大学 物理学 第五版 马文蔚 答案上下册第十四章

大学 物理学 第五版 马文蔚 答案上下册第十四章
大学 物理学 第五版 马文蔚 答案上下册第十四章

第十四章相对论

1.设有两个参考系S 和S ',他们的原点在0=t 和0='t 时重合在一起,有一事件,在S '系中发生

在8

10

0.8-?='

t s ,60='x m ,0='y ,0='z 处,若S '系相对于S 系以速率c

v

6.0=沿x x '

轴运动,问该事件在S 系中的时空坐标各为多少?

解:由洛仑兹变换公式可得该事件在S 系的时空坐标分别为:

2

2

931x t x m

c

υυ

''+=

=-,

0='=y y ,0

='=z z ,

2

7

22

2.5101x t c

t s

c

υυ

-'

'+=

=?-

2.在k 系中观察到两个事件同时发生在x 轴,其间距离是1m ,在k '系中观察这两个事件之间的空间距离是2m ,求在k '系中这两个事件的时间间隔。

解:

2

121212)

(1)()(c

v t t v x x x x x ----=

'

-'='?

s

t s

t m x m

x t t c v x x c

v t t t t t 9

9

2

12

122

121210

77.51077.521)

(1)

()(--?='??-='?='?=?=---

-=

'

-'='?

3.某人测得一静止棒长为l ,质量为m ,于是求得此棒的线密度m l

ρ=

,假定此棒以速度v 沿棒长方向

运动,则此人再测棒的线密度应为多少?若棒在垂直长度方向上运动,则棒的线密度又为多少?

解:(1)沿棒长方向运动时:

2

21c

v l l -

=',2

0)

(1c

v m m -=

',

∴2

22

21)

1(c

v c

v l m l m -

=-

=

'

'=

ρ

(2)沿垂直长度方向运动时: l 不变, 2

0)

(1c

v m m -=

'

2

22

211c

v c

v l m l

m -

=

-

=

'='ρ

ρ

4.一观察者测得运动着的米尺长5.0m ,问此尺以多大的相对速度接近观察者?

解:米尺的静止长度为米尺的固有长度10=l m ,根据长度缩短公式???

? ?

?-=2

2

1c v l l 可得:2

8100.51 3.01011l v c m s l -????=-=?-? ? ?

????

812.610m s -=?? 5.一张宣传画5m 见方,平行地贴于铁路旁边的墙上,一高速列车以8

1

210m s -?? 的速度接近此宣传画,

这张画由司机测得将成为什么样子?

解:本题注意收缩仅沿运动的方向发生。 司机看来,此宣传画的高度不变,宽度收缩为

2

88

2

2

010*******???

?

?

???-=???? ?

?-=c v

l l m 7

.3=m 即宣传画变为7.35?m 2的长方形。

6、远方一颗星以c 8.0的速度离开我们,接受到它辐射出的闪光按5昼夜周期变化,求固定在此星上的参考系测得的闪光周期。

解:注意固有时间概念。固定在该星上的参考系测得的时间为固有时,由公式

2

01β

-?=

?t t ,可得d 8.01512

2

20??

?

??-=-

?

=?c c c

v t d 3=

7. 一架飞机以1

600ms -的速度相对于地球飞行,当用地球的时钟测定时,需过多长时间才会比飞机上的

时钟慢2s μ。

解:根据时间膨胀公式有:12

222

2

8

1210

61011(

)

310

f f f

d t t t t u c

-????=

=

≈-??-

-?

由题意知: 12

6

210

210d d f t t t s --???≈?-?=? 所以:6

1011.6d t s d ?≈=

这一结果表明,在通常速度下,相对论效应是很小的。

8.设快速运动的介子的能量约为3000E M eV =,而这种介子在静止时的能量为0100E M eV =。若这种介子的固有寿命为6

0210

s τ-=?,试求它运动的距离。 解:由相对论能量公式有:22

00222

2

11m c E E m c

v v c

c

==

=

-

-

则:

202

1130

E v c

E

-

=

=

,介子运动的速度为:81

2.99810v m s

-=??

