Fluorescence quenching of

Fluorescence quenching of
Fluorescence quenching of

Fluorescence quenching of ?uoroquinolone antibiotics by 4-hydroxy-TEMPO in aqueous solution

q

Krzysztof _Zamojc

′?,Wies?aw Wiczk,Bart?omiej Zaborowski,Mariusz Makowski,Joanna Pranczk,Dagmara Jacewicz,Lech Chmurzyn

′ski University of Gdansk,Faculty of Chemistry,Wita Stwosza 63,80-308Gdansk,Poland

h i g h l i g h t s

g r a p h i c a l a b s t r a c t

a r t i c l e i n f o Article history:

Received 29November 2013

Received in revised form 11June 2014Accepted 21June 2014

Available online 28June 2014Keywords:

Fluoroquinolone antibiotics 4-Hydroxy-TEMPO

Fluorescence quenching Dynamic quenching

a b s t r a c t

The ?uorescence quenching of nor?oxacin,dano?oxacin,enro?oxacin and levo?oxacin,belonging to a group of ?uoroquinolone antibiotics,by 4-hydroxy-TEMPO was studied in aqueous solutions with the use of steady-state,time-resolved ?uorescence spectroscopy as well as UV–VIS absorption spectroscopy methods.In order to understand the mechanism of quenching the absorption and ?uorescence emission spectra of all ?uoroquinolone antibiotics studied as well as decreases of their ?uorescence were regis-tered as a function of the 4-hydroxy-TEMPO concentration.No deviations from a linearity in the Stern–Volmer plots (determined from both,steady-state and time-resolved measurements)were observed.The ?uorescence quenching mechanism was proved to be totally dynamic,what was addition-ally con?rmed by the registration of Stern–Volmer plots at 5temperatures ranging from 15to 55°C.On the basis of theoretical calculations of ?uoroquinolones’molecular radii and ionization potentials the mechanism of electron transfer was rejected.It seems that the ?uorescence quenching is diffusion-lim-ited and is caused by the increase of nonradiative processes,such as internal conversion or intersystem crossing.The Stern–Volmer quenching constants and bimolecular quenching constants were determined at the room temperature for all ?uoroquinolone antibiotics studied.

ó2014Elsevier B.V.All rights reserved.

Introduction

The ?uoroquinolones are antibiotics that play an important role in the antimicrobial therapy.Although the mechanism of action of all ?uoroquinolones is very similar,there are many

signi?cant dif-ferences in their antimicrobial spectrum of activity,pharmacoki-

https://www.360docs.net/doc/944996637.html,/10.1016/j.saa.2014.06.127

1386-1425/ó2014Elsevier B.V.All rights reserved.

q

Selected paper presented at XIIth International Conference on Molecular spectroscopy,Kraków –Bialka Tatrzanska,Poland,September 8–12,2013.?

Corresponding author.Tel.:+48(58)5235057;fax:+48(58)5235012.

E-mail address:krzysztof.zamojc@https://www.360docs.net/doc/944996637.html,.pl (K._Zamojc ′).

netic characteristics and safety pro?les.These compounds are gen-erally highly effective against aerobic Gram-negative and many Gram-positive bacteria.The?uoroquinolones are very helpful in the treatment of a wide range of infections,including uncompli-cated or complicated urinary tract infections,respiratory tract infections,bacterial gastroenteritis and soft tissue infections due to Gram-negative organisms.Many of the?uoroquinolone antibi-otics can be administered orally.As all of the?uoroquinolones have long half-lives they may be administered once or twice daily. They are widely distributed in the body,attaining therapeutic con-centrations in many tissues.On the other hand,these antibiotics have been proved to damage juvenile weight-bearing joints in animals.Thus?uoroquinolones should be used with caution, especially in children[1–4].

Fluorescence quenching attributes to any process that decreases the?uorescence intensity,lifetime or quantum yield of luminescent species as a result of the interactions with other chemical compounds.Although the studies on the?uorescence quenching(performed with steady state and transient methods) provide much information about?uorescent dyes and their quenchers[5–13],such a technique has not been widely studied for?uoroquinolones yet[14–16].

4-hydroxy-TEMPO(4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl)is a stable membrane permeable radical scavenger which effectively protects cells and tissues from damages caused by oxi-dative and nitrosative stress conditions[17].It has been proven that4-hydroxy-TEMPO acts also as a superoxide dismutase mimic [18].

In the present study we have used a UV–VIS absorption method along with steady-state and time-resolved?uorescence measure-ments to investigate the?uorescence quenching of four?uoro-quinolone antibiotics by4-hydroxy-TEMPO in aqueous solutions with a view to understand the mechanism of quenching involved in that system.

Materials and methods

The?uoroquinolone antibiotics(nor?oxacin,dano?oxacin, enro?oxacin and levo?oxacin)and4-hydroxy-TEMPO were pur-chased from Sigma Aldrich.The molecular structures of4-hydroxy-TEMPO and?uoroquinolones studied are presented in Fig.1.To avoid the self-quenching the solutions of all?uoroquino-lones in deionized water were prepared keeping the concentration constant(1á10à5M).The concentration of the stock solution of4-hydroxy-TEMPO was0.25M.

Absorption spectra were recorded on Perkin Elmer Lambda650 UV–VIS spectrophotometer at the temperature25°C(a slit–2nm).Fluorescence emission spectra were registered with the use of Cary Eclipse Varian spectro?uorimeter at the temperature 25°C(excitation and emission slits–5nm).Both,absorption and emission spectra of all?uoroquinolones(1.9mL,1á10à5M)were recorded in the absence of4-hydroxy-TEMPO and in the presence of its different concentrations in the range of0.0013–0.0125M.In case of emission spectra the solutions of nor?oxacin,dano?oxacin and levo?oxacin were excited at340nm,while the excitation wavelength for the solution of enro?oxacin was set to320nm.

Time-resolved?uorescence measurements were done with the use of Edinburgh CD-900spectro?uorimeter at the room tempera-ture.The?uorescence lifetimes of all?uoroquinolones studied (2.5mL,1á10à5M)were measured using the single photon counting technique in the absence of4-hydroxy-TEMPO and in the presence of its different concentrations in the range of 0.0020–0.0078M.In all the cases the excitation wavelength was set at340nm with the use of Nano Led diode from IBH company. After each addition of4-hydroxy-TEMPO the solution was gently stirred and the?uorescence lifetime measured.The emission wavelength was chosen by monochromator and measured at the wavelength corresponding to the maximum of each?uoroquino-lone emission.

The decreases in?uorescence intensities of all?uoroquinolones after an addition of4-hydroxy-TEMPO were observed at following temperatures:15,25,35,45and55°C.These experiments were performed analogously as the time-resolved?uorescence mea-surements.The?uorescence of each antibiotic solution(2.5mL, 1á10à5M)was measured in the absence of4-hydroxy-TEMPO as well as in the presence of different quencher’s concentrations in the range of0.0020–0.0096M.After each addition of4-hydroxy-TEMPO the solution was gently stirred and the?uorescence inten-sity at the wavelength corresponding to the maximum of each ?uoroquinolone emission was measured.

The semiepirical AM1(Austin Model1)quantum chemistry method[19–21]was applied for the theoretical calculations of the ionization potentials and molecular radii of a series of?uoro-quinolone antibiotics.The AM1quantum-chemical calculations were performed using the MOPAC2012(version12.239L)program package[22,23].Furthermore,the molecular radii were calculated after the preliminary geometry optimization performed by the MMFF94force?eld using Avogadro(version1.1.0)Cross-Platform Computer Program for Building Molecules and Visualizing Struc-ture and Analysis[24].

Results

UV absorption and?uorescence emission spectra of all?uoro-quinolone antibiotics studied were registered in the absence and the presence of the increasing concentrations of4-hydroxy-TEMPO.These spectra are presented in Fig.2on an example of enro?oxacin.

Based on recorded?uorescence spectra the following observa-tions(the same for all?uoroquinolones studied)were made:(a) the higher the concentration of4-hydroxy-TEMPO the lower the ?uorescence intensities;(b)no changes in the shape and the shift of the most long-waved bands in absorption and?uorescence spectra.An increase of absorbance in the range of200–275nm is caused by the addition of4-hydroxy-TEMPO;(c)no changes in the?uorescence intensities in the presence of4-hydroxy-TEMPO were observed.All these?ndings prove that the permanent photo-chemistry has no in?uence on the quenching process and that the type of interactions between?uoroquinolone antibiotics and 4-hydroxy-TEMPO is entirely physical.Furthermore,they indicate that an emissive exciplex is not formed.

In order to understand the nature of quenching of all?uoro-quinolone antibiotics studied,the Stern–Volmer equation was ana-lyzed with the use of a time-resolved?uorescence spectroscopy. The?uorescence lifetimes of each?uorophore were measured in the absence and presence of4-hydroxy-TEMPO at different wave-lengths,corresponding to the maximum of its emission(enro?ox-acin:416nm;dano?oxacin:436nm;levo?oxacin:460nm; nor?oxacin:415nm).The Stern–Volmer plots for the?uorescence quenching of?uoroquinolones studied by4-hydroxy-TEMPO in solutions are presented in Fig.3.

