加权法、线性回归、方差倒数、均方倒数、单耗、灰色模型、神经网络等。 囿于不同的预测模型的理论基础和所采用的信息资料的不同,上述单一预测模型的预测结果经常千差万别,预测精度有高有低,为了充分发挥各种预测模型的优点,提高预测质量,可以在各种单一预测模型的基础上建立加权平均组合预测模型。为此,必须研究组合预测模型中权重的确定方法及预测精度的理论估计。 设Y表示实际值,■表示预测值,则称Y-■为绝对误差,称■为相对误差。有时相对误差也用百分数■×100%表示。分析预测误差的指标主要有平均绝对误差、最大相对误差、平均相对误差、均方误差、均方根误差和标准误差等。 2 组合预测及其权重的确定 现实的非线性系统结构复杂、输入输出变量众多,采用单个的模型或部分的因素和指标仅能体现系统的局部,多个模型的有效组合或多个变量的科学综合才能体现系统的整体特征,提高预测精度。 为了表达和书写方便,下面从组合预测的角度来描述模型综合的方法和类型。设{xt+l},(t=1,2,...,T)为观测值序列,对{xt+l},(l=1,2,...,L)用J个不同的预测模型得到的预测值为xt+l,则组合模型为: ■T+L=■*9棕j■T+L(j) 式中,*9棕j(j=1,2,…,J)为第j个模型的权重,为保持综合模型的无偏性,*9棕j应满足约束条件■*9棕j=1 确定权重常用的方法有专家经验、算术平均法、方差倒数法、均方倒数法、简单加权法、离异系数法、二项式系数法、最优加权法和主成分分析法等等。下面仅简单介绍最优加权法和主成分分析法。 最优加权法是依据某种最优准则构造目标函数Q,在满足约束条件的情况下 ■*9棕j=1,通过极小化Q以求得权系数。 设{xt},(t=1,2,…T)为观测序列,已经为其建立J个数学模型,则最优加权模型的组合权系数*9棕j,(j=1,2,…J)是以下规划问题的解:

非线性模型预测控制_front-matter

Communications and Control Engineering For other titles published in this series,go to https://www.360docs.net/doc/8a17120316.html,/series/61

Series Editors A.Isidori J.H.van Schuppen E.D.Sontag M.Thoma M.Krstic Published titles include: Stability and Stabilization of In?nite Dimensional Systems with Applications Zheng-Hua Luo,Bao-Zhu Guo and Omer Morgul Nonsmooth Mechanics(Second edition) Bernard Brogliato Nonlinear Control Systems II Alberto Isidori L2-Gain and Passivity Techniques in Nonlinear Control Arjan van der Schaft Control of Linear Systems with Regulation and Input Constraints Ali Saberi,Anton A.Stoorvogel and Peddapullaiah Sannuti Robust and H∞Control Ben M.Chen Computer Controlled Systems E?m N.Rosenwasser and Bernhard https://www.360docs.net/doc/8a17120316.html,mpe Control of Complex and Uncertain Systems Stanislav V.Emelyanov and Sergey K.Korovin Robust Control Design Using H∞Methods Ian R.Petersen,Valery A.Ugrinovski and Andrey V.Savkin Model Reduction for Control System Design Goro Obinata and Brian D.O.Anderson Control Theory for Linear Systems Harry L.Trentelman,Anton Stoorvogel and Malo Hautus Functional Adaptive Control Simon G.Fabri and Visakan Kadirkamanathan Positive1D and2D Systems Tadeusz Kaczorek Identi?cation and Control Using Volterra Models Francis J.Doyle III,Ronald K.Pearson and Babatunde A.Ogunnaike Non-linear Control for Underactuated Mechanical Systems Isabelle Fantoni and Rogelio Lozano Robust Control(Second edition) Jürgen Ackermann Flow Control by Feedback Ole Morten Aamo and Miroslav Krstic Learning and Generalization(Second edition) Mathukumalli Vidyasagar Constrained Control and Estimation Graham C.Goodwin,Maria M.Seron and JoséA.De Doná Randomized Algorithms for Analysis and Control of Uncertain Systems Roberto Tempo,Giuseppe Cala?ore and Fabrizio Dabbene Switched Linear Systems Zhendong Sun and Shuzhi S.Ge Subspace Methods for System Identi?cation Tohru Katayama Digital Control Systems Ioan https://www.360docs.net/doc/8a17120316.html,ndau and Gianluca Zito Multivariable Computer-controlled Systems E?m N.Rosenwasser and Bernhard https://www.360docs.net/doc/8a17120316.html,mpe Dissipative Systems Analysis and Control (Second edition) Bernard Brogliato,Rogelio Lozano,Bernhard Maschke and Olav Egeland Algebraic Methods for Nonlinear Control Systems Giuseppe Conte,Claude H.Moog and Anna M.Perdon Polynomial and Rational Matrices Tadeusz Kaczorek Simulation-based Algorithms for Markov Decision Processes Hyeong Soo Chang,Michael C.Fu,Jiaqiao Hu and Steven I.Marcus Iterative Learning Control Hyo-Sung Ahn,Kevin L.Moore and YangQuan Chen Distributed Consensus in Multi-vehicle Cooperative Control Wei Ren and Randal W.Beard Control of Singular Systems with Random Abrupt Changes El-Kébir Boukas Nonlinear and Adaptive Control with Applications Alessandro Astol?,Dimitrios Karagiannis and Romeo Ortega Stabilization,Optimal and Robust Control Aziz Belmiloudi Control of Nonlinear Dynamical Systems Felix L.Chernous’ko,Igor M.Ananievski and Sergey A.Reshmin Periodic Systems Sergio Bittanti and Patrizio Colaneri Discontinuous Systems Yury V.Orlov Constructions of Strict Lyapunov Functions Michael Malisoff and Frédéric Mazenc Controlling Chaos Huaguang Zhang,Derong Liu and Zhiliang Wang Stabilization of Navier–Stokes Flows Viorel Barbu Distributed Control of Multi-agent Networks Wei Ren and Yongcan Cao