介子的运动寿命为:

022

301t v c

ττ?=

=-

介子运动的距离为:4

030 1.79910l v t v m τ=?==? 9.若一电子的总能量为5.0Mev,求该电子的静能、动能、动量和速度。 解:静能:

512.010

19.8)

103(10

1.914

2

831

2

00=?=???==--J c

m E Mev

动能:

488

.4512.00.50=-=-=E E E K Mev

动量:

2

202

c

p E E

+= 得 21

21

02

10

66.2)(1-?=-=

E E

c

p kg ·m ·s -1

速率: 由

2

2

02

)

(1c

c

v

m c m E ?-=

= , 得 c

E

E E

c v 995.0)(

21

2

202

=-=

大学物理 马文蔚 第五版 下册 第九章到第十一章课后答案

第九章振动 9-1一个质点作简谐运动,振幅为A,在起始时刻质点的位移为,且向x 轴正方向运动,代表此简谐运动的旋转矢量为() 题9-1图 分析与解(b)图中旋转矢量的矢端在x轴上投影点的位移为-A/2,且投影点的运动方向指向Ox轴正向,即其速度的x分量大于零,故满足题意.因而正确答案为(b). 9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为() 题9-2图 分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为.振动曲线上给出质点从–A/2 处运动到+A处所需时间为 1 s,由对应旋转矢量图可知相应的相位差,则角频率,故选(D).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案. 9-3两个同周期简谐运动曲线如图(a)所示, x1 的相位比x2 的相位() (A)落后(B)超前(C)落后(D)超前 分析与解由振动曲线图作出相应的旋转矢量图(b)即可得到答案为(b).

题9-3图 9-4当质点以频率ν作简谐运动时,它的动能的变化频率为() (A)(B)(C)(D) 分析与解质点作简谐运动的动能表式为,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C). 9-5图(a)中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为() (A)(B)(C)(D) 分析与解由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是(即反相位).运动方程分别为和 .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法, 如图(b)很方便求得合运动方程为.因而正确答案为(D). 题9-5图 9-6 有一个弹簧振子,振幅,周期,初相.试写出它的运动方程,并作出图、图和图.

大学物理第六章课后习题答案(马文蔚第五版)

大学物理第六章课后习题答案(马文蔚第五版) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第六章静电场中的导体与电介质6 -1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将() (A)升高(B)降低(C)不会发生变化(D)无法确定 分析与解不带电的导体B 相对无穷远处为零电势。由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。 6 -2将一带负电的物体M靠近一不带电的导体N,在N 的左端感应出正电荷,右端感应出负电荷。若将导体N 的左端接地(如图所示),则() (A) N上的负电荷入地(B)N上的正电荷入地 (C) N上的所有电荷入地(D)N上所有的感应电荷入地 分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关。因而正确答案为(A)。 6 -3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d,参见附图。设无穷远处为零电势,则在导体球球心O点有() 2

3 (A )d εq V E 0π4,0== (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4== 分析与解 达到静电平衡时导体内处处各点电场强度为零。点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。因而正确答案为(A )。 6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷

