基于单片机的温度控制系统 毕业设计论文

基于单片机的温度控制系统 毕业设计论文
基于单片机的温度控制系统 毕业设计论文

基于单片机的温度控制系统

The Design of Temperature Control System

Based on SCM

摘要

本文提出的温度采集控制系统以单片机(AD590)为核心,由控制部分、显示部分和温度测量部分组成。该系统大部分功能通过硬件来实现,电路简单明了,系统稳定性很高。

这套温度控制系统可以方便地实现温度测量、温度显示等功能,并通过与单片机连接的键盘可以实时设定测控温度的下限,还可以连接相应的外围电路,在收到单片机发出的指令后对环境进行检测

本文首先描述系统硬件工作原理,并附以系统结构框图加以说明,着重介绍了本系统所应用的各硬件模块的功能和它的工作过程;其次,详细阐述了程序的各个模块及其实现过程。本系统的主要设计思想是以硬件为基础,软件和硬件相结合,最终实现各个模块的功能。

关键字:单片机;温度采集;硬件模块

ABSTRACT

The design and implementation of temperature control system based on SCM (AD590), it makes up of control part, display part and temperature testing part. Most functions of this system are realized by hardware, the electric circuit is reliable, and the system can achieve higher stability.

The system can measure and display the temperature, set the limit figure of temperature by the keyboard which connects with SCM instantly, and still can link corresponding peripheral equipment to heat the environment up after received the instruction that SCM issued.

Firstly, the working principle of hardware is described in this paper which adds the structural block diagram for explanation. This paper emphatically introduces the functions and working process of each applied module. Secondly, this text expounds the functions of each module of program. The dominant thought of this text is that hardware is regarded as the foundation, software combining with hardware to actualize the functions.

Key Words: SCM; Temperature collection; Hardware module

1 引言

在国民经济各部门,如电力、化工、机械、冶金、农业、医学以及人们的日

常生活中,温度检测是十分重要的。在许多模拟量控制和监视应用中,温度测控通常是基于 -40℃~125℃温度范围内的应用,如环境监测、蔬菜大棚、粮库、

热电偶冷端温度补偿、设备运行的可靠性等应用。实时采集温度信息,及时发现潜在故障,并采取相应的处理措施,对确保设备良好运行具有重要意义。

本文介绍了一个基于单片机的温度控制系统,该系统可以方便地实现温度采集、温度显示等功能。本系统的温度控制部分采用单片机完成。单片机有着体积小、功耗低、功能强、性能价格比高、使用电子元件较少、内部配线少、制造调

试方便等显著优点,将其用于温度检测和控制系统中可大大地提高控制质量和自

动化水平,具有良好的经济效益和推广价值。利用单片机对温度进行测控的技术,日益得到广泛应用。

在众多的温度控制系统中,测温元件常常选用热敏电阻、半导体测温二极管、三极管、集成温度传感器等。相比而言,集成温度传感器具有线性好、稳定度高、互换性强、易处理等突出优点,故在许多场所得到了广泛应用。本系统中单片机作为下位机,完成测温任务,并通过与单片机连接的键盘可以实时设定测控温度

的下限。本系统还可以连接相应的外围加热电路,当环境温度低于设定下限温度时,单片机发出的指令,加热器起动对环境进行加热,当温度回升到下限温度时加热器停止加热。为了便于操作,还设计一个简单的操作面板,它主要由键盘与按钮开关组成,通过操作面板可以进行系统的开停、RESET、设置温度下限告警值等。键盘输入部分采用了键盘专用IC 74C922,简化了软件编程,用起来非常方便。

系统软件主要由初始化程序、主程序、监控显示程序等组成。其中初始化程序是对单片机的接口工作方式,A/D转换方式等进行设置;显示程序包括对显示

模块的初始化、显示方式设定及输出显示;主程序则完成对采集数据进行处理。

该系统应用范围相当广泛,同时采用单片机技术,由于单片机自身功能强大,因而系统设计简单,工作可靠,抗干扰能力强,也可在此基础上加入通信接

口电路,实现与上位机之间的通信。

2.1 功能与设计要求

这套温度采集、控制系统可以方便地实现温度测量、温度显示等功能,并通过与单片机连接的键盘可以随时设定测控温度的下限,还可以连接相应的外围电路,在收到单片机发出的指令后对环境进行监测,当温度回升到下限温度时加热

器停止监测。

1、采集温度并显示温度值。对温度控制器而言,最基本的功能是测温功能

即能时时采集被测环境的温度并通过显示部分显示出来。

2、设定测控温度下限。温度采集一般都具有设定限定温度功能,即预设一

个温度值,一旦温度低于这个温度值,控制器就会发出提示,连接相应的外围电路就可以对环境进行检测。

3、采用专用直流供电电源。与其它的温度控制器相比,本系统的温度采集

器输出模拟电流,易受干扰。因而必须以专用直流电源供电,分别为模拟部分和数字部分提供专用电压。

2.2 方案论证

方案一

采用美国DALLAS 半导体公司继DS1820之后推出的一种该进型智能温度传感器DS18B20作为检测元件,检测范围—55~125℃,最大分辨率可达0. 0625℃。DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点,

本电路由3个模块组成;主控制器,测温电路及显示电路。

主控制电路;

单片机AT89C2051具有低电压供电和小体积等特点。

显示电路;

采用4位共阳LED 数码管,从P1口输出段码,到扫描用P3.0-P3.1口来实现,列驱动用9012三极管。

DS18B20与单片机的接口电路

DS18B20可以采用两种方式供电,一种是采用电源供电方法,如图此时

DS18B20的1脚接地,2脚作为信号线,3脚接电源,另一种是寄生电源供电方式,单片机接口接单线总线,为保证有效的DS18B20时钟周期内提供足够的电源,可用一个MOSFET 管来完成总线的上位。

DS18B20

AT89C2051

主控制器

显示电路

扫描驱动

当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的

上位,上位开启时最大为10uA。采用寄生电源供电方式时VDD和GND端军接地。由于单线制只有一根线,因此发送接口必须是三态的。

方案二

由AD590配以ADC0809。ADC0809是最常用的8位模数转换器,属于逐次逼近型。ADC0809采用单一的+5V供电,片内有带锁存功能的8路模拟开关,可对0—5V,8路模拟信号分时进行转换,完成一次转换的的时间是100US,数字输出信号具有TTL三态锁存器,可以直接与AT89C51相连。

2.2.1方案比较

方案一中使用DS18B20采集温度,结构较复杂,价格也稍显昂贵,适合较大规模的工业农业使用。成本较高故从以上两种方案,很容易看出采用方案二,电

路不仅比较简单,软件设计也比较简单,故采用了方案二

系统组成方框图

2.2.1传感器的选择

测量温度有很多传感器。热电偶灵敏度较低,但能在很宽广的温度范围内使用;热敏电阻的工作温度范围较窄,但灵敏度高,有利于检测微小温差,其输出

特性量非线性,检测时需要有线性化装置;廉价的集成电路(IC)温度传感器性能离散度很大,用于高精度测量时,必须进行校准;测温铂电阻温度系数的离散度很小,精确度高,灵敏度也较好,特别适用于1000度以下的温度测量,但价格昂贵。