As it can be observed from Fig.3the?uorescence quenching shows almost perfectly a linear dependence in the investigated range of4-hydroxy-TEMPO concentrations.It proves that there is no simultaneously present dynamic and static quenching.Further-more,in case of all?uoroquinolones studied,an addition of 4-hydroxy-TEMPO decreases their?uorescence lifetime,what indi-cates that the collisional quenching occurs.Additionally,to con?rm the dynamic mechanism of?uorescence quenching,the in?uence of temperature on Stern–Volmer constants determined on the

888K._Zamojc′et al./Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy133(2014)887–891

basis of steady-state measurements was established.The Stern–Volmer plots for the steady-state?uorescence quenching

?uoroquinolone antibiotics by4-hydroxy-TEMPO in aqueous solutions at?ve temperatures(15,25,35,45and55°C)are sented in Fig.4on an example of enro?oxacin.As it can observed from Fig.4,the higher the temperature,the higher slope of these plots,what is characteristic for the dynamic quench-For all?uoroquinolone antibiotics studied the value of obtained from steady-state measurements is higher(in case enro?oxacin approximately two times)than the value of obtained from time-resolved studies.After the correction of rescence intensities for inner?lter effects the F0/F values decreased signi?cantly and are equal to s0/s values in the range of experi-mental error(data not shown).It proves that the absorption some light by the quencher is the main reason of such observation.

In Table1there are gathered the results of time-resolved?uo-rescence quenching studies.Fluorescence lifetimes measured for

Fig.2.Absorption(A)and?uorescence emission(B)spectra of enro?oxacin in presence of increasing concentrations of4-hydroxy-TEMPO(0–0.0125M).

3.Stern–Volmer plots for the?uorescence quenching of?uoroquinolone antibiotics studied by4-hydroxy-TEMPO in aqueous solutions at the temperature.

K._Zamojc′et al./Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy133(2014)887–891889

levo?oxacin is in a reasonable agreement with literature data[25]. For other?uoroquinolones no data about lifetimes were found.In order to better understand the mechanism of quenching ionization potentials of all?uoroquinolones studied as well as their molecular radii were determined with the use of theoretical calculations.The results of these studies are collected in Table2.

As it can be observed from Tables1and2the highest bimolec-ular quenching constant was obtained for enro?oxacin which has the highest molecular radius as well as relatively high ionization potential from all antibiotics studies.It proves that the mechanism of electron transfer may be rejected.Furthermore,obtained bimo-lecular quenching constants are of the same order of magnitude as diffusion-controlled value[26](data not shown).It is highly prob-able that the?uorescence quenching process is diffusion-limited caused by the increase of rate constants of nonradiative transitions, such as internal conversion or intersystem crossing.

Conclusions

In this paper the?uorescence quenching of nor?oxacin,dano-?oxacin,enro?oxacin and levo?oxacin by4-hydroxy-TEMPO was investigated.The results show that the?uorescence of all?uoro-quinolones studied is sensitive to the presence of4-hydroxy-TEMPO and these compounds are quenched very effectively.There are no positive deviations in Stern–Volmer plots at high quencher concentrations,indicating the in?uence of only one(collisional) quenching mechanism.Studies performed with the use of steady-state and time-resolved?uorescence measurements along with theoretical calculations let to come to a conclusion that the ?uorescence quenching is diffusion-limited caused by the increase of nonradiative processes,such as internal conversion or intersys-tem crossing.The biological signi?cance of this work is proven by the fact that4-hydroxy-TEMPO is used as the different radicals’scavenger.Its detection under physiological conditions might help to understand the mechanism of an oxidative stress.As there are clearly noticeable differences in the?uorescence quenching of?u-oroquinolones studied,4-hydroxy-TEMPO may be applied for the distinction of these antibiotics.

Acknowledgements

This work was supported by the Polish National Science Center (NCN)under the Grant No.2012/07/B/ST5/00753and by grant for Young Scientists2014from University of Gdansk(538-8232-B342-14).

References

[1]J.H.Paton,D.S.Reeves,Fluoroquinolone antibiotics,Drugs36(1988)193–228.

[2]A.A.Robinson,J.B.Belden,M.J.Lydy,Toxicity of?uoroquinolone antibiotics to

aquatic organisms,Environ.Toxicol.24(2005)423–430.

[3]P.M.Just,Overview of the?uoroquinolone antibiotics,Pharmacotherapy13

(1993)4S–17S.

[4]T.S.Murray,R.S.Baltimore,Pediatric uses of?uoroquinolone antibiotics,

Pediatr.Ann.36(2007)336–342.

[5]M.Arik,N.Celebi,Y.Onganer,Fluorescence quenching of?uorescein with

molecular oxygen in solution,J.Photochem.Photobiol.A170(2005)105–111.

[6]N.Celebi,M.Arik,Y.Onganer,Analysis of?uorescence quenching of pyronin B

and pyronin Y by molecular oxygen in aqueous solution,J.Lumin.126(2007) 103–108.

[7]D.Silva, C.M.Cortez,S.R.W.Louro,Chlorpromazine interactions to sera

albumins:a study by the quenching of?uorescence,Spectrochim.Acta A60 (2004)1215–1223.

[8]S.Nad,H.Pal,Electron transfer from aromatic amines to excited coumarin

dyes:?uorescence quenching and picosecond transient absorption studies,J.

Phys.Chem.A104(2000)673–680.

[9]V.K.Sharma,D.Mohan,P.D.Sahare,Fluorescence quenching of3-methyl-7-

hydroxyl coumarin in presence of acetone,Spectrochim.Acta A66(2007)111–113.

[10]R.Giri,Fluorescence quenching of coumarins by halide ions,Spectrochim.Acta

A60(2004)757–763.

[11]R.M.Melavanki,R.A.Kusanur,M.V.Kulakarni,J.S.Kadadevarmath,Role of

solvent polarity on the?uorescence quenching of newly synthesized7,8-benzo-4-azidomethyl coumarin by aniline in benzene–acetonitrile mixtures,J.

Lumin.128(2008)573–577.

[12]K._Zamojc′, D.Jacewicz,L.Chmurzyn′ski,Quenching of?uorescence of

polycyclic aromatic hydrocarbons by4-OH-TEMPO,Anal.Lett.46(2013) 349–355.

[13]K._Zamojc′,W.Wiczk,B.Zaborowski,D.Jacewicz,L.Chmurzyn′ski,Analysis of

?uorescence quenching of coumarin derivatives by4-hydroxy-TEMPO in aqueous solution,J.Fluoresc.24(2014)713–718.

[14]N.Seedher,P.Agarwal,Complexation of?uoroquinolone antibiotics with

human serum albumin:a?uorescence quenching study,J.Lumin.130(2010) 1841–1848.

[15]J.L.Vasquez,M.T.Montero,J.Trias,J.Hernandez-Borrell,6-Fluoroquinolone–

liposome interactions:?uorescence quenching study using iodide,Int.J.

Pharm.171(1998)75–86.

[16]Y.Xiao,J.W.Wang,X.G.Feng,H.Y.Wang,Study of a?uorescence quenching

mechanism of enoxacin and its determination in human serum and urine samples,J.Anal.Chem.62(2007)438–443.

[17]A.Da?browska,D.Jacewicz,A.?apin′ska,B.Banecki,A.Figarski,M.Szkatu?a,J.

Lehman,J.Krajewski,J.Kubasik-Juraniec,M.Woz′niak,L.Chmurzyn′ski,Pivotal participation of nitrogen dioxide in L-arginine induced acute necrotizing pancreatitis:protective role of superoxide scavenger4-OH-TEMPO,Biochem.

https://www.360docs.net/doc/944996637.html,mun.326(2005)313–320.

[18]Z.S′ledzin′ski,M.Woz′niak,J.Antosiewicz,E.Lezoche,M.Familiari,E.Bertoli,L.

Greci,A.Brunelli,N.Mazera,Z.Wajda,Protective effect of4-hydroxy-TEMPO,a low molecular weight superoxide dismutase mimic,on free radical toxicity in experimental pancreatitis,Int.J.Pancreatol.18(1995)153–160.

[19]M.J.Dewar,E.G.Zoebisch,E.F.Healy,J.J.Stewart,Development and use of

quantum mechanical molecular models.76.AM1:a new general purpose quantum mechanical molecular model,J.Am.Chem.Soc.107(1985)3902–3909.

4.Stern–Volmer plots from the steady-state?uorescence quenching

enro?oxacin by4-hydroxy-TEMPO in aqueous solutions at different temperatures

ranging from15to55°C.