大学物理(第五版)下册

第9、10章 振动与波动习题 一、选择题 1. 已知四个质点在x 轴上运动, 某时刻质点位移x 与其所受合外力F 的关系分别由下列四式表示(式中a 、b 为正常数).其中不能使质点作简谐振动的力是 [ ] (A) abx F = (B) abx F -= (C) b ax F +-= (D) a bx F /-= 2. 如图4-1-5所示,一弹簧振子周期为T .现将弹簧截去一半,仍挂上原来的物体, 则 新的弹簧振子周期为 [ ] (A) T (B) 2T (C) 1.4T (D) 0.7T 3. 在简谐振动的运动方程中,振动相位)(?ω+t 的物理意义是 [ ] (A) 表征了简谐振子t 时刻所在的位置 (B) 表征了简谐振子t 时刻的振动状态 (C) 给出了简谐振子t 时刻加速度的方向 (D) 给出了简谐振子t 时刻所受回复力的方向 角, 然后放手任其作4. 如图4-1-9所示,把单摆从平衡位置拉开, 使摆线与竖直方向成 微小的摆动.若以放手时刻为开始观察的时刻, 用余弦函数表示这一振 动, 则其振动的初相位为 [ ] (A) (B) 2π 或π2 3 (C) 0 (D) π 5. 两质点在同一方向上作同振幅、同频率的简谐振动.在振动过程中, 每当它们经过振幅一半的地方时, 其运 动方向都相反.则这两个振动的相位差为 [ ] (A) π (B) π32 (C) π34 (D) π5 4 6. 一质点作简谐振动, 振动方程为)cos( ?ω+=t A x . 则在2 T t =(T 为振动周期) 时, 质点的速度为 [ ] (A) ?ωsin A - (B) ?ωsin A (C) ?ωcos A - (D) ?ωcos A 7. 一物体作简谐振动, 其振动方程为)4πcos( +=t A x ω.则在2 T t = (T 为周期)时, 质点的加速度为 (A) 222ωA - (B) 222ωA (C) 223ωA - (D) 22 3ωA 8. 一质点以周期T 作简谐振动, 则质点由平衡位置正向运动到最大位移一半处的最短时间为 [ ] (A) 6T (B) 8T (C) 12 T (D) T 127 9. 某物体按余弦函数规律作简谐振动, 它的初相位为2 π 3, 则该物体振动的初始状态为 [ ] (A) x 0 = 0 , v 0 0 (B) x 0 = 0 , v 0<0 (C) x 0 = 0 , v 0 = 0 (D) x 0 = A , v 0 = 0 10. 有一谐振子沿x 轴运动, 平衡位置在x = 0处, 周期为T , 振幅为A ,t = 0时刻振子过2 A x = 处向x 轴正方θ + 图4-1-9 图4-1-5

大学物理(第五版)上册课后习题答案马文蔚

习题1 1-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +?时间内的位移为r ?,路程为s ?,位矢大小的变化量为r ?(或称r ?),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有( ) (A )r s r ?=?=? (B )r s r ?≠?≠?,当0t ?→时有dr ds dr =≠ (C )r r s ?≠?≠?,当0t ?→时有dr dr ds =≠ (D )r s r ?=?≠?,当0t ?→时有dr dr ds == (2)根据上述情况,则必有( ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠= 1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即 (1) dr dt ;(2)dr dt ;(3)ds dt ;(4下列判断正确的是: (A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。对下列表达式,即 (1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。 下述判断正确的是( ) (A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变

大学物理第五版(马文蔚)电磁学习题答案

第五章 静 电 场 5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( ) 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 5 -2 下列说法正确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).

5 -3下列说法正确的是( ) (A) 电场强度为零的点,电势也一定为零 (B) 电场强度不为零的点,电势也一定不为零 (C) 电势为零的点,电场强度也一定为零 (D) 电势在某一区域内为常量,则电场强度在该区域内必定为零 分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D). *5 -4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B). 5 -5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引

物理学上册马文蔚答案

物理学上册马文蔚答案 【篇一:物理学答案(第五版,上册)马文蔚】 (1) 根据上述情况,则必有( ) (2) 根据上述情况,则必有( ) (a) |v|= v,||=(b) |v|≠v,||≠ (c) |v|= v,||≠(d) |v|≠v,||= 但由于|dr|=ds,故drds?,即||=.由此可见,应选(c). dtdt 1 -2 一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即 drdrds?dx??dy?(1); (2); (3);(4)?????. dtdtdtdt???dt? 下述判断正确的是( ) (a) 只有(1)(2)正确 (b) 只有(2)正确 (c) 只有(2)(3)正确 (d) 只有(3)(4)正确 分析与解 22dr表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速dt 率.通常用符号vr表示,这是速度矢量在位矢方向上的一个分量;dr 表示速度矢量;在自然dt 22ds?dx??dy?坐标系中速度大小可用公式v?计算,在直角坐标系中则可由公式v??????dtdtdt???? 求解.故选(d). 1 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对下列表达式,即 (1)d v /dt =a;(2)dr/dt =v;(3)ds/dt =v;(4)d v /dt|=at.下述判断正确的是( ) (a) 只有(1)、(4)是对的 (b) 只有(2)、(4)是对的 (c) 只有(2)是对的(d) 只有(3)是对的 dv表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速dt dr度方向的一个分量,起改变速度大小的作用;在极坐标系中表示径向速率vr(如题1 -2 所dt分析与解 述);dsdv在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度adtdt t.因此只有(3) 式表达是正确的.故选(d). 1 -4 一个质点在做圆周运动时,则有( )