集成电路温度传感器利用了半导体PN结电流电压特性和温度的相关性,与

热敏电阻、热电偶相比,最大优点是输出线好,测温精度较高。感温部分、传

感器驱动部分、信号处理部分等电路均集成化并封闭在一个小型管壳内,使用方

便。

AD590是一种集成电路温度传感器,作为电流输出型传感器的特点是,具有

很强的抗外界干扰能力。其输出电流和绝对温度成正比。当两端加上+4V~+30V 之间的电压时,器件呈现高阻抗,输出电流按1uA/1.0K变化。电气上耐用,可承受正向+44V,反向 -20V的电压而不损坏,不必担心管脚接错。由于采用激光

微调来较正IC内的薄膜电阻,而使AD590在298.2K(+25度)时输出稳定的298.2uA电流。基于以上优点,本系统采用AD590作为温度传感器。

2.2.2 控制芯片的选择

本设计选用单片机为控制芯片是因为它有以下优点。第一,可靠性良好。单片机是按照工业控制要求所设计的,其抗工业噪声优于一般的CPU,程序指令及常数数据都烧写在ROM内,其许多信号通道均在同一个芯片内,因此可靠性高;第二,易扩充。单片机具有一般微电脑所必需的器件,如三态双向总线、并

行及串行的输入/输出引脚,可以扩充为各种规模的微电脑系统;第三,控制功

能强。为了满足工业控制的要求,单片机的指令除了输入/输出控制指令、逻辑判断指令外,还有更为丰富的条件分支跳跃指令。

利用单片机的智能性,可方便的实现具有智能的数据采集和处理。在采用单片机为实现形式时,有很多种单片机可以实现数据采集、数据处理功能,通常会用以下几种单片机来实现:

1、采用PIC来实现。美国微芯科技股份有限公司推出的采用RISC(精简指令集)和哈佛总线(Harvard)结构的PIC系列CMOS 8位单片机,其主要特点是数据总线是8位的,而其指令总线则有12位、14位和16位3种。

2、采用AVR来实现。AVR单片机的特点:速度快、片内资源丰富、保密

性好、可重复擦写及在系统编程ISP、工作电压范围宽、功耗低、支持JTAG仿真、与C语言的完美配合。

3、采用AT89S52来实现。ATMEL公司生产的AT89S52单片机采用高性能的静态设计,由先进工艺制造,并带非易失性Flash程序存储器。它是一种高性能、低功耗的8位CMOS微处理芯片。

AT89S52是美国ATMEL公司生产的低功耗,高性能单片机,兼容标准

AT89S52指令系统及引脚。它集Flash程序存储器既可在线编程(ISP)也可用传统方法进行编程及能用8位微处理器于单片机中,ATMEL公司的生产AT89S52可灵活应用于各种控制领域。基于以上优点本系统采用AT89S52作为主控芯片。

3 温度传感器简介

温度的测量控制一般采用各式各样的温度传感器,常用的温度传感器及其测

温范围(℃)为:热电偶(-184~2300),热电阻(-200~850),热敏电阻(-55~300),半导体(-55~150)。根据温度传感器输出方式及接口方式的不同,大

体可以分为模拟温度传感器和数字温度传感器。

3.1 模拟温度传感器

1、输出电压或电流信号的模拟温度传感器

热电偶、热电阻、热敏电阻及半导体温度传感器都是将温度值经过一定的接

口电路转换后输出模拟电压或电流信号,利用这些电压或电流信号即可进行测量

控制。如果想将这种模拟信号转换成微处理器可以处理的信号,需利用模数转换器将其转换为数码,然后由微处理器读取即可,如图3-1所示。

图3-1 采用A/D接口的电路

另一种转换方式是进行V/F变换。V/F变换器实际上是一个振荡频率随控制

电压变化而变化的振荡电路。其特点是有良好的精度、线性度和积分输入,且电路简单。图3-2 为微处理器与V/F变换器及温度传感器的接口电路。其中V/F 变换器采用AD公司的AD654。通过调整,AD654可输出0~500kHz的脉冲串,将输出与单片机的定时器/计数器T1相连进行计数,并用定时器T0进行定时。通过对所计的数进行计算与转换,便可得到传感器当前温度值。

电压输出温度传感器的主要特点是电源电压和电流比较低,在传输线路电压降和电压噪声不是主要影响因素时,其电压输出可直接成为控制系统和数据采集

系统的输入信号。常用的电压输出半导体温度传感器有AD公司的TMP35/36/37、NS公司的LM35/45/50/60等。

在某些特殊场合,需使用电流输出的温度传感器。电流输出温度传感器的主

要特点是输出阻抗高,输出电流不受传输线路电压降和电压噪声的影响,且对电源电压的脉动和漂移具有很强的抑制能力。电流输出温度传感器欲与微处理器接

口时,一般需将电流变成电压,然后再用A/D转换器转换成微处理器可以处理的信号。这样的传感器有AD公司的AD590、TMP17等。

图3-2 采用V/F接口的电路

2、输出跳变信号的模拟温度传感器

在某些系统中,并不需要知道精确的温度值,而只需了解温度是否高于或低于某特定值即可。该信息可用来触发风扇、空调、加热器等控制单元。这种特殊

的模拟温度传感器一般只是输出跳变信号进行控制,通常称之为温度控制器。

将传感器与比较器组合电路进行集成,使系统进一步简化。这种集成的温度

控制器经常被称为温度开关。这种单片器件组合了传感器、比较器、电压基准和必要的电阻等多种器件。当温度超过预设门限时,输出电平发生跳变,控制加温或致冷器件通断。MAXIM公司的MAX6501/6502是热温开关,从厂家45℃到95℃预置了6种温度门限。MAX6503/6504是冷温开关,其温度门限为-15℃和5℃两种。MAX6501/6503为开漏输出,低电平有效。MAX6502/6504为推拉输出,高电平有效。MAX6501的输出经上拉电阻后可以直接驱动微处理器的中断或复位,如图3-3所示。

图3-3 采用温度开关的接口电路

MAX6502的输出经简单驱动后,可以直接控制风扇工作。通过一些简单的

电路配合,还可以将其应用于温度窗口报警。分层次控制等。这样的芯片还有

AD公司的AD22105等。

3.2 数字温度传感器

将模拟温度传感器与数字转换接口电路集成在一起,就成为具有数字输出

能力的数字温度传感器。随着半导体技术的迅猛发展,半导体温度传感器与相应

的转换电路、接口电路以及各种其它功能电路逐渐集成在一起,形成了功能强大、精确、价廉的数字温度传感器。

1、单线输出的数字温度传感器

单线输出的特点是接口电路简单,测出的温度值精确,所以在一般应用中,

这种芯片得到了偏爱。由于只有一根输出线,测量出的温度值必须转换成某种方

式进行输出。常见的输出方式有时间输出、频率输出及数值输出等,然后再由微处理器将温度传感器输出的信号转换成真实温度值,进行进一步的处理与控制。

2、时间输出的温度传感器

AD公司的TMP03/04是常用的时间输出的数字温度传感器。它们输出经过

调制后的矩形波,应用中只需测得其输出方波占空比T1/T2中T1和T2的实际时间宽度,即可计算出被测对象的温度。与微处理器连接时只需将芯片的输出与

微处理器的定时器/计数器相连,就可很容易地测出T1、T2的时间宽度,并计算出相应的温度值。

MAXIM公司的MAX6578也是一种输出时间的温度传感器。它输出的方波

信号周期正比于绝对温度。MAXIM公司的MAX6575 L/H芯片是另一种非常方便实用的时间输出的温度传感器。它的特点是在一根I/O线上最多可以同时接8只芯片,同时测8个点位的温度而不相互干扰。通过对管脚TS0、TS1的不同连接及选择“L”、“H”不同型号,可以设置芯片的不同延时系数。测量温度时,