Table1

Stern–Volmer quenching constants(K D),linear correlation coef?cients(r2),?uores-

cence lifetimes in the absence of quencher(s0)and bimolecular quenching constants

(k q)recovered for?uorescence quenching of?uoroquinolone antibiotics by4-

hydroxy-TEMPO in aqueous solution.

Fluoroquinolone K D(molà1dm3)r2s0(ns)k q(molà1dm3sà1)

Enro?oxacin19.050.9976 1.7610.8á109

Dano?oxacin37.290.9946 5.45 6.84á109

Levo?oxacin24.610.9983 6.44 3.82á109

Nor?oxacin 5.810.9603 1.29 4.50á109

Table2

Ionization potentials(IP),molecular radii calculated with the use of Avogadro

program(R1)and molecular radii calculated with the use of MOPAC(R2)recovered for

?uorescence quenching of?uoroquinolone antibiotics by4-hydroxy-TEMPO in

aqueous solution.

Fluoroquinolone IP(eV)R1(?)R2(?)

Enro?oxacin8.9814.0413.93

Dano?oxacin8.9012.2011.76

Levo?oxacin8.6613.2812.85

Nor?oxacin8.9912.3312.39

and Biomolecular Spectroscopy133(2014)887–891

[20]J.J.Stewart,Optimization of parameters for semiempirical methods IV:

extension of MNDO,AM1,and PM3to more main group elements,J.Mol.

Model.10(2004)155–164.

[21]G.B.Rocha,R.O.Freire,A.M.Simas,J.J.Stewart,RM1:A reparameterization of

AM1for H,C,N,O,P,S,F,Cl,Br,and I,https://www.360docs.net/doc/944996637.html,put.Chem.27(2006)1101–1111.

[22]J.J.Stewart,MOPAC:a semiempirical molecular orbital program,https://www.360docs.net/doc/944996637.html,put.

Aided Mol.Des.4(1990)1–103.

[23]J.D.C.Maia,G.A.Urquiza Carvalho, C.P.Mangueira Jr.,S.R.Santana,L.A.F.

Cabral,G.B.Rocha,GPU linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry calculations,J.Chem.

https://www.360docs.net/doc/944996637.html,put.8(2012)3072–3081.[24]M.D.Hanwell, D.E.Curtis, D.C.Lonie,T.Vandermeersch, E.Zurek,G.R.

Hutchison,Avogadro:an advanced semantic chemical editor,visualization, and analysis platform,J.Cheminformat.4(2012)1–17.

[25]G.Viola,L.Facciolo,M.Canton, D.Vedaldi, F.Dall’Acqua,G.Gaetano,M.

Amelia, A.Barba?na, F.Elisei,https://www.360docs.net/doc/944996637.html,tterini,Photophysical and phototoxic properties of the antibacterial?uoroquinolones levo?oxacin and moxi?oxacin, Chem.Biodivers.1(2004)782–801.

[26]https://www.360docs.net/doc/944996637.html,kovicz,Principles of Fluoresce Spectroscopy,third ed.,Springer,New

York,2006.p.301.

K._Zamojc′et al./Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy133(2014)887–891891

钢材表面喷砂处理工艺分析

钢材表面喷砂除锈及防腐处理工艺 一、除锈去污的方法 钢材除锈大致有以下几种: 1、抛丸除锈:利用机械设备的高速运转把一定粒度的钢丸靠抛头的离心力抛出,被抛出的钢丸与构件猛烈碰撞打击从而达到祛除钢材表面锈蚀的目的的一种方法。它使用的钢丸品种有:铸铁丸和钢丝切丸两种,铸铁丸是利用熔化的铁水在喷射并急速冷却的情况下形成的粒度在2~3mm铁丸,表面很圆整。它成本相对便宜但耐用性稍差。在抛丸过程中经反复的撞击铁丸被粉碎而当作粉尘排除。钢丝切丸是用废旧铁丝绳的钢丝切成2mm的小段而成,它的表面带有尖角,除锈效果相对高且不易破碎使用寿命延长,但价格有所提高。后者的抛丸表面更粗糙一些。 2、喷丸除锈:利用高压空气带出钢丸喷射到构件表面达到的一种除锈方法。 3、喷砂除锈:利用高压空气带出石英砂喷射到构件表面达到的一种除锈方法。可以采用金刚砂、石英砂等,石英砂的来源有:河砂、海砂及人造砂等。砂的成本低且来源广泛,但对环境污染大;除锈完全靠人工操作,除锈后的构件表面粗糙度小,不易达到摩擦系数的要求。海砂在使用前应祛除其盐份。以上两种除锈方法对环境湿度要求小于85%。而金刚砂可以重复利用。 4、酸洗除锈:酸洗除锈亦称化学除锈,其原理是利用酸洗液中的酸与金属氧化物进行化学反应,使金属氧化物溶解,而除去钢材表面的锈蚀和污物。但酸洗不能够达到抛丸或喷丸的表面粗糙度效果。且在酸洗除锈后一定要大量清水清洗并钝化处理;它所形成的大量废水、废酸、酸雾造成环境污染。如果处理不当还会造成金属表面过蚀,形成麻点。目前很少采用。 5、手工和动力除锈:工具简单施工方便。但劳动强度大,除锈质量差。该法只有在其他方法都不具备的条件下才能局部采用。比如个别构件的修整或安装工地的局部除锈处理等。其常用工具有:砂轮机、铲刀、钢丝刷、砂布等。

中频炉控制电路原理

控制电路原理 整个控制电路除逆变末级触发电路板外,做成一块印刷电路板结构,从功能上分为 整流触发部分、调节器部分、逆变部分、启动演算部分。详细电路见《控制电路原理图》。 1. 1 整流触发工作原理 这部分电路包括三相同步、数字触发、末级驱动等电路。触发部分采用的是数字 触发,具有可靠性高、精度高、调试容易等特点。数字触发器的特征是用计(时钟脉冲)数的办法来实现移相,该数字触发器的时钟脉冲振荡器是一种电压控制振荡器,输出脉 冲频率受移相控制电压Uk 的控制,Uk 降低,则振荡频率升高,而计数器的计数值是固 定的(256),计数器脉冲频率高,意味着计一定脉冲数所需时间短,也即延时时间短, α角小,反之α角大。计数器开始计数时刻同样受同步信号控制,在α=0 时开始计数。 现假设在某Uk 值时,根据压控振荡器的控制电压与频率间的关系确定输出振荡频率为 25KHZ,则在计数到256 个脉冲所需的时间为(1/25000)×256=10.2(ms)相当于约180 °电角度,该触发器的计数清零脉冲在同步电压〔线电压〕的30°处,这相当于三相 全控桥式整流电路β=30°位置, 从清零脉冲起,延时10.2ms 产生的输出触发脉冲, 也 即接近于三相桥式整流电路某一相晶闸管α=150°位置,如果需要得到准确的α=150° 触发脉冲, 可以略微调节一下电位器W4。显然有三套相同的触发电路,而压控振荡器和Uk 控制电压为公用,这样在一个周期中产生6 个相位差60°的触发脉冲。 数字触发器的优点是工作稳定,特别是用HTL 和CMOS 数字集成电路,可以有很强 的抗干扰能力。 IC16A 及其周围电路构成电压----频率转换器,其输出信号的周期随调节器的输出 电压Uk 而线性变化。W4 微调电位器是最低输出频率调节(相当于模拟电路锯齿波幅值调节)。 三相同步信号直接由晶闸管的门极引线K4、K6、K2 从主回路的三相进线上取得, 由R23、C1、R63、C40、R102、C63 进行滤波、移相,经6 只光电耦合器进行电位隔离,获得6 个相位互差60°、占空比略小于50%的矩形同步信号。 IC3、IC8、IC12(4536 计数器)构成三路数字延时器。三相同步信号对计数器进行 复位后,对电压---频率转换器的输出脉冲每计数256 个脉冲便输出一个延时脉冲,因计 数脉冲的频率是受Uk 控制的, 换句话说Uk 控制了延时脉冲。 计数器输出的脉冲经隔离、微分后变成窄脉冲,送到后级的NE556,它既有同步分 频器功能,亦有定输出脉冲宽度的功能。输出的窄脉冲经电阻合成为双窄脉冲,再经晶 体管放大,驱动脉冲变压器输出。具体时序图见附图。 1.2 调节器工作原理 调节器部分共有四个调节器:中频电压调节器、电流调节器、阻抗调节器、逆变角 调节器。 其中电压调节器、电流调节器组成常规的电压、电流双闭环系统。在启动和运行 的整个阶段,电流调节器始终参与工作,而电压环仅工作于运行阶段。另一阻抗调节器 从输入上看,它与电流调节器LT2 的输入完全是并联关系,区别仅在于阻抗调节器的负 反馈系数较电流调节器略大,再者就是电流调节器的输出控制的是整流桥的输出直流电压,而阻抗调节器的输出控制的是中频电压与直流电压的比例关系,即逆变功率因数角。调节器电路的工作过程可以分为两种情况:一种是在直流电压没有达到最大值的 时候,由于阻抗调节器的反馈系数略大,阻抗调节器的给定小于反馈,阻抗调节器便工 作于限幅状态,对应的为最小逆变θ角,此时可以认为阻抗调节器不起作用,系统完全 西是一个标准的电压、电流双闭环系统。另一种情况是直流电压巳经达到最大值,电流调节器开始限幅不再起作用,电压调节器的输出增加,而反馈电流却不变化,对阻抗调节