大学物理(第五版)下册

第9、10章振动与波动习题 一、选择题 1. 已知四个质点在x 轴上运动, 某时刻质点位移x 与其所受合外力F 的关系分别由下列四式表示(式中a 、b 为正常数).其中不能使质点作简谐振动的力是 [ ] (A) abx F =(B) abx F -= (C) b ax F +-=(D) a bx F /-= 2. 如图4-1-5所示,一弹簧振子周期为T .现将弹簧截去一半,仍挂上原来的物体, 则 新的弹簧振子周期为 [ ] (A) T (B) 2T (C) 1.4T (D) 0.7T 3. 在简谐振动的运动方程中,振动相位)(?ω+t 的物理意义是 [ ] (A) 表征了简谐振子t 时刻所在的位置 (B) 表征了简谐振子t 时刻的振动状态 (C) 给出了简谐振子t 时刻加速度的方向 (D) 给出了简谐振子t 时刻所受回复力的方向 角, 然后放手任其作微 4. 如图4-1-9所示,把单摆从平衡位置拉开, 使摆线与竖直方向成小的摆动.若以放手时刻为开始观察的时刻, 用余弦函数表示这一振动, 则其振动的初相位为 [ ] (A) (B) 2π或π2 3 (C) 0 (D) π 5. 两质点在同一方向上作同振幅、同频率的简谐振动.在振动过程中, 每当它们经过振幅一半的地方时, 其运动方向都相反.则这两个振动的相位差为 [ ] (A) π (B) π32 (C) π34(D) π5 4 6. 一质点作简谐振动, 振动方程为)cos(?ω+=t A x .则在2 T t =(T 为振动周期)时, 质点的速度为 [ ] (A) ?ωsin A - (B) ?ωsin A (C) ?ωcos A - (D) ?ωcos A 7. 一物体作简谐振动, 其振动方程为)4πcos(+ =t A x ω.则在2 T t = (T 为周期)时, 质点的加速度为 (A) 222ωA - (B) 222ωA (C) 223ωA - (D) 22 3 ωA 8. 一质点以周期T 作简谐振动, 则质点由平衡位置正向运动到最大位移一半处的最短时间为 [ ] (A) 6T (B) 8 T (C) 12T (D) T 127 9. 某物体按余弦函数规律作简谐振动, 它的初相位为2 π 3, 则该物体振动的初始状态为 [ ] (A) x 0 = 0 , v 0 0 (B) x 0 = 0 , v 0<0 (C) x 0 = 0 , v 0 = 0 (D) x 0 = A , v 0 = 0 10. 有一谐振子沿x 轴运动, 平衡位置在x = 0处, 周期为T , 振幅为A ,t = 0时刻振子过2 A x = 处向x 轴正方 图 4-1-9 图4-1-5