微处理器启动转换,经正比于绝对温度值的延时t后,MAX6575拉低I/O线。通过测量这个延时时间t,再利用所设置的该芯片的延时系数,可以计算出该芯

片所测的温度值。由于各芯片延时系数不同,其延时时间并不会相互重叠,使用微处理器的定时器/计数器可以分别测出各个芯片的延时时间,再计算出各个芯

片所测出的温度。

3、频率输出的单线温度传感器

MAX6577是输出频率信号的数字温度传感器。它输出占空比为1/2的方波,其频率正比于绝对温度。它的内部结构及使用方式与MAX6578非常相似。通过引脚TS0、TS1选择适当的频率/温度比例常数,再由微处理器的内部计数器测

出频率后,计算出所测温度。其与微处理器的接口方式如图3-4所示。

图3-4 时间输出的温度传感器

与微处理器的接口电路

4、数值输出的单线温度传感器

数值输出的单线温度传感器直接以串行方式输出芯片测出的具体温度数值,

所以其时序非常重要。DALLAS公司的DS1820就是这样一种独特的温度传感器。它只需一个接口引脚即可通信,可用数据线供电,并具备多点测温能力。

其读写时序主要有复位、读时间片和写时间片三种时序操作。芯片本身带有命令集和存储器,微处理器通过发出控制命令,对芯片存储器进行读写,完成温度测量。芯片电源也可由微处理器的一个I/O口提供。微处理器在读写DS1820前先使其复位,检测到其应答信号后,微处理器发ROM操作命令,然后再发控制命令。多点温度测量时,只需并联多只DS1820并放在各测温点上,在使用前对各个芯片进行ROM搜索并将各个芯片的序列号保存起来。以后对每个DS1820寻址时,只要发相应的序列号,然后再对其进行其它操作即可。与DS1820类似的芯片还有DS1822。

5、基于总线协议输出的数字温度传感器

为了提高可靠性,方便使用,人们又设计了许多基于某种总线协议输出的数

字温度传感器。这种温度传感器一般有多根线输出。输出格式和时序严格遵守某种协议,适用于各种场合,尤其是远端测量。常见的协议格式还有SMBus协议。

MAXIM公司的MAX1617~1619系列都是采用SMBus串行接口的远端温度传感器。MAX1619用来监测PC机内CPU的温度。它通过施加电流并测量正

向结压测量外部PN结(分立晶体管、ASIC或CPU内)的结温,并通过SMBus 二线串行接口将结果(8位精度)传给微处理器。

4 温度控制系统的硬件设计

4.1 AT89S51单片机简介

AT89S51单片机是低功耗的,具有4KB在线可编程FLASH存储器的单片机。它与通用AT89C51单片机的指令系统和管脚兼容。

AT89S51具有如下特征:

片内程序存储器含有4KB的Flash存储器,允许在线编程,擦写周期

可达1000次;

片内数据存储器含128字节的RAM;

I/O口具有32根可编程I/O口;

具有两个16位可编程定时器;

中断系统是具有6个中断源,5个中断矢量,2级中断优先级的中断结

够;

串行口是一个全双工的串行通信口;

具有两个数据指针DPTR0 DPTR1;

低功耗节电模式有空闲模式和掉线模式;

包含3级程序锁定位;

AT89S51的电源电压为 4.0—5.5V,AT89S51的电源电压为 2.7—4.0V;

振荡器频率0-33MHZ(AT89S51),0-16MHZ(AT89LS51);

具有片内看门狗定时器;

具有断电标志;

4.1.1 端口功能简介

P0 口:P0 口是一个8 位漏极开路的双向I/O 口。作为输出口,每位能驱动8个TTL 逻辑电平。对P0端口写“1”时,引脚用作高阻抗输入。当访问

外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。在这种模式下,P0 具有内部上拉电阻。在Flash编程时,P0口也用来接收指令字节;在程序校

验时,输出指令字节。(程序校验时,需要外部上拉电阻)

P1 口:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,P1 输出缓冲器能驱动4个TTL 逻辑电平。对P1 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电

阻的原因,将输出电流。此外,P1.0和P1.2分别作定时器/计数器2的外部计数输入(P1.0/T2)和时器/计数器2的触发输入(P1.1/T2EX)。

P2 口:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动4个TTL 逻辑电平。对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电

阻的原因,将输出电流(IIL)。在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX@DPTR)时,P2口送出高八位地址。在这种应用中,P2口使用很强的内部上拉电阻发送“1”。在使用8 位地址(如MOVX @RI)访问外部数据存储器时,P2 口输出P2 锁存器的内容。在Flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。

P3 口:P3 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动4个TTL 逻辑电平。对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电

阻的原因,将输出电流。

除了作为I/O使用外(内部有上拉电阻),还有一些特殊功能,由特殊寄存

器来设置。

RST:复位输入。晶振工作时,RST 脚持续2个机器周期高电平将使单片

机复位。看门狗计时完成后,RST脚输出96个晶振周期的高电平。特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。DISRTO默认状态下,复位高电平有效。

ALE/PROG:地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低

8 位地址的输出脉冲。在Flash编程时,此引脚(PROG)也用作编程输入脉冲。在一般情况下,ALE以晶振六分之一的固定频率输出脉冲,可用来作为外部定

时器或时钟使用。然而,特别强调,在每次访问外部数据存储器时,ALE脉冲

将会跳过。如果需要,通过将地址为8EH的SFR的第0位置“1”,ALE操作将无效。这一位置“1”,ALE 仅在执行MOVX 或MOVC指令时有效。否则,ALE将被微弱拉高。这个ALE 使能标志位(地址为8EH的SFR的第0位)的设置对微控制器处于外部执行模式下无效。

PSEN:外部程序存储器选通信号(PSEN)是外部程序存储器选通信号。当AT89S52从外部程序存储器执行外部代码时,PSEN在每个机器周期被激活两次,而在访问外部数据存储器时,PSEN将不被激活。

EA/VPP:访问外部程序存储器控制信号。为了能从0000H 到FFFFH 的外部程序存储器读取指令,EA必须接GND。为了执行内部程序指令,EA应该接VCC。在Flash编程期间,EA也接收12伏VPP电压。