股市预测模型

股市预测模型 基于混合ARMA模型和支持向量机 摘要:股市预测在以往的文献中已经吸引了大量的研究兴趣。传统上,ARMA模型已经成为时间序列中应用最为广泛的线性模型之一。但是,ARMA模型不能够轻易的捕捉非线性模式。并且最近的研究表明,人工神经网络(ANN)方法比传统的统计的人实现了更好的性能。人工神经网络方法在泛化(generalization)方面经历了一定的困难,但是其生产模式可以过度拟合数据。支持向量机(SVM)一种新型的神经网络技术,在解决非线性回归估计问题上已经得到成功的应用。因此,此次调查提出了在股市预测问题的支持向量机模型上,利用ARMA模型的独特优势试图向用户提供更好的解释力模型的混合方法。股市的真实数据集被使用来研究该模型的预测精度。计算的测试结果是很有前景的。 关键字:BP神经网络,金融时间序列,预测,支持向量机1.引言 股市预测因其高波动和不规则性被认为是具有挑战性的任务。因此,许多模型已经被描绘为投资者提供更精确的预

测。尤其是,人工神经网络(ANN)方法在以前的文献中最为频繁被使用,因为其已知的预测的效率优于其他模型。然而,由于解释神经网络的难度,大多数应用神经网络的研究集中在预测精度。在文献中已被报道,利用人工神经网络模型,以很少的努力提供对破产预测过程更好的理解。此外,由于神经网络的过度拟合在泛化方面具有困难,并且完全取决研究人员的经验或是知识,用于选择大量的包括相关的输入变量,隐含层的大小,学习率以及动量控制参数的预处理。 最近,在1995年首次由Vapnik提出的支持向量机(SVM)方法近来被使用在一系列应用中,包括金融股市预测。支持向量机(SVM)的基础已经被Vapnik开发,由于许多吸引人的特点以及在广泛的问题上优异的泛化性能使其越来越受欢迎。该制定(formulation)体现了结构风险最小化(SRM)原则被常规神经网络采用,且已被证明优于传统的经验风险最小化原则。SRM泛化误差上限的最小化,用术语来说,就是在训练数据中误差最小化。 此外,SVM的解决方案可能是全局最优解,而其他神经网络模型往往会陷入局部最优解。一般来说,支持向量机技术被广泛认为是艺术分类的状态(the state of art classifier),并且以往的研究表明,SVM预测方法优于神经网络的方法。 最初为解决分类问题开发的SVM技术可以成功地在回归中应用。与模式识别问题只需输出是离散值不同,支持向