大学物理(第五版)下册

大学物理(第五版)下 册 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第9、10章 振动与波动习题 一、选择题 1. 已知四个质点在x 轴上运动, 某时刻质点位移x 与其所受合外力F 的关系分别由下列四式表示(式中a 、b 为正常数).其中不能使质点作简谐振动的力是 [ ] (A) abx F = (B) abx F -= (C) b ax F +-= (D) a bx F /-= 2. 如图4-1-5所示,一弹簧振子周期为T .现将弹簧截去一半,仍挂上原来 的物体, 则新的弹簧振子周期为 [ ] (A) T (B) 2T (C) 1.4T (D) 0.7T 3. 在简谐振动的运动方程中,振动相位)(?ω+t 的物理意义是 [ ] (A) 表征了简谐振子t 时刻所在的位置 (B) 表征了简谐振子t 时刻的振动状态 (C) 给出了简谐振子t 时刻加速度的方向 (D) 给出了简谐振子t 时刻所受回复力的方向 4. 如图4-1-9所示,把单摆从平衡位置拉开, 使摆线与竖直方向成 角, 然后 放手任其作微小的摆动.若以放手时刻为开始观察的时刻, 用余弦函数表示这一振 动, 则其振动的初相位为 [ ] (A) (B) 2π 或π2 3 (C) 0 (D) π 5. 两质点在同一方向上作同振幅、同频率的简谐振动.在振动过程中, 每当它们经过振幅一半的地方时, 其运动方向都相反.则这两个振动的相位差为 [ ] (A) π (B) π32 (C) π34 (D) π5 4 6. 一质点作简谐振动, 振动方程为)cos(?ω+=t A x . 则在2 T t =(T 为振动周期) 时, 质点的速度为 [ ] (A) ?ωsin A - (B) ?ωsin A (C) ?ωcos A - (D) ?ωcos A 7. 一物体作简谐振动, 其振动方程为)4πcos(+=t A x ω.则在2 T t = (T 为周期)时, 质点的加速度为 (A) 222ωA - (B) 222ωA (C) 223ωA - (D) 22 3ωA 8. 一质点以周期T 作简谐振动, 则质点由平衡位置正向运动到最大位移一半处的最短时间为 [ ] (A) 6T (B) 8T (C) 12 T (D) T 127 9. 某物体按余弦函数规律作简谐振动, 它的初相位为2π 3, 则该物体振动的初始状态为 [ ] (A) x 0 = 0 , v 0 0 (B) x 0 = 0 , v 0<0 (C) x 0 = 0 , v 0 = 0 (D) x 0 = A , v 0 = 0 θ+ 图4-1-9 图4-1-5

大学物理学(第五版)上册(马文蔚)课后答案及解析.

1-1 分析与解(1) 质点在t 至(t +Δt)时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr|=PP′,而Δr =|r|-|r|表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt→0 时,点P′无限趋近P点,则有|dr|=ds,但却不等于dr.故选(B). (2) 由于|Δr |≠Δs,故,即||≠ . 但由于|dr|=ds,故,即||=.由此可见,应选(C). 1-2 分析与解表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号vr表示,这是速度矢量在位矢方向上的一个分量;表示速度矢量;在自然坐标系中速度大小可用公式计算,在直角坐标系中则可由公式求解.故选(D). 1-3 分析与解表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;在极坐标系中表示径向速率vr(如题1 -2 所述);在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(D). 1-4 分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(B). 1-5 分析与解本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l,则小船的运动方程为,其中绳长l 随时间t 而变化.小船速度,式中表示绳长l 随时间的变化率,其大小即为v0,代入整理后为,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C). 1-6 分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据来确定其运动方向改变的时刻tp ,求出0~tp 和tp~t 内的位移大小Δx1 、Δx2 ,则t 时间内的路程,如图所示,至于t =4.0 s 时质点速度和加速度可用和两式计算. 解(1) 质点在4.0 s内位移的大小 (2) 由得知质点的换向时刻为(t=0不合题意) 则, 所以,质点在4.0 s时间间隔内的路程为 (3) t=4.0 s时, , 1-7 分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t 图上是平行于t 轴的直线,由v-t 图中求出各段的斜率,即可作出a-t 图线.又由速度的定义可知,x-t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x–t 图为t 的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t 的位置x,采用描数据点的方法,可作出x-t 图. 解将曲线分为AB、BC、CD 三个过程,它们对应的加速度值分别为 (匀加速直线运动), (匀速直线运动) (匀减速直线运动) 根据上述结果即可作出质点的a-t 图[图(B)]. 在匀变速直线运动中,有