XTAL1:振荡器反相放大器和内部时钟发生电路的输入端。

XTAL2:振荡器反相放大器的输出端。

元器件的选择

1,AD590的性能特点与工作原理

AD590管脚封装图

AD590的基本电路图

工作原理

AD590的内部电路如电路图 1.1所示。芯片中的R1 R2是采用激光修正的校准电阻,它能使298.2K下的输出电流恰好为298.2uA首先有晶体VT8 VT11产生热力学温度成正比的电压信号。在通过R5 R6把电压信号转换成电流信号。保证良好的温度特性,R5 R6的电阻温度系数应非常小,这里采用激光修正的SICr薄膜电阻其电阻温度系数低至(-30~-50)*10—6/℃。VC10的集电极电流能够跟随VT9和VT11的集电极电流的变化,使总电流达到额定值。R5和R6也需要在25℃的标准温度下校准。

AD590等效于一个高阻抗的恒流源,其输出阻抗>10M欧姆,能大大减少因电源电压波动而产生的测温误差。例如,当电源电压从5V变化到10V时,所引起的电流最大变化量仅为1uA,等价于1℃的测温误差。

AD590的工作电压为+4~+30V,测温范围是测量范围是-55— +150℃,对应

于热力学温度T每变化1K,输出电流就变化1uA。在298.15K(对应于25.15℃)时输出电流恰好等于298.15uA。这表明,其输出电流Io(uA)热力学温度T(K)严格成正比。电流温度系数K1的表达式为

K1=IoT=(3k/qr)ln8

中的k、q分别为波耳兹曼常数和电子电量,R是内部集成化电阻。式中的

ln8表示内部晶体管VT9与VT11的发射结等效面积之比r=S9/S11=8倍,然后再取自然对数值。将k/q=0.0862Mv/K,R=538欧姆代入式中得到

K1=Io/T=1.000uA/K

因此,输出电流的微安数就代表着被测温度的热力学温度值。AD590的电流-温度(I-T)特性曲线如图2-1-3所示。热力学温标(K)与摄氏温标(℃)、华氏温标(℉)的换算关系如图2-1-4所示,有关系式

t(℃)=T(K)-273.15

t(℉)=(9/5)*t(℃)+32 。

2 ADC0809芯片

ADC0809采用逐次逼近式A/D转换原理,可实现8路模拟信号的分时采集,片内有8路模拟选通开关,以及相应的通道地址锁存与译码电路,转换时间为

100us左右。ADC0809内部中多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用一个A/D转换芯片进行转换。地址锁存与译码电路完成对A、B、C 3个地址位进行锁存与译码,其译码输出用于通道选择。8位A/D转换器是逐次逼近式,由控制与时序电路、逐次逼近寄存器、树状开关以及256欧姆电阻阶梯网络组成。输出锁存器用于存放和输出转换得到的数字量。ADC0809芯片为28引脚双列直插式封装。

ADC0809芯片引脚的功能:

IN7-IN0:模拟量输入通道。ADC0809对输入模拟量的要求主要有:信号单

极性,电压范围为0-5V。

A、B、C:地址线,模拟通道的选择信号。A为地位地址,C为高位地址。

ALE:地址锁存允许信号。

START:转换启动信号。START上跳沿时,所有内部寄存器清0;START下跳沿时,开始进行A/D转换;在A/D转换期间,START应保持低电平。

D7-D0:数据输出线。为三态缓冲输出形式,可以与单片机直接相连。D0为最低位,D7为最高位。

OE:输出允许信号。用于控制三态输出锁存器向单片机输出转换得到的数据。OE=0,输出数据线呈高电阻;OE=1输出转换得到的数据。

CLK:外部时钟信号引入端。ADC0809的内部没有时钟电路,所需时钟信号

由外界提供。

EOC:转换结束信号。EOC=0,正在进行转换;EOC=1,转换结束。使用中该状态信号即可以作为查询的状态标志,又可以作为中断请求信号使用。

VCC:+5V电源。

VREF:参考电源。其典型值为+5V。

ADC0809与AT89S51接口

A/D转换器芯片与单片机的接口是数字量输入接口,其原理与并行I/O输入接口相同,需要有三态缓冲功能,即A/D转换器芯片须通过三态门“挂上”数据

总线。ADC0809芯片已具有三态输出功能,因此,ADC0809与AT89S51的接口比较直接。

三,单元电路设计及软件设计

程序设计内容:ADC0809的CLK子那好由单片机的P3.3管脚提供。由于AD590的温度变化范围在-55℃~+150℃之间,经过10K电阻之后采样到的电压变化在

2.182V~4.232之间,不超过5V电压所表示的范围,因此参考电压取电源电压VCC,(实测VCC=4.70V)。由此可计算出经过A/D转换之后的摄氏温度显示的数

据为:

如果(D×2350/128)<2732,则显示的温度为-(2732-(D×2350/128))如果(D×2350/128)≥2732,则显示的温度为+((D×2350/128)-2732)

#include

sbit START = P3^0 ; //地址锁存、转换信号

sbit OE = P3^1 ; //输出允许信号

sbit EOC = P3^2; //转换结束信号

int code shu[]={0xc0,0xf9,0xa4,0xb0,0x99,

0x92,0x82,0xf8,0x80,0x90,0x8e}; //0-9数字码

unsigned int i;

char d;

/*************显示程序*************/

xianshi()

{

char k;

P1=shu[i%10]; //小数

P2=0x01;

for(k=0;k<100;k++);

P1=shu[i/10%10]&0x7f; //个位

P2=0x02;

for(k=0;k<100;k++);

P1=shu[i/100]; //十位

P2=0x04;

for(k=0;k<100;k++);

if(d==1) //判断正负值

{P1=0xbf;

P2=0x08;

for(k=0;k<20;k++);

}

P1=0xff;

}

main()

{int j;

while(1)

{

OE=1; //允许输出

START=1; //寄存器清零

for(j=0;j<20;j++);

START=0; //地址锁存、开始进行A/D转换

while(EOC==0); //判断转换是否完成

{i=P0;

if((i*184)<27320)

{d=1;

i=27320-(i*184); // -(2732-(i*2350/128))

i/=100;

}

else

{d=0;

i=(i*184)-27320; // +((i*2350/128)-2732)

i/=100;

}

}

for(j=0;j<200;j++)

xianshi(); // 显示

}

}

四,总体电路图

五,调试过程及测试结果

我们组仔细的检查了硬件部分,没有错误。我们把焊好的硬件部分通过计算机把编好的程序用单片机传送进去。这样完成了数字温度计的制作,然后用一字螺丝刀对滑动变阻器进行调试,在第一次时候我们没有达到预订的要求温度的变化范围变化太大,为了达到温度的变化范围我们换了小阻值的电阻,由于电流过大把电阻烧了。最后经过几次的努力达到了技术指标的要求温度范围为-23.0—+19.6℃,最终我们完成了数字温度计的全部制作。

六,主要元器件清单

名称规格数量(单位:个)