基于非线性组合模型的交通流预测方法

—202 — 基于非线性组合模型的交通流预测方法 张敬磊,王晓原 (山东理工大学交通与车辆工程学院,淄博 255091) 摘 要:为开发智能交通系统,提出一种基于RBF 和ARIMA 网络非线性组合模型的短时交通流预测方法,采用三层结构的RBF 网络将2种单一预测方法——RBF 和ARIMA 网络进行非线性组合,利用实测数据对3类方法进行仿真实验,结果表明,非线性组合模型的预测准确性高于各自单独使用时的准确性,组合模型发挥了2种单一方法各自的优势,是短时交通流预测的有效方法。 关键词:交通流;短时预测;RBF 神经网络;非线性组合预测 Traffic Flow Prediction Method Based on Non-linear Hybrid Model ZHANG Jing-lei, WANG Xiao-yuan (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255091) 【Abstract 】In order to develop the Intelligent Transportation System(ITS), combined RBF network with ARIMA forecast, a method of short-term traffic flow prediction is put forward. The hybrid forecasting method combines the two methods to make use of the non-linear RBF neural network which has a structure of three layers. The simulation test of the three forecasting methods is taken placed used field data, and the results show that the non-linear hybrid model, which takes advantage of the unique strength of the two models in linear and nonlinear modeling can produce more accurate predictions than that of single model. The hybrid model can be an efficient method to the short-term traffic flow prediction. 【Key words 】traffic flow; short-term prediction; RBF neural network; non-linear hybrid prediction 计 算 机 工 程Computer Engineering 第36卷 第5期 Vol.36 No.5 2010年3月 March 2010 ·人工智能及识别技术·文章编号:1000—3428(2010)05—0202—03 文献标识码:A 中图分类号:U491.14 1 概述 短时交通流预测,即对道路交通流进行分析研究,及时、准确地预测未来短时间内(一般认为,不超过15 min ,甚至小于5 min)的交通流状况,是制定正确诱导和控制措施的一个重要前提,也是目前广泛开展的智能运输系统(Intelligent Transportation System, ITS)项目开发研究的基本要求。 交通流预测方法主要分2类[1-4]:(1)统计预测方法,如简单移动平均、线性回归、自回归滑动平均、Kalman 滤波以及非参数回归等;(2)人工智能或神经网络方法。研究表明:没有哪一种方法能够适用于所有时间序列的预测,而应当根据实际情况,选择适当的模型与方法[1,3]。为有效地利用各种模型的优点,Bates 等人提出组合预测的思想,将参与组合的各种预测方法的结果通过适当方式进行组合,以获得最优预测结果(至少精度高于各单项方法)。 本文在分析ARIMA 预测方法和RBF 神经网络预测模型的基础上,充分利用RBF 网络的非线性映射拟合能力,建立基于RBF 网络与ARIMA 的非线性组合预测模型。 2 ARIMA 模型 自回归差分移动平均方法(AutoRegressive Integrated Moving Average, ARIMA)是种精确度较高的线性时间序列预测方法,它是美国学者George Box 和英国统计学家Gwilym Jenkins 建立的Box-Jenkins(B-J)方法的进一步发展和改进。其建模的基本思想是对非平稳的时间序列用若干次差分使其成为平稳序列,作差分的次数就是参数d ,再用以p , q 为参数的ARIMA 模型对该平稳序列建模,之后经反变换得到原序列[4]。 以p ,d ,q 为参数的ARIMA 模型预测方程可以表示为 011221122k k k p k p k k k q k q y y y y θφφφεθεθεθε??????=+++++ ????"" (1) 其中,k y 为样本值;(1,2,,)i i p φ="和(1,2,,)j j q θ="为模型参数;k ε是随时误差,它的均值为0,方差为2εσ。 ARIMA 时间序列预测的建模过程有以下5个关键步骤: (1)样本预处理。对非平稳时间序列,先要进行差分、消除趋势项,使其平稳化。 (2)模式识别。根据时间序列样本数据的相关特性,判别序列应属何种模型,其阶数是多少。 (3)参数估计。根据识别的模型及其阶数,对模型中的参数进行估计。 (4)模型检验。在前2步的基础上,得到时间序列的初步模型,模型检验就是用统计检验的方法并结合定阶准则对模型的适用性进行诊断检验。 (5)预测。应用检验后的合理模型对平稳化的时间序列进行预测。 3 RBF 神经网络模型 RBF 神经网络是以函数逼近理论为基础构造的一类前向 网络。同许多BP 网络类似,它是一种三层前馈网络: 第1层为输入层,由信号源节点组成;第2层为隐含层,其单元数视所描述问题的需要而定;第3层为输出层,它对输 基金项目:山东省自然科学基金资助项目(Y2006G32);山东理工大学科研基金资助重点项目(2004KJZ02) 作者简介:张敬磊(1979-),男,讲师、硕士,主研方向:智能运输系统关键理论及技术;王晓原,教授、博士 收稿日期:2009-09-06 E-mail :jinglei@https://www.360docs.net/doc/8a17120316.html,

非线性模型参数估计方法步骤

EViews非线性模型参数估计方法步骤 1.新建EViews工作区,并将时间序列X、P1和P0导入到工作区; 2.设定参数的初始值全部为1,其方法是在工作区中其输入下列命令 并按回车键 param c(1) 1 c(2) 1 c(3) 1 c(4) 1 3.估计非线性模型参数,其方法是在工作区中其输入下列命令并按 回车键 nls q=exp(c(1))*x^c(2)*p1^c(3)*p0^c(4) 4.得到结果见table01(91页表3. 5.4结果)(案例一结束) Dependent Variable: Q Method: Least Squares Date: 03/29/15 Time: 21:44 Sample: 1985 2006 Included observations: 22 Convergence achieved after 9 iterations Q=EXP(C(1))*X^C(2)*P1^C(3)*P0^C(4) Coefficient Std. Error t-Statistic Prob. C(1) 5.567708 0.083537 66.64931 0.0000 C(2) 0.555715 0.029067 19.11874 0.0000 C(3) -0.190154 0.143823 -1.322146 0.2027 C(4) -0.394861 0.159291 -2.478866 0.0233 R-squared 0.983631 Mean dependent var 1830.000 Adjusted R-squared 0.980903 S.D. dependent var 365.1392 S.E. of regression 50.45954 Akaike info criterion 10.84319 Sum squared resid 45830.98 Schwarz criterion 11.04156 Log likelihood -115.2751 Hannan-Quinn criter. 10.88992 Durbin-Watson stat 0.672163 (92页表3.5.5结果)(案例二过程) 5.新建EViews工作区,并将时间序列X、P1和P0导入到工作区;

股票预测模型

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

相关文档
最新文档