内蒙古科技大学马文蔚大学物理第六版答案解析

第九章振动,16.4,,5,6,7,81,2,3P习题:39 ~37 轴正方向运动XT,当它由平衡位置向9-4 一质点做简谐运动,周期为? 1/2最大位移处到最大位移处这段路程所需的时间( )从时,T/4、T/6 D、 A、T/12 B、T/8 C),C 分析(可设位 移函数通过相位差和时间差的关系计算。y=A*sin(ωt),其中ω=2π/T; 当 y=A/2,ωt1=π/6;当 y=A,ωt2=π/2;△t=t2-t1=[π/(2ω)]-[π/(6 ω)]=)=T/6/(3ωπ 第十章波动 1,2,3,4,5,6,12,16,25,P习题:93 ~89 两个相邻波节间各质点的振动():在驻波中,10-6

,相位相同A.振幅相同 ,相位相同B.振幅不同振幅相同,相位不同C.相位不同D.振幅不同,答案:波函数叠加检验.(C) 振幅相同,相位相反 第十一章光学 1,2,3,4,5,6,7,8,11,23,26,31,37,38. P182 ~177 11-4 、在迈克尔逊干涉仪的一条光路中,放入一片折射率为n=的透明介质薄膜后,干涉条纹产生了条条纹移动.如果入射光波长为589nm,则透明介质薄膜厚度为( ) A B C D 答案(C)由2(n-1)t=N得出 11-26、某人用迈克尔逊干涉仪测量一光波的波长,当可动反射镜M移动了的过程中,观察到干涉条纹移动了1100条,求该光波的波长 解:d=N /2, =

第十二章气体动理论 习题:P220~222 1,2,3,5,13,14,24. 12-2 1 mol的氦气和1 mol的氧气(视为刚性双原子分子理想气体)。当温度为T时,期内能分别为: A 3/2RT,5/2kT B 3/2kT,5/2kT C 3/2kT,3/2kT D 3/2RT,5/2RT 答案:D (由1mol理想气体的内能定义式得出) 12-13 当氢气和氦气的压强、体积和温度都相等时,它们的质量比和内能比各为多少?(氢气视为刚性双原子分子理想气体) 解: 质量比等于摩尔质量比,为1:2 内能比等于自由度比,为5:3 热力学基础第十三章27.,25,,9,11,12,1573习题:P270~275 1,2,,4,5,6, 气体经历如图所示的循环过程,在这个循环过程中,外界传给气体的13-4 净热量是答案:10^4J B *10^4J C *10^4J D 0J A * 答案B,由循环所围成的面积计算得出。

大学物理化学下册(第五版傅献彩)知识点分析归纳 (1)

第八章电解质溶液

第九章 1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题? 答:可逆电极有三种类型: (1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。 2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法? 答:正、负两端的电势差叫电动势。不同。当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。 3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为0.04~0.12的Cd一Hg齐时,标准电池都有稳定的电动势值?试用Cd一Hg的二元相图说明。标准电池的电动势会随温度而变化吗? 答:在Cd一Hg的二元相图上,Cd的质量分数约为0.04~0.12的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。因为标准电池的电动势在定温下只与Cd一Hg齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。 4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗? 答:用“|”表示不同界面,用“||”表示盐桥。电极电势有正有负是相对于标准氢电极而言的。 不能测到负电势。5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测

大学物理马文蔚版高等教育出版社作业模拟及答案

大学物理马文蔚版高等教育出版社作业模拟及 答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

期末考试模拟试题 一、判断题:(10?1=10分) 1.质点作圆周运动时,加速度方向一定指向圆心。() 2.根据热力学第二定律,不可能把吸收的热量全部用来对外做功() 3.刚体的转动惯量与转轴的位置有关。() 4.刚体所受合外力矩为零,其合外力不一定为零。() 5.静电场中的导体是等势体。() 6.平衡态下分子的平均动能为kT 2 3 () 7.绝热过程中没有热量传递,系统的温度不变。() 8.最概然速率就是分子运动的最大速率。() 9.电场强度为零的点的电势一定为零。() 10.真空中电容器极板上电量不同时,电容值不变。() 二、选择题:(1836=?分) 1.某质点的运动学方程为3536t t x -+=,则该质点作() (A )匀加速直线运动,加速度为正值;(B )匀加速直线运动,加速度为负值; (C )变加速直线运动,加速度为正值;(D )变加速直线运动,加速度为负值。 2.质点作匀速率圆周运动,它的() (A )切向加速度的大小和方向都在变化;(B )法向加速度的大小和方向都在变化; (C )法向加速度的方向变化,大小不变;(D )切向加速度的方向不变,大小变化。