1

芯片

ADC0809

芯片AT89S51 1

芯片AD590 1

电阻10千欧 2

电阻 750千欧 4 滑动变阻器2千欧 2

晶振 1

开关

电容10MF 1

电容 30P 1

单片机温度控制系统毕业论文

论文设计 设计(论文)题目:基于单片机的温度控制系统 院系:电子信息工程学院 专业班级:电子信息工程11-01 学生姓名:张战锋 指导教师:耿鑫

郑州轻工业学院 二〇一四年十月二十日

基于单片机的温度控制系统 摘要 温度是日常生活中无时不在的物理量,温度的控制在各个领域都有积极的意义。很多行业中都有大量的用电加热设备,如用于热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,采用单片机对它们进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。因此,智能化温度控制技术正被广泛地采用。 本温度设计采用现在流行的AT89S51单片机,配以DS18B20数字温度传感器,该温度传感器可自行设置温度上下限。单片机将检测到的温度信号与输入的温度上、下限进行比较,由此作出判断是否启动继电器以开启设备。 本设计还加入了常用的数码管显示及状态灯显示灯常用电路,使得整个设计更加完整,更加灵活。该设计已应用于花房,可对花房温度进行智能监控。 【关键词】温度箱,AT89S51,单片机,控制,模拟

目录 1 引言 (3) 1.1 温度控制系统设计的背景、发展历史及意义 (3) 1.2 温度控制系统的目的 (4) 1.3 温度控制系统完成的功能 (4) 2 总体设计方案 (4) 3 DS18B20温度传感器简介 (11) 3.1 温度传感器的历史及简介 (11) 3.2 DS18B20的工作原理 (11) 3.2.1 DS18B20工作时序 (11) 3.2.2 ROM操作命令 (14) 3.3 DS18B20的测温原理 (14) 3.3.1 DS18B20的测温原理: (14) 3.3.2 DS18B20的测温流程 (16) 4.1 设计原则 (16) 4.2 引脚连接 (17) 4.2.1 晶振电路 (17) 4.2.2 串口引脚 (17) 5 系统整体设计 (18)

数字温度计的设计

数字温度计的设计 【摘要】 本文将介绍一种基于单片机控制的数字温度计,就是用单片机实现温度测量,传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理。本次采用DS18B20数字温度传感器来实现基于AT89S52单片机的数字温度计的设计用LCD数码管以串口传送数据,实现温度显示,能准确达到以上要求,可以用于温度等非电信号的测量,主要用于对测温比较准确的场所,或科研实验室使用,能独立工作的单片机温度检测、温度控制系统已经广泛应用很多领域。 【关键词】关键词1温度计;关键词2单片机;关键词3数字控制;关键词4DS1620 目录 第一章绪论 (2) 1.1 前言 (3) 1.2 数字温度计设计方案 (3) 1.3 总体设计框图 (3) 第二章硬件电路设计............................ 错误!未定义书签。 2.1 主要芯片介绍 (5) 2.1.1 AT89C51的介绍 (5) 2.1.2 AT89C51各引脚功能介绍 (5) 2.2 温度传感器 (7) 2.2.1 DS1620介绍 (7) 第三章软件设计................................ 错误!未定义书签。

3.1 主程序流程图 (11) 3.4 计算温度子程序流程图 (13) 3.5 显示数据刷新子程序流程图 (13) 第四章 Proteus仿真调试......................... 错误!未定义书签。 4.1 Proteus软件介绍 (15) 4.2 Proteus界面介绍 (16) 4.2.1 原理图编辑窗口 (18) 4.2.2 预览窗口 (23) 4.2.3 模型选择工具栏 (31) 4.2.4 元件列表 (35) 4.2.5 方向工具栏 (37) 4.2.6 仿真工具栏 (38) 4.3 本次设计仿真过程 (39) 4.3.1 创建原理图 (40) 设计总结 (50) 结论 (57) 参考文献 (59) 致谢 (62) 附录 (72)

单片机温度控制系统毕业设计论文.doc

题目基于单片机的温度控制系统 英文题目Temperature control system based on single chip 学生姓名: 学号: 专业: 指导老师: 职称 系别:机械与电子工程系 2012年5月1日

摘要 温度是日常生活中无时不在的物理量,温度的控制在各个领域都有积极的意义。很多行业中都有大量的用电加热设备,如用于热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,采用单片机对它们进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。因此,智能化温度控制技术正被广泛地采用。 本温度设计采用现在流行的AT89S51单片机,配以DS18B20数字温度传感器,该温度传感器可自行设置温度上下限。单片机将检测到的温度信号与输入的温度上、下限进行比较,由此作出判断是否启动继电器以开启设备。 本设计还加入了常用的数码管显示及状态灯显示灯常用电路,使得整个设计更加完整,更加灵活。 关键字:单片机温度控制继电器

ABSTRACT The temperature is constantly in the daily life of physical and temperature controls in various fields have a positive meaning. A lot of businesses have a lot of power heating equipment, such as that used for the heat treatment furnace, for melting metal crucible resistance heaters and the various uses of temperature bins, SCM using their right to control not only easy to control, simple, such as the characteristics of flexibility, but can also significantly increase the temperature was charged with the technical indicators, which can greatly enhance the quality of the products. Therefore, intelligent temperature control technology is being widely adopted. The temperature was designed with the now popular AT89S51 SCM, and with DS18B20 digital temperature sensor, The temperature sensor can set up their own temperature collars. SCM will detect that the temperature of the input signal and temperature, the lower comparisons this judgment whether to activate the relay to open the equipment. The design also includes commonly used digital display and control state lights commonly used circuit, making the whole design more complete, more flexible. Key words:Single chip microcomputer Temperature control SSR

温控器论文

浅析温控器复位不同步对终端产品的影响 来源: 亮群电子发布时间: 2014-04-01 14:08 247 次浏览大小: 16px14px12px 双金属片温控器采用机械式的结构,具有分断灵敏、不易拉弧、不产生电磁干扰而得到广泛的应用。然而由于在制造中的误差而引发温控器复位不同步的现象越来越多,给温控器的终端产品带来了一些不利的影响。本文从双金属片温控器复位不同步的定义、动作过程来说明复位不同步对终端产品的影响,并以实际的案例做分析说明。 本文由我司工程师张海滨发表于《电器附件》2013年第二期,通过对双金属片温控器复位不同步的过程和原理分析来说明其对终端产品的影响。 1定义 在温控器制造行业,通常将双金属片受热后翻转的瞬间与触点开关状态改变瞬间的时间差定义为温控器的同步性。而复位不同步是指双金属片温控器在达到动作温度后,双金属片已经翻转,同时开关触点已经断开,其控制的发热体也开始降温,在随后的过程中,双金属片会再一次翻转,开关触点并再一次闭合时,两个状态点的时间差有明显的滞后性。这个状况则被称做为温控器复位不同步。 2温控器复位不同步原因分析 从温控器基本结构和原理分析,我们发现双金属片由于受热变形翻转后有一个最高的弧高点到下一次再翻转前有一个行程A,开关的触点从断开到闭合的过程也有一个行程B;示意图1和示意图2分别指示出这种变化所产生的行程A、B。如果A=B时,则理论上该温控器为完全同步的温控器。实际生产中,由于各温控器厂家使用零件的误差以及制造工艺的误差,会导致A≠B;多数情况下是A>B,从而就比较容易产生温控器复位不同步的现象。