钢材表面预处理

一、目的与适用范围 1 范围 1.1本工艺适用于钢材,包括钢板和型材的抛丸预处理流水线。 2 定义 2.1钢材进厂后,在加工前对钢材的原材料进行处理,除去表面的氧化皮和锈蚀,涂上 车间底漆以确保钢材在加工过程中不继续腐蚀,这一阶段的钢材表面处理,称之为钢材的表面预处理。 2.2钢材预处理的方式有抛射磨料处理、喷射磨料处理和酸洗处理三种方式。其中要获 得高效率的自动化流水作业,目前还只有抛射磨料处理方式。抛射磨料处理亦称为抛丸处理。 二、工艺内容 1 钢板校平 造船用钢板,在运输过程中或经过长期的堆积后,会产生形变。形变的钢板在分段落料加工时会影响加工精度,形变严重的钢板将影响船体的线型。因此,钢板的预处理之前或之后,应对钢板作校平处理。 2 预热 预热是为了在抛丸前将钢板升温,除去表面水分、部分油污,使钢板升温至一定的温度以利于喷漆后的干燥。预热应使钢板升温至40左右。升温太低,不利于除去水分、油污,不利于而后喷涂的车间底漆的干燥;升温过高,则多耗能量,又易使车间底漆在干燥过程中产生起泡的弊病。 3 抛丸及磨料 抛丸用于清除钢材表面的氧化皮与锈蚀,并使钢材产生一定的粗糙度。理想的抛丸处理磨料是钢丸加钢丝段或钢丸加钢砂,前后两者的比例为1:1到1:2范围之内。 4 喷漆 抛丸处理后的钢材表面需立即涂覆车间底漆。涂漆以自动化方式进行。 5 烘干 钢材喷漆后应进入烘干炉,促使快速干燥以利迅速搬运。烘干炉可以远红外辐射或蒸汽为热源,不能采用明火直接加热。烘干炉应设排风装置,防止炉内溶剂气体积聚而

引起燃爆事故。 6 抛丸预处理流水线工艺要求 6.1车间底漆一般采用无机硅酸锌涂料。 6.2普通钢板及型材采用灰色的车间底漆,特殊强度的钢材则采用浅绿色车间底漆加以 区分。 6.3钢材在进行预处理前必须采用清洁剂擦洗及高压淡水冲洗等方法去除钢材表面的油 污等杂物(如有任何污物)。 6.4一般厚度介于6mm与40mm之间的钢板,需经钢板预处理流水线抛丸队锈,除锈标 准为ISO8501-1:1988中规定的Sa2.5级(除锈标准均采用ISO标准),粗糙度必须控制在40—70微米范围,相当于ISO8503Medium Grade 至Course Grade的表面粗糙度。厚度小于6mm或大于40mm的钢板和型材一般采用喷砂处理。 6.5抛丸过程中钢板的走速 在预处理时应根据钢板的不同锈蚀等级来调节钢板的走速。 A级大于3m/min B级大于2.5m/min C级大于2m/min D级按实际要求而定 6.6由于在抛丸过程中,磨料磨擦和破损等原因,磨料会不断的消耗,所以要定期加入 新的磨料来补充,加入量应符合磨料的消耗量。 6.7为了与涂料的运输速度相配及防止过多的变叠层出现,在喷涂时需及时检查喷枪的 扇型面和喷枪速度,如需要应及时更换喷嘴。 6.8涂料的稀释和混合 6.8.1按不同的温度稀释涂料,如15℃时,约加入专用稀释剂8%(±5℃加入±1-2% 的稀释剂)。 6.8.2基料和固化剂必须彻底的分开搅拌,然后慢慢地把固化剂倒入锌粉里,并不断地 搅拌,不能反相进行。 6.8.3在喷涂过程或在停转过程中,涂料必须不断地搅拌,直到用完为止。 6.8.4涂料必须在下列情况下进行施工: 温度范围:0-40℃ 相对湿度:必须超过50%(若低于50%,用水雾喷在室内,以增加相对湿度)

1吨串联中频炉原理技术与分析

1吨串联中频炉原理技术与分析(1吨串联可控硅中频炉原理技术与分析)1吨串联中频炉是串联逆变中频电炉,是中频炉感应加热炉,如果配一台中频炉炉体熔炼称为单台1吨串联中频炉。串联逆变中频炉电源工作原理 串联逆变电源为电压源供电,串联逆变电源主回路原理图所示。 1吨串联中频炉逆变电源原理说明 电源由三相桥式整流桥和可控硅半桥逆变电路组成,运行时整流桥可控硅全导通,满电压工作。逆变器主电路由二组可控硅桥臂和二组谐振电容器及电炉线圈组成,半桥逆变电路适用于大功率低频率恒压源逆变器。 逆变桥臂上两个SCR交替导通,任何一只SCR导通一定要在串联负载电流过零之后,即大于SCR关闭时间TOT之后,触发导通,如图5,6所示逆变器负载波形图,当SCR电

流过零后,与其并联的反向二极管导通,其反向压降把SCR关闭,之后另一臂SCR才能触发导通,逆变器的输出工作频率为300—400Hz, 工作频率越高,输出功率越大。 图5为逆变器触发脉冲和负载波形图,把可控硅视为理想开关,瞬时导通和关断,电感L和电阻R串联,等效于炉体的负载,触发脉冲频率略低于负载谐振频率f。半桥逆变器工作电流流动路经的描述逆变运行时,电流通过逆变器和炉体线圈L的路径,逆变器的工作波形如图7所示,逆变工作前恒定直流电压Ud为电容C1、C2均分,各充电至1/2Ud,均为上正下负电压,当t=to时SCRl被触发导通,电容C1电荷通过SCRl-Lf-Rf -C1下端放电,另一路是使C2充电,+Ud由CF上端-SCRl-Lf-Rf-C2-CF下端,这二路都是同一谐振电路的一部份,由于C1=C2,因而两路的工作频率相同,等于C=C1+C2,Lf-Rf

去除氧化层方法

1. 喷砂:钛铸件的喷砂处理一般选用白刚玉粗喷较好,喷砂的压力要比非贵金属者较小,一般控制在0.45Mpa以下。因为,喷射压力过大时,砂粒冲击钛表面产生激烈火花,温度升高可与钛表面发生反应,形成二次污染,影响表面质量。时间为15~30秒,仅去除铸件表面的粘砂、表面烧结层和部分和氧化层即可。其余的表面反应层结构宜采用化学酸洗的方法快速去除。 2. 酸洗:酸洗能够快速完全去除表面反应层,而表面不会产生其他元素的污染。HF—HCl系和HF—HNO3系酸洗液都可用于钛的酸洗,但HF—HCl系酸洗液吸氢量较大,而HF —HNO3系酸洗液吸氢量小,可控制HNO3的浓度减少吸氢,并可对表面进行光亮处理,一般HF的浓度在3%~5%左右,HNO3的浓度在15%~30%左右为宜。 3.化学抛光:化学抛光是通过金属在化学介质中的氧化还原反应而达到整平抛光的目的。其优点是化学抛光与金属的硬度、抛光面积与结构形状无关,凡与抛光液接触的部位均被抛光,不须特殊复杂设备,操作简便,较适合于复杂结构钛义齿支架的抛光。但化学抛光的工艺参数较难控制,要求在不影响义齿精度的情况下能够对义齿有良好的抛光效果。较好的钛化学抛光液是HF和HNO3 按一定比例配制,HF是还原剂,能溶解钛金属,起到整平作用,浓度<10%, HNO3起氧化作用,防止钛的溶解过度和吸氢,同时可产生光亮作用。钛抛光液要求浓度高,温度低,抛光时间短(1~2min.)。 4.电解抛光:又称为电化学抛光或者阳极溶解抛光,由于钛的电导率较低,氧化性能极强,采用有水酸性电解液如HF—H3PO4、HF—H2SO系电解液对钛几乎不能抛光,施加外电压后,钛阳极立刻发生氧化,而使阳极溶解不能进行。但采用无水氯化物电解液在低电压下,对钛有良好的抛光效果,小型试件可得到镜面抛光,但对于复杂修复体仍不能达到完全抛光的目的,也许采用改变阴极形状和附加阴极的方法能解决这一难题,还有待于进一步研究。