3.两容积不等的容器内分别盛有可视为理想气体的氦气和氮气,若它们的压强和温度相同,则两气体() (A )单位体积内的分子数必相同;(B )单位体积内的质量必相同; (C )单位体积内分子的平均动能必相同;(D )单位体积内气体的内能必相同。 4.摩尔数相同,分子自由度不同的两种理想气体,从同一初态开始等压膨胀到同一末态时,两气体() (A )从外界吸热相同;(B )对外界作功相同; (C )内能增量相同;(D )上述三量均相同。 5.如图所示,在封闭的球面S 内的A 点和B 点分别放置q +和q -电荷,且OA=OB ,P 点为球面上的一点,则() (A )0≠p E ,?=?S d 0S E ; (B )0=p E ,?≠?S d 0S E ; (C )0≠p E ;?≠?S d 0S E ; (D )0=p E ,?=?S d 0S E 。 6.平行板电容器充电后与电源断开,然后将其间充满均匀介质,则电容C 和电压U 的变化情况是() (A )C 减小,U 增大;(B )C 增大,U 减小; (C )C 减小,U 减小;(D )C 增大,U 增大; 三、填空题:(32216=?分) 1.一质点速度矢量为j i v t t 55+=m ·s -1,若0=t 时质点在j r 20=位置,则任意时刻的加速度矢量为,t 时刻的位置矢量为,质点做的是运动

大学物理 马文蔚 版 高等教育出版社 作业模拟及答案

期末考试模拟试题 一、判断题:(10?1=10分) 1. 质点作圆周运动时,加速度方向一定指向圆心。 ( ) 2.根据热力学第二定律,不可能把吸收的热量全部用来对外做功 ( ) 3. 刚体的转动惯量与转轴的位置有关。 ( ) 4. 刚体所受合外力矩为零,其合外力不一定为零。 ( ) 5. 静电场中的导体是等势体 。 ( ) 6. 平衡态下分子的平均动能为kT 2 3 ( ) 7. 绝热过程中没有热量传递,系统的温度不变。 ( ) 8. 最概然速率就是分子运动的最大速率。 ( ) 9. 电场强度为零的点的电势一定为零 。 ( ) 10.真空中电容器极板上电量不同时,电容值不变。 ( ) 二、选择题:(1836=?分) 1. 某质点的运动学方程为3536t t x -+=,则该质点作( ) (A )匀加速直线运动,加速度为正值; (B )匀加速直线运动,加速度为负值; (C )变加速直线运动,加速度为正值; (D )变加速直线运动,加速度为负值。 2. 质点作匀速率圆周运动,它的( ) (A )切向加速度的大小和方向都在变化; (B )法向加速度的大小和方向都在变化; (C )法向加速度的方向变化,大小不变; (D )切向加速度的方向不变,大小变化。 3. 两容积不等的容器内分别盛有可视为理想气体的氦气和氮气,若它们的压强和