3影响终端产品的过程分析 温控器一般用于终端产品中做温度的控制,我们将电路简化为图3的电路。 在该电路中,先通电之后,常闭型的温控器触点是闭合的,加热体发热后温度持续上升,温度达到温控器的动作温度后,温控器内部开关触点断开,加热体由于热惯性温度会上升,到一定程度后开始降温。如果此时温控器的两个行程A=B,则电路接通和感温的双金属翻转是同时进行的。

关于温度控制系统论文

前言 随着电子技术的发展、数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能、价格、发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注随着单片机技术的不断发展,控制设备也跟着不断变化,对产品试验环境的要求也越来越严格。鉴于此,环境温度是试验环境中的一项重点,环境温度的高低直接影响产品的电气和机械性能参数,环境温度的准确度对测试温度的方法要求越来越高,而对环境温度的控制更显的重要。温度检测的传统方法是使用诸如热电偶、热电阻、半导体PN结之类的模拟温度传感器。信号经取样、放大后通过模数转换,再交由单片机处理。被测温度信号从温敏元件到单片机,经过众多器件,易受干扰、不易控制且精度不高。为了准确的测试与控制环境温度,因此,本系统采用一种新型的可编程温度传感器DS18B20,它能代替模拟温度传感器和信号处理电路,直接与单片机沟通,完成温度采集和数据处理。DS18B20与AT89S52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

第一章绪论 随着信息时代的到来,智能化已是现代温度控制系统发展的主流方向。特别是近年来,温度控制系统已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景与实际意义。 温度是科学技术中最基本的物理量之一,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等领域内,温度常常是表征对象和过程状态的最重要的参数之一[1]。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行;炼油过程中,原油必须在不同的温度和压力条件下进行分馏才能得到汽油、柴油、煤油等产品。没有合适的温度环境,许多电子设备就不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。因此,各行各业对温度控制的要求都越来越高。可见,温度的测量和控制是非常重要的。 单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制。 由于传感器能将各种物理量、化学量和生物量等信号转变为电信号,使得人们可以利用计算机实现自动测量、信息处理和自动控制,但是它们都不同程度地存在温漂和非线性等影响因素[2]。传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。因此,不仅必须掌握各类传感器的结构、原理及其性能指标,还必须懂得传感器经过适当的接口电路调整才能满足信号的处理、显示和控制的要求,而且只有通过对传感器应用实例的原理和智能传感器实例的分析了解,才能将传感器和信息通信和信息处理结合起来,适应传感器的生产、研制、开发和应用[3]。另一方面,传感器的被测信号来自于各个应用领域,每个领域都为了改革生产力、提高工效和时效,各自都在开发研制适合应用的传感器,于是种类繁多的新型传感器及传感器系统不断涌现。温度传感器是其中重要的一类传感器。其发展速度之快,以及其应用之广,并且还有很大潜力。

温度自动控制系统的设计毕业设计论文

北方民族大学学士学位论文论文题目:温度自动控制系统的设计 北方民族大学教务处制

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

(完整版)数字温度计论文毕业设计论文

数字温度计的设计 摘要 温度是一种最基本的环境参数,人们生活与环境温度息息相关,在工业生产过程中需要实时测量温度,在工业生产中也离不开温度的测量,因此研究温度的测量方法和控制具有重要的意义。 本论文介绍了一种以单片机为主要控制器件,以DS18B20为温度传感器的新型数字温度计。主要包括硬件电路的设计和系统程序的设计。硬件电路主要包括主控制器,测温控制电路和显示电路等,主控制器采用单片机AT89C52,温度传感器采用美国DALLAS半导体公司生产的DS18B20,显示电路采用8

位共阴极LED数码管,ULN2803A为驱动的动态扫描直读显示。测温控制电路由温度传感器和预置温度值比较报警电路组成,当实际测量温度值大于预置温度值时,发出报警信号,即发光二极管亮。系统程序主要包括主程序,测温子程序和显示子程序等。DS18B20新型单总线数字温度传感器是DALLAS 公司生产的单线数字温度传感器, 集温度测量和 A D转换于一体,直接输出数字量,具有接口简单、精度高、抗干扰能力强、工作稳定可靠等特点。 由于采用了改进型智能温度传感器DS18B20作为检测元件,与传统的温度计相比,本数字温度计减少了外部的硬件电路,具有低成本和易使用的特点。DS18B20温度计还可以在高温报警、远距离多点测温控制等方面进行应用开发,具有很好的发展前景。此外,还介绍了系统的调试和性能分析。 关键词:显示电路,单片机,AT89C52,温度传感器,DS18B2 0 ,单总线

The Design of DS18B20 Digit Thermometer ABSTRACT Temperature is a basic parameters of the environment, people's lives and the environment are closely related to temperature. in the course of industrial production immediate need for temperature measurement in industrial production of the of the system program .The , the master controller used Micro Controller Unit AT89C52, the temperature sensor used DS18B20 which the American DALLAS semiconductor company produces, the display circuit used 8 altogether

智能温度控制系统毕业论文

目录 引言 (1) 1 系统的相关介绍 (2) 1.1 系统的目的及意义 (2) 1.2 设计要求 (2) 1.3 系统传感器DS18B20的介绍 (2) 1.3.1 DS18B20的主要特性 (2) 1.3.2 DS18B20的外形和部结构 (3) 2 系统分析设计 (4) 2.1 温度控制系统结构图及总述 (4) 2.2 系统显示界面方案 (4) 2.3 系统输入方案 (5) 2.4系统的功能 (5) 3 相关软件编译知识介绍 (5) 3.1 C语言简介 (5) 3.1.1 C语言的优点 (5) 3.1.2 C语言缺点 (6) 3.2 Keil简介 (6) 3.2.1 系统概述 (6) 3.2.2 Keil C51单片机软件开发系统的整体结构 (7) 4系统流程图设计 (7) 4.1主程序流程图 (7) 4.2 DS18B20控制程序流程图 (8) 4.2.1 DS18B20 复位程序流程图 (9) 4.2.2 DS18B20写数据程序流程图 (9) 4.2.3 DS18B20读数据程序流程图 (10) 4.3 温度读取及转换程序流程图 (12) 4.4 MAX7219驱动程序流程图 (13) 4.4.1 MAX7219写入一个字节数据程序流程图 (13) 4.4.2 MAX7219写入一个字数据程序流程图 (15) 4.5 数码管温度显示程序流程图 (16) 4.6 按键中断服务程序流程图 (17) 5 电路仿真 (19) 5.1 PROTEUS软件介绍 (19) 5.2 温度控制系统PROTEUS仿真 (19) 6总结 (20) 7参考文献 (21) 附录1 源程序代码 (22)

单片机温度控制器设计毕业论文

摘要 随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。本设计论述了一种以STC89C52单片机为主控制单元。该控制系统可以实时存储相关的温度数据。系统设计了相关的硬件电路和相关应用程序。硬件电路主要包括STC89C51单片机最小系统,测温电路、实时时钟电路、LED显示以及通讯模块电路等。系统程序主要包括主程序,读出温度子程序,计算温度子程序、按键处理程序、LCD显示程序以及数据存储程序等。 关键词: STC89C52单片机;DS18B20;显示电路