金属表面处理方式详解

电镀/电泳/锌镀/发黑/金属表面着色/抛丸/喷砂/喷丸/磷化/钝化电镀 镀层金属或其他不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸。电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性、和表面美观。 电泳 电泳是电泳涂料在阴阳两极,施加于电压作用下,带电荷之涂料离子移动到阴极,并与阴极表面所产生之碱性作用形成不溶解物,沉积于工件表面。 电泳表面处理工艺的特点: 电泳漆膜具有涂层丰满、均匀、平整、光滑的优点,电泳漆膜的硬度、附着力、耐腐、冲击性能、渗透性能明显优于其它涂装工艺。 镀锌 镀锌是指在金属、合金或者其它材料的表面镀一层锌以起美观、防锈等作用的表面处理技术。现在主要采用的方法是热镀锌。 电镀与电泳的区别 电镀就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程。 电泳:溶液中带电粒子(离子)在电场中移动的现象。溶液中带电粒子(离子)在电场中移动的现象。利用带电粒子在电场中移动速度不同而达到分离的技术称为电泳技术。 电泳又名——电着 (著),泳漆,电沉积。

发黑 钢制件的表面发黑处理,也有被称之为发蓝的。其原理是将钢铁制品表面迅速氧化,使之形成致密的氧化膜保护层,提高钢件的防锈能力。发黑处理现在常用的方法有传统的碱性加温发黑和出现较晚的常温发黑两种。 但常温发黑工艺对于低碳钢的效果不太好。A3钢用碱性发黑好一些。 在高温下(约550℃)氧化成的四氧化三铁呈天蓝色,故称发蓝处理。在低温下(约3 50℃)形成的四氧化三铁呈暗黑色,故称发黑处理。在兵器制造中,常用的是发蓝处理;在工业生产中,常用的是发黑处理。 采用碱性氧化法或酸性氧化法;使金属表面形成一层氧化膜,以防止金属表面被腐蚀,此处理过程称为“发蓝”。黑色金属表面经“发蓝”处理后所形成的氧化膜,其外层主要是四氧化三铁,内层为氧化亚铁。 发蓝(发黑)的操作流程: 工件装夹→去油→清洗→酸洗→清洗→氧化→清洗→皂化→热水煮洗→检查。 所谓皂化,是用肥皂水溶液在一定温度下浸泡工件。目的是形成一层硬脂酸铁薄膜,以提高工件的抗腐蚀能力。 金属表面着色 金属表面着色,顾名思义就是给金属表面“涂”上颜色,改变其单一的、冰冷的金属色泽,代之以五颜六色,满足不同行业的不同需求。给金属着色后一般都增加了防腐能力,有的还增加了抗磨能力。但表面彩色技术主要的应用还在装饰领域,即用来美化生活,美化社会。 抛丸

不锈钢材质零件氧化层去除方法

不锈钢材质零件氧化层去除方法 不锈钢材质零件已广泛应用于机械装备制造业各个领域,使用量日增。在实践运用中,一些不锈钢材质零件,经过一系列的处理(如焊接、退火、冷镦等)后,会在其表面生成一层彩虹色、褐色甚至黑丝的氧化层,影响零件的外观,且使零件防锈能力下降,所以在使用前必须将氧化层去除掉。 不锈钢材质零件表面的氧化层是金属基体表面生成一层富铁氧化物,这层富铁氧化物主要以Fe2O2、Fe2O2、FeO为主,及少量Cr2O3、FeO、Cr2O3、NiO、MnO等其他氧化物。 在高温短时间退火过程中,燃烧气氛中的氧气和高温水蒸气会造成金属基体进一步被氧化,使工件表面氧化皮厚度增加,内层氧化物增加明显。原因是高温会大大降低氧化皮阻碍离子扩散的能力,造成氧化速度迅速增大。焊接、退火过程不锈钢表面形成的氧化皮中也会形成大量的孔洞和裂纹,这对产品造成质量隐患。 通常,去除氧化层的方法有三种:浸渍法、盐浴法、盐膜法及电解法。 1、浸渍法:a、硫酸酸洗法。硫酸酸洗时,通过氧化皮内部裂纹和孔隙渗透到氧化皮内和金属基体表面,与金属基体中的Fe、Mn 反应生成大量氢气(鼓泡作用),金属基体的溶解、氢气的鼓泡作用,会使氧化皮很快与金属基体发生脱落。实际生产中,在更换硫酸酸洗溶液时,酸洗槽底部往往有大量未被溶解的氧化皮,这证明硫酸酸洗

时,氧化皮主要时靠机械剥离作用去除的。b、混酸酸洗法。硝酸-盐酸酸洗液,对于不锈钢材质零件氧化皮的溶解能力较强,侵蚀后表面较洁净,但控制不当时容易引起过腐蚀。混酸酸洗时,酸液会通过氧化皮内部裂纹和孔洞渗透到氧化皮内部和金属基体表面,通过溶解贫铬层,使表面氧化皮很快与金属基体发生剥离并脱落。C、硝酸-氢氟酸酸洗法。硝酸-氢氟酸酸洗液对不锈钢材质零件氧化皮的溶解能力强,对金属基体的溶解能力弱,表面侵蚀质量好。但氢氟酸毒性大,需要良好的防护及废水处理条件。氢氟酸通过氧化皮内部裂纹和内部孔隙渗透到氧化皮内部和金属基体表面,很快与基体贫铬层中Fe、Cr、Mn、Si的发生反应产生大量氢气,使贫铬层溶解,这对整个氧化皮产生机械剥离作用。 2、盐浴法:盐浴处理实质上也是预处理过程,它是利用基体金属与氧化皮的热膨胀系数不同,通过骤冷,使氧化皮产生裂纹,同时使存在于氧化皮次外层重的低价氧化物在强氧化剂的作用下,转变为酸溶性的高价氧化物,松膜效果比碱性硝酸钠溶液好,但需要专用盐浴处理槽,操作环境也较差。盐浴法的处理效果较好,但也存在一些不足,盐浴常温下是固态,预热过程能耗过大,不锈钢材质零件出槽是带出溶盐较多,造成浪费并污染,工人操作环境恶劣。 3、盐膜法:盐膜法与盐浴法处理原理相同,操作方法分为升温和降温方式两种。升温方式:浸渍碱溶液在加热炉中于400~500℃下保温2~3min→水洗→酸洗。降温方式:不锈钢材质零件出炉自然冷却至600℃左右→喷射碱盐溶液(氢氧化钠10%;硝酸钠3%;水

氧化皮的形成机理

过热蒸汽管道内氧化膜得形成分为制造加工与运行后两个阶段。?过热蒸汽管道制造加工过程中氧化膜得形成就是在570℃以上得高温制造条件下,由空气中得氧与金属结合形成得。该氧化膜分三层,由钢表面起向外依次为FeO﹑Fe3O4﹑Fe2O3。试验表明:与金属基体相连得FeO层结构疏松,晶格缺陷多,当温度低于570℃时结构不稳定,容易脱落,或在半脱落层部位发生腐蚀.因此,在新锅炉投产前,一定要对锅炉进行酸洗,全部去除制造加工时形成得易脱落氧化层,然后重新钝化,以利在机组运行时形成良好得氧化层。同时,在基建调试期间也可以考虑对过热器与再热器管道进行加氧吹扫,将易脱落得氧化层颗粒冲掉得同时加速形成坚固得氧化层,否则,在投运后会产生严重得氧化皮问题.?在450℃~570℃,水蒸汽与纯铁发生氧化反应,生成得氧化膜由Fe2O3与Fe3O4组成,Fe2O3与Fe3O4都比较致密,可以保护或减缓钢材得进一步氧化.在570℃以上,水蒸汽与纯铁发生氧化反应,生成得氧化膜由Fe2O3、Fe3O4、FeO三层组成,FeO在最内层,FeO就是不致密得,破坏了整个氧化膜得稳定性,氧化膜易于脱落。因此,过热蒸汽管道内壁在运行后所形成得氧化膜可分为两种情况: (1)?如果在锅炉投运之前,通过严格得酸洗与吹管两个环节,将金属管道内壁易脱落氧化层彻底清除干净,吹扫过程中或整机调试得初期,当锅炉运行在亚临界低参数工况下(此时温度不会超过570℃),使管道内壁形成致密得、不易脱落得氧化膜(由Fe2O3与Fe3O4组成,这种氧化膜与金属得基体结合很牢固,只有在有腐蚀介质与应力条件