温度相同,则两气体( ) (A )单位体积内的分子数必相同; (B )单位体积内的质量必相同; (C )单位体积内分子的平均动能必相同; (D )单位体积内气体的内能必相同。 4. 摩尔数相同,分子自由度不同的两种理想气体,从同一初态开始等压膨胀到同一末态时,两气体( ) (A )从外界吸热相同; (B )对外界作功相同; (C )内能增量相同; (D )上述三量均相同。 5.如图所示,在封闭的球面S 内的A 点和B 点分别放置q +和q -电荷,且OA=OB ,P 点为球面上的一点,则( ) (A )0≠p E ,?=?S d 0S E ; (B )0=p E ,?≠?S d 0S E ; (C )0≠p E ;?≠?S d 0S E ; (D )0=p E ,?=?S d 0S E 。 6. 平行板电容器充电后与电源断开,然后将其间充满均匀介质,则电容C 和电压 U 的变化情况是( ) (A )C 减小,U 增大; (B )C 增大,U 减小; (C )C 减小,U 减小; (D )C 增大,U 增大; 三、填空题:(32216=?分) 1. 一质点速度矢量为j i v t t 55+=m ·s -1,若0=t 时质点在j r 20=位置,则任意时刻的加速度矢量为 ,t 时刻的位置矢量为 ,质点做的是 运动 2. 如图所示,1mol 单原子分子理想气体从初态),(V P A 开始

大学物理 物理学(第五版)上册 马文蔚 课后答案 东南大学剖析

1-1 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故 t s t ΔΔΔΔ≠ r ,即|v |≠v . 但由于|d r |=d s ,故 t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1-2 分析与解 t r d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;t d d r 表示速度矢量;在自 然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式 2 2d d d d ?? ? ??+??? ??=t y t x v 求解.故选(D). 1-3 分析与解 t d d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述); t s d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加 速度a t.因此只有(3) 式表达是正确的.故选(D). 1-4 分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B). 1-5 分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为 2 2h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t l l t x -== v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θ l h l cos /0 220v v v = -= ,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C). 1-6 分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得

大学物理马文蔚版,下册复习题,有答案,有详解

一、简答题 1. 怎样判定一个振动是否做简谐振动?写出简谐振动的运动学方程。 2. 从动力学的角度说明什么是简谐振动,并写出其动力学方程。 3.简谐运动的三要素是什么?各由什么因素决定。 二、选择题 1.一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2 A ,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )。 2. 如图已知两振动曲线x 1 、x 2 ,他们的初相位之差12??-为( ) (A ) 32π (B )3 2π - (C )π (D )π- 3.质点在X 轴上作简谐振动,振幅为A ,0=t 时质点在 A 2 2 处,向平衡位置

运动,则质点振动的初相位为( ) (A)2π; (B)4π ; (C)4π- ; (D)2 π-。 三、填空题 1. 振幅为A 的简谐振动在 位置动能最大,在 位置势能最大, ___________________位置势能与动能相等。 2. 两个同方向同频率的简谐振动,其振动表达式分别为: )21 5c o s (41π+ =t x (SI) ,)215cos(22π+=t x (SI) )2 15cos(63π-=t x (SI) 则x 1,x 2的合振动的振辐为 ,初相为 。则x 1,x 3的合振动的振辐为 ,初相为 。 3.两质点1、2同在X 轴上作简谐振动振幅A 相周期均为T = 12s ;0=t 时刻,质点1在 A 2 2 处,并向平衡位置运动,质点2在A -处,也向平衡位置运动。则两质点振动的相位差为 ;两质点第一次通过平衡位置的时间分别为 和 。 四、计算题 1.如图9-1,质量为1m 的物体与劲度系数为k 的轻质弹簧相连,置于光滑平面上静止,现有质量为2m 的小球以水平速度v 和1m 发生完全非弹性碰撞,试分析碰撞后系统的运动规律,并写出相应的运动方程。 2.某质点作简谐振动,振动曲线如图所示,已知质点在s 1t =时位于a 点, A 2 2x =。(1)在图中标出质点在a 、b 、c 、d 处的振动方向;(2)求该质点的 振动方程。 图9-1

大学物理马文蔚第一章答案

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理第六章课后习题答案(马文蔚第五版)

第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。 6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。因而正确答案为(A )。 6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 020π4,π4== (C )0,0==V E

(D )R εq V d εq E 020π4,π4== 分析与解 达到静电平衡时导体内处处各点电场强度为零。点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。因而正确答案为(A )。 6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。因而正确答案为(E )。 6 -5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍

相关文档
最新文档