Abstract Along with the computer measurement and control technology of the rapid development and wide application, based on singlechip temperature gathering and control system development and application greatly improve the production of temperature in life level of control. This design STC89C52 describes a kind of mainly by MCU control unit, for temperature sensor DS18B20 temperature control system. The control system can real-time storage temperature data and record related to the current time. System design related hardware circuit and related applications. STC89C52 microcontroller hardware circuit include temperature detection circuit smallest system, and real-time clock circuit, LCD display circuit, communication module circuit, etc. System programming mainly include main program, read temperature subroutine, the calculation of temperature subroutines, key processing procedures, LCD display procedures and data storage procedures, etc. Keywords :STC89C52 microcontroller;DS18B20;display circuit

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

最新最新毕业论文_基于单片机的数字温度计

基于单片机的数字温度计设计 摘要 随着国民经济的发展,人们需要对各中加热炉、热处理炉、反应炉和锅炉中温度进行监测和控制。采用单片机来对他们控制不仅具有控制方便,简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。 在日常生活及工业生产过程中,经常要用到温度的检测及控制,温度是生产过程和科学实验中普遍而且重要的物理参数之一。在生产过程中,为了高效地进行生产,必须对它的主要参数,如温度、压力、流量等进行有效的控制。温度控制在生产过程中占有相当大的比例。温度测量是温度控制的基础,技术已经比较成熟。传统的测温元件有热电偶和二电阻。而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,这些方法相对比较复杂,需要比较多的外部硬件支持。我们用一种相对比较简单的方式来测量。 我们采用美国DALLAS半导体公司继DS18B20之后推出的一种改进型智能温度传感器DS18B20作为检测元件,温度范围为-55~125 oC,最高分辨率可达0.0625 oC。DS18B20可以直接读出北侧温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。 本文介绍一种基于AT89C51单片机的一种温度测量及报警电路,该电路采用DS18B20作为温度监测元件,测量范围0℃-~+100℃,使用LED模块显示,能设置温度报警上下限。正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器DS18B20的原理,AT89C51单片机功能和应用。该电路设计新颖、功能强大、结构简单。 关键词:温度测量;DS18B20;AT89C51 - I -

智能温度控制系统毕业设计开题报告

毕业设计开题报告 题目名称智能温度控制系统设计 学生姓名郑如顺专业电气信息工程班级10级一、选题的目的意义 温度控制无论是在工业生产过程中,还是在日常生活中都起着非常重要的作用,而当今,我国农村的锅炉取暖等大多数都没有温度监控系统,部分厂矿,企业还一直沿用简单的温度设备和纸质数据记录仪。无法实现温度数据的测量与控制。随着社会经济的高速发展,越来越多的生产部门和生产环节对温度控制精度的可靠性和稳定性等有了更高的要求。传统的温度控制器控制精度普遍不高,不能满足对温度要求较为苛刻的生产环节。 在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能难以提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。 此次的智能温度控制系统的设计基于此而设计,针对一些大型公共场合,为达到对其温度的良好控制,从实用的角度以AT89C51为核心设计一套温度智能控制系统。其控制温度不是一个点,而是一个范围。系统以AT89C51单片机为核心,组成一个集温度的采集、处理、显示、自动控制为一身的闭环控制系统。利用单片机采集环境温度值,以数字量的形式存储和显示,可以独立作为一种设备对温室温度进行有一定精度的控制,经过简单的运算发出各种控制命令,并能动态的显示当前温度值,设定目标控制温度值。同时,也可以作为数据采集装置,为上位机进行复杂运算决策提供数据来源。 该智能温度控制系统功耗低,本系统运行情况良好且经济可靠。能利用最少的资源对不同温度进行高精度的测量,信息性能可靠、操作便利,复杂的工作通过软件编程来完成,可以方便的获取结果,在实际的使用中获得了理想的效果。

基于模糊控制算法的温度控制系统的毕业设计

基于模糊控制算法的温度控制系统的毕业设计 第1章绪论 温度控制,在工业自动化控制中占有非常重要的地位。将模糊控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重滞后现象,同时在提高采样频率的基础上可以很大程度的提高控制效果和控制精度。 1.1 课题背景 1965年,美国著名控制论学者L.A.Zadeh发表了开创性论文,《FUZZY SETS》首次提出了一种完全不同于传统数学与控制理论的模糊集合理论。在短短的30年里,以模糊集理论为基础发展而来的模糊控制策略已经成功为将人的控制经验纳入自动控制策略之中。在现今的模糊控制领域中,经典模糊控制理论已经在很多方面取得了一大批有实际意义的成果(如90年代日本家电模糊控制产品和工业模糊控制系统)。此外经典模糊控制也得到了相应的改善,如模糊集成系统、模糊自适应系统、神经模糊控制等。 现代自动控制越来越朝着智能化发展,在很多自动控制系统中都用到了工控机,小型机、甚至是巨型机处理机等,当然这些处理机有一个很大的特点,那就是很高的运行速度,很大的内存,大量的数据存储器。但随之而来的是巨额的成本。在很多的小型系统中,处理机的成本占系统成本的比例高达20%,而对于这些小型的系统来说,配置一个如此高速的处理机没有任何必要,因为这些小系统追求经济效益,而不是最在乎系统的快速性,所以用成本低廉的单片机控制小型的,而又不是很复杂,不需要大量复杂运算的系统中是非常适合的。 温度控制,在工业自动化控制中占有非常重要的地位,如在钢铁冶炼过程中要对出炉的钢铁进行热处理,才能达到性能指标,塑料的定型过程中也要保持一定的温度[2]。

随着科学技术的迅猛发展,各个领域对自动控制系统控制精度、响应速度、系统稳定性与自适应能力的要求越来越高,被控对象或过程的非线性、时变性、多参数点的强烈耦合、较大的随机扰动、各种不确定性以及现场测试手段不完善等,使难以按数学方法建立被控对象的精确模型的情况[3]。对于这些系统来说采用传统的方法包括基于现代控制理论的方法往往不如一个有实践经验的操作人员的手动控制效果好,而模糊控制理论正是以人的经验为重要组成部分。这就使模糊控制在一般情况下比传统控制方法更有效、更安全。 将模糊控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重的滞后现象,同时在提高采样频率的基础上可以很大程度的提高控制效果和控制精度。 模糊控制是基于模糊数学上发展起来的一门新的控制科学[3]。其运算过程中有很多都要用到矩阵运算,但控制其级别很少的时候可以进行离线计算,很方便的完成矩阵运算。这样一来模糊控制就已经简化了,甚至比一般的PID运算还更简单。运用一般的处理机,如单片机就能完成。 1.2 设计指标 设计一个基于模糊控制算法的温度控制系统具体化技术指标如下。 1. 被控对象可以是电炉或燃烧炉,温度控制在0~100℃,误差为±0.5℃; 2. 恒温控制; 3. LED实时显示系统温度,用键盘输入温度; 4. 采用模糊算法,要求误差小,平稳性好。 1.3 本文的工作 详细分析课题任务,对模糊控制和温度控制的历史和现状进行分析,并对模糊控制和温度控制的原理进行了深入的研究,并将其综合。然后根据课题任务的要求设计出实现控制任务的硬件原理图和软件,并进行访真调试。