下才会被破坏)。当日后机组运行于超临界工矿下,温度超过570℃时,这种氧化膜可以保护或减缓钢材得进一步氧化,同时自身也可以相对长期地保留.采用加氧运行,可加速形成上述氧化膜. 如果在锅炉投运之前,酸洗与吹管两个环节不过关,未将金属管道内壁易脱落氧化层彻底清除干净,则投运后很难形成致密得﹑不易脱落得氧化膜。这种易脱落得氧化膜在机组投运后产生恶性循环:脱落→氧化→再脱落→再氧化,最终形成大量得氧化皮。 什么就是氧化皮 超临界机组氧化皮问题,就是具体管材在高温、特别就是超温情况下,由水蒸气氧化生成氧化层,在达到一定厚度形成氧化皮后,主要由于快冷等原因造成大面积集中脱落,大量堆积使管内蒸汽流量减少或者中断,管内蒸汽冷却效果变差,导致再超温与短期过热爆管。 超温与快冷,不精确控制与不规范操作,就是伴随氧化皮问题而存在得三包胎兄弟。?在机组停运时,尤其高负荷非停后,特别发生过超温后非停,客观又由于风机等原因造成锅炉快冷,则管内氧化皮会大面积集中脱落,就会发生局部堵管与再次启动发生短期超温爆管事故。 氧化皮得危害 目前国内已投运得超/超超临界机组普遍存在严重得氧化皮问题,其危害巨大,主要表现在以下几个方面:?(1) 氧化皮堵塞管道,引起相应得受热面管璧金属超温,最 )?长期得氧化皮脱落,使管终导致机组强迫停机。?(2 壁变薄,强度变差,直至爆管.?(3) 锅炉过热器﹑再热器﹑主蒸汽管道及再热蒸汽管道内剥落下来得氧化皮,就是坚硬得固体颗粒,严重损伤汽轮机通流部分高/中压级得喷嘴﹑动叶片及主汽阀﹑

中频炉的相关特点和工作原理

中频炉是一种将工频50HZ交流电转变为中频(300HZ以上至1000HZ)的电源装置,把三相工频交流电,整流后变成直流电,再把直流电变为可调节的中频电流,供给由电容和感 应线圈里流过的中频交变电流,在感应圈中产生高密度的磁力线,并切割感应圈里盛放的金属材料,在金属材料中产生很大的涡流。 中频炉 这种涡流同样具有中频电流的一些性质,即,金属自身的自由电子在有电阻的金属体里流动要产生热量。例如,把一根金属圆柱体放在有交变中频电流的感应圈里,金属圆柱 体没有与感应线圈直接接触,通电线圈本身温度已很低,可是圆柱体表面被加热到发红,甚至熔化,而且这种发红和熔化的速度只要调节频率大小和电流的强弱就能实现。如果圆 柱体放在线圈中心,那么圆柱体周边的温度是一样的,圆柱体加热和熔化也没有产生有害气体、强光污染环境。国内知名生产商河北恒远电炉制造有限公司生产的中频炉广泛用于 有色金属的熔炼[主要用在熔炼钢、合金钢、特种钢、铸铁等黑色金属材料以及不锈钢、锌等有色金属材料的熔炼,也可用于铜、铝等有色金属的熔炼和升温,保温,并能和高炉 进行双联运行。]、锻造加热[用于棒料、圆钢,方钢,钢板的透热,补温,兰淬下料在线加热,局部加热,金属材料在线锻造(如齿轮、半轴连杆、轴承等精锻)、挤压、热轧 、剪切前的加热、喷涂加热、热装配以及金属材料整体的调质、退火、回火等。]热处理调质生产线[主要供轴类(直轴、变径轴,凸轮轴、曲轴、齿轮轴等);齿轮类;套、圈 、盘类;机床丝杠;导轨;平面;球头;五金工具等多种机械(汽车、摩托车)零件的表面热处理及金属材料整体的调质、退火、回火]等。 中频炉系列透热炉特点 节约特点 ●加热速度快、生产效率高、氧化脱炭少、节省材料与成本、延长模具寿命由于中频感应加热的原理为电磁感应,其热量在工件内自身产生,普通工人用中频电炉上班后 十分钟即可进行锻造任务的连续工作,不需烧炉专业工人提前进行烧炉和封炉工作。由于该加热方式升温速度快,所以氧化极少,中频加热锻件的氧化烧损仅为0.5%,煤气炉加 热的氧化烧损为2%,燃煤炉达到3%,中频加热工艺节材,每吨锻件和烧煤炉相比至少节约钢材原材料20-50千克。其材料利用率可达95%。由于该加热方式加热均匀,芯表温差极 小,所以在锻造方面还大大的增加了锻模的寿命,锻件表面的粗糙度也小于50um工艺节能,中频加热比重油加热节能31.5%~54.3%,比煤气加热节能5%~40%。加热质量好, 可降低废品率1.5%,提高生产率10%~30%,延长模具寿命10%~15%。 环保特点

快速除去氧化皮酸洗工艺

快速除去氧化皮酸洗工艺 快速除去氧化皮酸洗工艺[碳钢或低、中碳合金钢制紧固件在潮湿的环境下易锈蚀,在热镦锻和红冲过程中,会形成黑色而致密的氧化皮,既影响美观,又给后处理带来不便,通常可用喷砂、喷丸和加热酸洗以及常温酸洗来除锈和除去氧化皮。下面介绍一种快速除去氧化皮酸洗工艺。 基础配方 根据文献《化学清洗实用技术》、《钢铁材料酸洗化学》、《酸洗除锈技术》等介绍,确立了以盐酸为主的常温酸洗除去氧化皮工艺的基础配方(1L溶液)为: 盐酸420mL,乌洛托品5g,十二烷基硫酸钠5g,草酸5g,OP-105g,添加剂10mL,磷酸14mL。 盐酸是主要成分;磷酸的加入可提高酸洗速度;草酸可与Fe2+、Fe3+络合,加快氧化皮溶解;添加剂也可与Fe2+、Fe3+络合,明显加快氧化皮溶解;十二烷基硫酸钠起润滑和渗透作用;OP-10有渗透作用,同时还有抑雾作用。 2、含量的确定 盐酸酸洗从420mL盐酸加至1000mL中,结果氧化皮全部去除所用时间为48min,单位面积重量为118g/m2 ;基础配方盐酸为420mL时,氧化皮全部去除所用时间为23min,单位面积重量为101g/m2。 乌洛托品的加入不但降低了氧化皮的清除速度,增加了酸洗时间。从1g到5g 的加入对基体的浸蚀略有增加,造成麻点、凹坑。 十二烷基硫酸钠从1g到5g的分别加入试验,仅加入1g酸洗就有所加快,再继续增加用量,酸洗的速度加快并不明显。 草酸从1g到5g的分别加入试验,随着草酸量的增加,氧化皮的清除速度随之加快,超过5g时酸洗速度增加不明显。 OP-10从1g到10g的分别加入试验,加入1g时氧化皮清除速度加快,再继续增加,速度增加不明显,但加入后酸雾明显减少。 添加剂从1g到10g的分别加入试验,加入添加剂氧化皮溶解速度加快,当浓度大于10mL时,速度增加并不明显。 磷酸分别为14、28、42、56、70、140mL溶液中加水到1000mL分别进行试验,磷酸浓度增加使氧化皮清除速度加快,但超过56mL后速度增加已经不明显。因此,确定磷酸的含量为56mL/L。 结论 本工艺的最佳配方(1L溶液):盐酸420mL;十二烷基硫酸钠10g;草酸5g;OP-1010g;添加剂10mL;磷酸56mL。 该配方去除氧化皮的速度比盐酸溶液时间缩短70%

高温氧化皮

超临界锅炉高再管氧化皮脱落分析与解决措施 某公司2号炉,为哈尔滨锅炉厂有限责任公司引进三井巴布科克能源公司技术生产的超临界参数变压 运行直流锅炉,型号为HGI980/。于2005年6月投产。 锅炉为单炉膛、一次再热、固态排渣、全钢构架、全悬吊结构n型锅炉,锅炉设计煤种为神府东胜煤。主蒸汽额定蒸发量为1952t/h,温度543 C,压力;再热汽温度569 'C。压力。 高温再热器布置于水平烟道内,与立式低温再热器直接连接,没有布置中间连接集箱,采用逆顺混合 换热布置。高温再热器沿炉宽排列95屏,每屏管组采用10根管,人口段管子为①57mmx4.3mm,材质为 SA-213T22,中间段管子为①51mmx4.3mm,材质为SA-213T91,出口段的前6根管子为①51mmx4.3mm, 材质为SA-213 TP347H,后6(应为后4根)根管子与中间段相同。如图1所示。 图1高温再热器结构图 1高温受热面检查情况 根据其它超临界锅炉在运行中岀现的问题,并结合日常金属监督统计结果,2007年2号机组首次大修中。将检查高温受热面有无氧化皮堆积列人检修项目。对屏过、末过、高再底部弯头有无氧化皮堆积进行 射线拍片检查。屏过检查了4屏,末过检查了1屏,未在底部弯头处发现有氧化皮堆积。因2号炉的高温

再热器在日常金属监督中,发现个别测点处经常有超温现象,故本次着重对超温处进行检查。 高再检查情况

2号炉自投运以来,高温再热器管就有3个测点存在超温现象(超过626 C,从2006年1月开始统计), 这3个测点对应的管屏为A侧数第12、48、90屏,超温时间分别为670、833、2847min。 本次先对2号炉高温再热器第21测点区域的超温情况进行检查,首先对A侧数第90(第21测点处)、9 1、96屏的底部弯头进行拍片,检查弯头处有无氧化皮堆积。发现此3屏的炉后弯头处均没有异物堆积. 只在炉前侧部分弯头有堆积现象,见表1。

中频炉培训内容

第一章基本知识 一、感应加热原理: 无芯感应电炉就像一个空芯变压器,并根据电磁感应原理工作。坩埚外的感应线圈相当于变压器的原绕组,坩埚内的金属炉料相当于副绕组。当感应线圈通一交变电流时,则因交变磁场的作用是短路连接的金属炉料产生强大的感应电流,电流流动时,为克服金属炉料的电阻而产生热量致使金属炉料加热熔化。 电磁感应现象:变化磁场在导体中引起电动势的现象称为电磁感应,也称“动磁生电”。当位于磁场中的导体与磁力线产生相对切割运动,或线圈中的磁通发生变化时,在导线或线圈中都会产生电动势;若导体和线圈构成闭合回路,则导体或线圈中将有电流。由电磁感应产生的电动势称感生电动势,由感生电动势引起的电流叫做感生电流。 涡流:在具有铁心的线圈中通以交流电时,铁心内就有交变磁通通过,因而在铁心内部必然产生感应电流,在铁心中自成闭合回路,因而形成状如水中漩涡的涡流。涡流的利用:利用涡流产生高温熔炼金属,或对金属进行热处理;电度表中铝盘转动及电工测量仪表中的磁感应阻尼器也就是根据涡流的原理工作的。涡流的危害:涡流消耗电能,使电机、电气设备效率降低; 使铁心发热;且涡流有去磁作用,会削弱原有磁场 二、可控硅的基础知识 1、优点:他是一种大功率的半导体器件,效率高、控制特性好、反应快、 寿命长、体积小、重量轻、可靠性高和方便维护。 2、结构:四层半导体叠交而成,有三个PN 结,外部有三个电极,分别是 阳极、阴极、控制极,分别为A、K、G。 3、工作原理:

将可控硅按图l---62连接,可以得到如下结果: ①开关K未合上时,灯不亮,可控硅未导通。 ②合上K,灯亮,这时可控硅上约有1V的电压降。 ③导通后即使打开K,灯仍亮,可控硅一经触发导通后,可自己维持导通状态。 ④如果降低电源电压E,灯泡逐渐变暗,当电流减小到某一定值(称为最小维持电流)以下时,可控硅关断,灯泡突然熄灭。 由此可知,要使可控硅导通,必须在A、K极间加上正向电压,同时加以适当的正向控制极电压(称触发电压)。一旦导通后,要使可控硅关断,必须采取降低阳极电压、反接或断开电路等措施,使正向电流小于最小维持电流。 4、晶闸管的保护 晶闸管虽然具有很多优点,但是,它们承受过电压和过电流的能力很差,这是晶闸管的主要弱点,因此,在各种晶闸管装置中必须采取适当的保护措施。 一、晶闸管的过电流保护 由于晶闸管的热容量很小,一旦发生过电流时,温度就会急剧上升而可能把PN结烧坏,造成元件内部短路或开路。 晶闸管发生过电流的原因主要有:负载端过载或短路;某个晶闸管被击穿短路,造成其它元件的过电流;触发电路工作不正常或受干扰,·使晶闸管误触发,引起过电流。晶闸管承受过电流能力很差,例如一个100A的晶闸管,它的过电流能力如表20—1所列。这就是说,当100A的晶闸管过电流为400A时,仅允许持续0.02 s,否则将因过热而损坏。由此可知,晶闸管允许在短时间内承受一定的过电流,所以,过电流保护的作用.就在于当发生过电流时,在允许的时间内将过电流切断,以防止元件损坏。 晶闸管过电流的保护措施有下列几种: 1、快速熔断器 普通熔断丝由于熔断时间长,用来保护晶闸管很可能在晶闸管烧坏之后熔断

表面处理方法

表面处理的概念: 拼音:biaomianchuli,英文:surface treatment 在基体材料表面上人工形成一层与基体的机械、物理和化学性能不同的表层的工艺方法。表面处理的目的是满足产品的耐蚀性、耐磨性、装饰或其他特种功能要求。 对于金属铸件,我们比较常用的表面处理方法是,机械打磨,化学处理,表面热处理,喷涂表面, 钕铁硼磁性材料表面处理,全新的稳定成熟,高效率低成本的处理工艺,优于磷化处理 钕铁硼磁性材料是钕,氧化铁等的合金。又称磁钢。 钕铁硼磁性材料牌号有:N30~N52;30H~50H;30SH~50SH;28UH~40U H;30EH~35EH等。 第三代稀土永磁钕铁硼是当代磁铁中性能最强的永磁铁。它的BHmax值是铁氧体磁铁的5-12倍,是铝镍钴磁铁的3-10倍;它的矫顽力相当于铁氧体磁铁的5-10倍,铝镍钴磁铁的5-15倍,其潜在的磁性能极高,能吸起相当于自身重量640倍的重物。 由于钕铁硼磁铁的主要原料铁非常便宜,稀土钕的储藏量较钐多10-16倍,故其价格也较钐钴磁铁低很多。 钕铁硼磁铁的机械性能比钐钴磁铁和铝镍钴磁铁都好,更易于切割和钻孔及复杂形状加工。 钕铁硼磁铁的不足之处是其温度性能不佳,在高温下使用磁损失较大,最高工作温度较低。一般为80摄氏度左右,在经过特殊处理的磁铁,其最高工作温度可达20 0摄氏度。 由于材料中含有大量的钕和铁,故容易锈蚀也是它的一大弱点。所以钕铁硼磁铁必须进行表面涂层处理。可电镀镍(Ni), 锌(Zn), 金(Au), 铬(Cr), 环氧树脂(Epoxy)等。 钕铁硼钝化剂, 阻止生锈及产生花斑, 主要成分:金属表面钝化剂、沉膜剂、表面活性剂、缓冲剂、聚和剂等`。 简称:Royce-799系列 适用范围:适用于钕铁硼材质、铸铁、粉未冶金等多种材质的表面直接钝化使用 物理化学性质: 物性外观浅黄色透明液体状物 PH 7.0-9.0 沉膜剂>20% 钝化剂>20% 其他活性剂>4%

中频炉培训内容

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 中频炉培训内容 第一章一、感应加热原理:感应加热原理:基本知识无芯感应电炉就像一个空芯变压器,并根据电磁感应原理工作。 坩埚外的感应线圈相当于变压器的原绕组,坩埚内的金属炉料相当于副绕组。 当感应线圈通一交变电流时,则因交变磁场的作用是短路连接的金属炉料产生强大的感应电流,电流流动时,为克服金属炉料的电阻而产生热量致使金属炉料加热熔化。 电磁感应现象:电磁感应现象:变化磁场在导体中引起电动势的现象称为电磁感应,也称“动磁生电” 。 当位于磁场中的导体与磁力线产生相对切割运动,或线圈中的磁通发生变化时,在导线或线圈中都会产生电动势;若导体和线圈构成闭合回路,则导体或线圈中将有电流。 由电磁感应产生的电动势称感生电动势,由感生电动势引起的电流叫做感生电流。 涡流:涡流:在具有铁心的线圈中通以交流电时,铁心内就有交变磁通通过,因而在铁心内部必然产生感应电流,在铁心中自成闭合回路,因而形成状如水中漩涡的涡流。 涡流的利用:利用涡流产生高温熔炼金属,或对金属进行热处理;电度表中铝盘转动及电工测量仪表中的磁感应阻尼器也就是根据涡流的原理工作的。 1/ 38

涡流的危害:涡流消耗电能,使电机、电气设备效率降低;使铁心发热;且涡流有去磁作用,会削弱原有磁场二、可控硅的基础知识1、优点:他是一种大功率的半导体器件,效率高、控制特性好、反应快、、优点:寿命长、体积小、重量轻、可靠性高和方便维护。 2、结构:四层半导体叠交而成,有三个 PN 结,外部有三个电极,分别是、结构:阳极、阴极、控制极,分别为 A、K、G。 3、工作原理:、工作原理:将可控硅按图 l---62 连接,可以得到如下结果:

高锰酸钾去除氧化皮工艺

高锰酸钾去除氧化皮工艺 很多的镀锌及锌合金电镀厂常常会遇到工件油污氧化皮难以去除,最好产生质量问题的情况,接下来现代电镀网就来探讨一下如何通过高锰酸钾解决这些问题。 对于钣金件很多是经过多次冷挤压和热处理成型,并经局部切削加工完成的。其尺寸精度要求严,表面光洁度要求高。然而由于挤压、延伸及热处理次数较多,表面上的氧化皮和皂化膜、半碳化硬层也厚,采用常用的去油和酸洗方法进行清洗,难以达到上述质量要求。而同样的对于紧固件由于其加工过程中也会有类似的问题出现,那么如何能做好电镀前的处理呢? 强酸强碱的侵蚀以及浸洗时间过长,钢的结晶受到过腐蚀,使延伸率等机械性能变坏,导致部分材料在挤压成型中破裂。酸洗后表面上总有灰黑色附灰不能洗掉,给后续处理带来困难,导致结合力等问题。 根据资料介绍,如果要去掉钢材表面的坚固氧化皮和污垢,并要求对钢材基体无严重腐蚀作用。其处理方法,需要在不形成氢的氧化性介质中进行。经过研究,可以采用苛性高锰酸盐的方法进行清洗,其优点是基本上消除了由于过腐蚀而产生麻坑,且降低了氢脆性,对钢材内部晶格侵蚀很轻,同时保证了尺寸精度,无超差现象。清洗较短时间,可获得光洁表面。 一、苛性高锰酸盐在清洗中的反应机理 苛性高锰酸盐在酸性或碱性介质中,都是强氧化剂,在适当条件下,很容易洗掉钢材表面的氧化皮、碳化物和有机油污等。氧化过程是紫色的高锰酸根离子,还原成难溶性的棕色二氧化锰。 MnO4+2H2O+3e→MnO2+4OH- 在碱性介质中,六价锰的锰酸根(MnO4-)是中间化合物,还原反应和分解反应同时进行,结果放出分子氧,消耗高锰酸钾。 4KMnO4+4NaOH→KNaMnO4+2H2O+O2 氧化皮的反应决定于氧化物的性质,无论是高价还是低价氧化物,都适应于苛性高 锰酸盐的处理。铁的低价氧化物首先氧化,结果锈皮松弛,体积膨胀,结构破裂。附在钢壳表面上的少量二氧化锰和盐酸作用时(尤其在少量H2O2的情况下)容易迅速溶解与变了性质的锈皮一起进入酸液中。由于溶解时发生剧烈反应,任何铁的化合物、附灰都进入酸液。在苛性高锰酸盐中也可能生成不同的低价铁氢氧基络合物进入酸液。 二、苛性高锰酸盐的配制 工作液成分:KMnO4:NaOH=1:1,混合物含量140-200克/升,其余为水。 操作规范:工作温度为75-100c。配制时先将定量的氢氧化钠溶解于一定量的水中,然后按比例加入高锰酸钾,搅拌至完全溶解。为了保证工作液的稳定性,应定期分析,如果不符合规定,必须及时调整。当氢氧化钠超过100克/升时,能分解高锰酸钾,应用水稀释使其符合规定。 三、工艺流程 苛性高锰酸盐清洗(70-100C,8-20分钟)→流动冷水洗(常温)→盐酸漂洗(含量13-25%,常温2-5分钟)→流动冷水洗(常温)。 四、清洗效果 试验与生产表明:采用苛性高锰酸盐清洗尺寸精度要求严,光洁度要求高的薄壁钢壳件,优于常用的去油酸洗工艺方法。苛性高锰酸盐清洗后的钢壳基本上消除了由于过腐蚀而产生的麻坑,降低了氢脆性,解决了钢壳在冲压变形时所产生的破裂现象,极大地提高了产品合格率。钢壳清洗后表面呈均匀而光洁的银灰色,基本上满足了锌、锰盐中温磷化工艺的要求。磷化膜结晶细密薄而均匀,附着力强,具有一定的抗蚀性能,硫酸铜点滴试验可达一分钟以上。

探讨防止和减缓氧化皮生成和剥落的方法

探讨防止和减缓氧化皮生成和剥落的方法 沈敏光 (浙江省火电建设公司,杭州市,310016) [摘 要]  电厂锅炉在运行过程中由于氧化皮脱落沉积在管内,导致蒸汽流量减少,壁温大幅升高,使金属加速蠕变 胀粗,最终爆管的现象常有发生。通过分析氧化皮的形成、影响氧化皮形成的因素以及氧化皮剥落的规律来探讨防止和减缓氧化皮生成和剥落的方法。 [关键词] 探讨 氧化皮 形成 剥落 方法 中图分类号:TK 284.1 文献标识码:B 文章编号:1000-7229(2003)09-0018-02 Inquisition into Approach to Retard the Creation and Exfoliation of Oxide -layer inside Hot Pipes Shen Minguang (Zhejiang Thermal Power Construction Company ,Hangzhou ,310016) [Abstract] In some power plants because oxidized layers inside the hot pipes is exfoliated from the wall and accumulated inside ,the steam flow would be decreased greatly.As a result ,the great temperature rise accelerates the metal creeping under high pressure and enlarges the size of pipe ,the pipe burst occurs finally.Focusing on the mechanism of creation and development and rules of oxide layers ,the approaches are discussed to retard and relax the exfoliation from the wall. [K eyw ords] discussion ;oxidized layers ;creation ;exfoliation ,approaches 电厂锅炉在运行过程中,由于蒸汽侧氧化皮剥 落沉积造成的危害主要有以下方面: (1)阻碍管内蒸汽流动,使壁温大幅升高,金属蠕变胀粗,导致炉管泄漏; (2)引起受热面管金属壁温上升,影响管材寿命; (3)剥落的氧化皮若带入汽机,会损伤叶片、喷嘴和调门。 为了防止和减缓氧化皮的生成和剥落,本文对氧化皮的形成、影响氧化皮形成的因素以及剥落规律、针对措施等方面进行了分析。 1 氧化皮的形成和影响因素 (1)铁素体金属氧化皮的形成。铁素体材料氧 化物的生长往往由多层组成。内层主要是等轴的铁、铬和氧的晶石。外层氧化皮主要成分是柱状粗糙Fe 3O 4颗粒,在管壁最外层往往有一层细粒Fe 2O 3,内外层的分界线是原有的管壁。氧化皮按上述双层结构发展,形成多层结构。氧化皮的剥落就 会在2个双层结构的中间发生。 (2)影响氧化皮形成的因素。以T 22钢为例,图1表明在一定的压力下,温度和时间对氧化皮厚度的作用。从图中可以看出, 运行时间和氧化皮的厚度基本呈线性关系,而超过一定限额,温度对氧化皮厚度的影响极为显著。在555℃下工作50000h 后的氧化皮厚度约203μm 。 2 氧化皮剥落条件和影响剥落的因素 2.1 剥落的条件 当氧化皮应变所积蓄的能量大于该氧化皮脱层而产生新的内表面所需的能量时,就会发生剥落。这儿涉及到临界厚度和临界温度。 临界厚度:随着氧化皮厚度的增加即运行时间的增长,允许的应变值减小,应变值一旦超出允许应变极限,剥落就会发生。这时的厚度就称为临界厚度,它与管材的温度、材质和运行条件有关。 临界温度:一定厚度的氧化皮产生剥落的最低温度降幅。 收稿日期:2003-07-14 ? 81?第24卷 第9期 2003年9月 电 力 建 设 Electric Power Construction Vol.24 No.9Sep ,2003

中频炉废气处理方案

中频炉废气处理工程 10000m 3/h ) 1、概述.... 1.1 项目概述

1.2 数据和其他依据 3 3 1.3 设计依据 1.4 设计原则 1.5 设计范围 2、工程方案设计 2.5.1 二级喷淋装置 ...... 2.5.2 离心风机 .......... 2.5.5 设备支架及风帽固定架 3、工程投资概算 3.1 工程投资概算一览表 4、工程报价范围 4.1 设计范围 4.2 供货范围 5、公司的服务及承诺 5.1 供货提交的资料 5.2 服务项目 .... 6、运行费用 7、施工进度表 1.1 项目概述 中频炉在生产运行过程中有部分废气产生,为了积极响应国家环保节能减 1、概述 2.1 2.2 2.3 2.4 2.5 处理工程量的确定 ....... 废气排放标准 ........... 废气处理工艺流程说明 .. 工艺流程 .............. 各处理单元主要设备工艺参数 10 10 6.1 运行费用分析 .. 6.1.1 人工费 ... 6.1.2 电费 ...... 6.1.3 总运行费用: 10 10 11 11 11

排等法律法规的号召,预对车间内废气进行处理。 1.2 数据和其他依据 2 台中频炉工作时只有一台工作,废气设计量10000m3/h 1.3 设计依据 中华人民共和国环境保护法》;工业炉窑大气污染物排放标准》二级排放标 准;环境空气质量标准》; 国家颁布的环境工程设计技术规范; 1.4 设计原则 遵循国家环保工程设计相关法律、法规。 采用先进、成熟的工艺,稳定可靠地达到设计目标。 做到工程投资及运行费用最省。 操作、管理方便,布置美观合理。 1.5 设计范围 包括废气处理工程的工艺设计、总图设计、建筑物设计、构筑物设计、 设备设计及选型、电气设计、自控设计、给排水设计等;不包括废气处理站外供电、供水和排水系统设计和施工。

相关文档
最新文档