温度控制器毕业设计论文资料

单片机课程设计https://www.360docs.net/doc/927447418.html,/forum-94-1.html X X X X 大学 毕业论文(设计)题目温度控制器 指导教师 XXXXXXXX 学生姓名 XXXXX 学生学号 XXXXXXXX 信息工程系电气自动化技术专业1班 2010年3月18日

https://www.360docs.net/doc/927447418.html,/forum-94-1.html XXXX大学专科毕业设计(论文)开题报告 学号; 姓名: 毕业设计(论文)题目: 温度控制器______________________ 1、阅读中外文献资料摘要: [1]廖德荣《自动控制温度的方法》北京航空航天大学出版社 2006.2 [2]李军《检测技术及仪表》中国轻工业出版社 2008.7 第二版 [3]李广弟朱月秀冷祖祁《单片机基础》北京航空航天大学出版社2008.1 第三版 [4]孙亮杨鹏《自动控制原理》北京工业大学出版社 2006.5 第二版 [5]刘守义钟苏《数字电子技术》西安电子科技大学出版社 2003.6 第二版 [6]FA PLAZA 《OMRON感測器技術與溫度控制器》 2009.6 2、立题依据及主要研究内容: 立题依据:温度控制器是对温度进行控制的电开关设备。在当今的社会中, 越来越多的环境需要对温度进行控制。随着温控器应用领域和范围的日益广泛, 电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本 性的变化,如果说微型计算机的出现使现代的科学研究得到了质的飞跃,那么可 编程控制器的出现则是给现代工业控制测控领域带来了一次新的革命。在现代社 会中,温度控制不仅应用在工厂生产方面,其作用也体现到了各个方面。 研究内容:设计一款温度控制器,可用于工业与生活,可以进行温度上限 与下限的设定,熟悉和掌握以单片机为核心的电路设计的基本方法和技术,熟悉 传感器的使用。并继电器控制输出。 3、设计方案及思路: 采用PID模糊控制技术,用先进数码技术通过Pvar,Ivar,Dvar.三方面结 合调整形成一个模糊控制来解决惯性温度误差问题。 大的框架是输入,控制和输出三个部分,输入是指温度传感器,可以是模 拟量的铂电阻、热敏电阻,也可以是数字量的18B20控制芯片常用AT89S52/1, 程序根据实际使用而定,原理就是根据测量温度值与设置值的比较来判定输出量 的开或者关。输出开关量,一般是继电器输出,控制加热或者制冷等设备的开启。

温度自动控制系统的设计毕业设计

论文题目:温度自动控制系统的设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

(毕业设计)基于89C51和DS18B20的数字温度计设计

一、设计要求 数字式温度计要求测温范围为-55~125°C,精度误差在0.1°C,采用AT89C51单片机和DS18B20温度传感器,设定温度报警的最低值和最高值。采 用点阵字符型液晶模块作为数字温度计的显示器,分两行显示,第一行显示DS18B20工作状态,第二行显示实测温度值和状态符号,>H表示实测温度大于 温度报警范围,

图2 数字温度计设计电路原理图 1、主控制器 AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器。该器件采用A TMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 2、显示电路 显示电路采用点阵液晶显示器LCD1602能够同时显示16x02即32个字符,实 行双行显示。 3、温度传感器工作原理 DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智 能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。 DS18b20内部主要有三个数字部件:64位激光ROM、温度传感器、非易失 性温度报警触发器TH和TL。 DS18B20 的性能特点如下: ●独特的单线接口方式仅需要一个端口引脚进行通信; ●多个DS18B20可以并联在唯一的三线上,实现多点组网功能; ●无需外部器件; ●可通过数据线供电,电压范围:3.0~5.5V;

(最新版)基于LabVIEW的温度控制系统毕业设计论文

引言 随着微电子技术、计算机技术、软件技术、网络技术和现代测量技术的迅速发展,一种新型的先进仪器——虚拟仪器成为当前系统研究的热点。虚拟仪器的出现开辟了仪器技术的新纪元,它是多门技术与计算机技术结合的产物,其基本思想逐步代替仪器完成某些功能,如数据的采集、分析、显示和存储等,最终达到取代传统电子仪器的目的。 虚拟仪器通过软件开发平台将计算机硬件资源与仪器硬件有机地融为一体,把计算机强大的数据处理能力和仪器硬件的测量、控制能力结合在一起,通过软件实现对数据的显示、存储及分析处理,并通过交互式图形界面实现系统控制和显示测量数据,并使用框图模块指定各种功能。采用集成电路温度传感器和虚拟仪器方便地构建一个测温系统,且外围电路简单,易于实现,便于系统硬件维护、功能扩展和软件升级。 本设计利用LabVIEW作为语言开发平台,设计了一个温度控制系统,并利用计算机串口与下位机串行通讯,能实现温度的实时测量与控制。

1 绪论 现代计算机技术和信息技术的迅猛发展,冲击着国民经济的各个领域,也引起了测量仪器和测试技术的巨大变革。人们曾为测量仪器从模拟化、数字化到智能化的进步而欣喜,也为自动测试技术的日新月异的发展所鼓舞,当今虚拟仪器技术的出现又使得测量仪器进步入了高科技的殿堂。 与传统的仪器不同,虚拟仪器(virtual instrument)是基于计算机和标准总线技术的模块化系统,通常它是由控制模块、仪器模块和软件组成,在虚拟仪器中软件是至关重要的,仪器的功能都要通过它来实现,因此软件是虚拟仪器的核心,―软件就是仪器‖,从本质上反映了虚拟仪器的特征。 从构成方式上讲,虚拟仪器可分为四大类:GPIB体系结构、PC-DAQ体系结构、VXI体系结构和PXI体系结构。 GPIB体系结构是通过GPIB总线将具有GPIB接口的计算机和仪器集成的测试系统。其优点是用户可以充分利用自己的计算机和仪器资源,且组建方便灵活、操作简单,曾是国际流行的自动测试系统。当今,在VXI为主的体系结构中,有时也采用GPIB 作为辅助,这样可以充分利用本单位仪器资源,或称补VXI仪器模块的不足。 VXI体系结构综合了。pib和vem总线的优点,它集成的系统硬件集成度高、数据传输率快、便携性好,是当今倍受业界关注的体系结构。 PXI体系结构是以PCI总线为基础的体系结构,由于其总线吞吐率高、硬件的价格较低被业内人士认为是符合国情的一种体系结构。 虚拟仪器应用程序的开发环境主要有两种=一种是基于传统的文本语言的软件开发环境,常用的有lab windowscvi、.visual basidc=vc++等:一种是基于图形化语言的软件开发环境,常用的有LabVIEW和hp vee。其中图形化软件开发系统是用工程人员所熟悉的术语和图形化符号代替常规的文本语言编程,界面友好,操作简便,可大大缩短系统开发周期,深受专业人员的青睐。 1.1 课题背景 随着世界经济的发展,工业的迅速扩张,政府和企业家们花在设备上的投入越来越多,这笔巨大的开销,极大地限制了企业的资金,从而制约着企业的发展。而虚拟仪器技术凭借着其开发容易、开发成本低、开发周期短等明显的优点,渐渐地在工业测控领

相关文档
最新文档