声音信号的分析处理

声音信号的分析处理
声音信号的分析处理

《信号与系统》课程设计

语音信号的分析和处理

学院:通信与信息工程学院

班级:2010012030班

学生:李雷(2010012030018)

阚姗蕾(2010012030037)

指导教师:崔琳莉

2011年12月19日

一、摘要

声音是由物体的振动产生,以声波的形式在介质中传播,介质主要可分为固体,液体以及气体。声波振动内耳的听小骨,这些振动被转化为微小的电子脑波,它就是我们觉察到的声音。内耳采用的原理与麦克风捕获声波或扬声器的发音一样,它是移动的机械部分与气压波之间的关系。在国际标准中,人声的频率范围是300Hz~3400Hz,不同的人或乐器产生的声音频率不一致,通过对声音信号的研究能够更好的处理声音信号的处理以及传输。Matlab作为一款主要面对科学计算、可视化以及交互式程序设计的高科技计算软件,能够很好的完成对声音信号的分析和处理,快速的得出声音信号的时域图以及频域图。

关键字:声音频率时域图频域图 Matlab

Sound comes from the shake of objects and spreads in the form of waves in medium consists of solid, liquid and gas. Sound waves shake the ossicles in the ears , transformed into final electronic brain waves and then we hear the sound. The principle the ear works which is the same as the principle the microphone and the speaker works ,is using the relation between mechanical part and barometric wave. In ISO, the frequency domain is from 300Hz to 3400Hz, differs in different people and musical instruments. The study of the sound signal help to better deal with the signals. As a software major in scientific calculation, Matlab is visual and interactive. It is capable of perfectly finishing the analysis and dispose of the sound signal by sketching the time domain figure and frequency domain figure.

Key words: sound , frequency ,time domain figure ,frequency domain figure, Matlab

二、实验要求

通过MATLAB的函数wavread()可以读入一个.wav格式的音频文件,并将该文件保存到指定的数组中。例如下面的语句(更详细的命令介绍可以自己查阅MATLAB的帮助)中,将.wav读入后存放到矩阵y中。

y = wavread('SpecialEnglish.wav');

对于单声道的音频文件,y只有一行,即一个向量;对于双声道的音频文件,y有两行,分别对应了两个声道的向量。我们这里仅对一个声道的音频进行分析和处理即可。注意:.wav文件的采样频率为44.1KHz,采样后的量化精度是16位,不过我们不用关心其量化精度,因为在MATLAB读入后,已将其转换成double型的浮点数表示。

在获得了对应音频文件的数组后,我们可以对其进行一些基本的分析和处理。可以包括:

1、对语音信号进行频域分析,找到语音信号的主要频谱成分所在的带宽,验证

为何电话可以对语音信号采用8KHz的采样速率。

2、分析男声和女声的差别。我们知道男声和女声在频域上是有些差别的,一般

大家都会认为女声有更多高频的成分,验证这种差别。同时,提出一种方法,能够对一段音频信号是男声信号、还是女声信号进行自动的判断。

3、语音与乐器音频的差别。比较语音信号与乐器音频信号的差别,尤其是在频

域上的差别。

4、.wav文件的采样速率为44.1KHz,仍然远远高于我们通常说的语音信号需要

的频谱宽度,例如在电话对语音信号的采样中,我们仅仅使用8KHz的采样速率。对读入的音频数据进行不同速率的降采样,使用wavplay()命令播放降采样后的序列,验证是否会对信号的质量产生影响。降采样的方法很简单,例如命令y = wavread('SpecialEnglish.wav');将语音文件读入后保存在向量y 中,这时对应的采样频率为44.1KHz。使用y1 = y(1:2:length(y))命令,就可以

将原序列y 每隔1个采样后放入序列y1中,这时y1序列对应的采样频率即为22KHz 。

5、自己下载获得一段中文语音信号(可以使用诸如“千千静听”等工具将.mp3

文件转换成.wav 文件),对中文语音与英文语音进行比较。

三、实验内容

3.1、对语音信号进行频域分析,找到语音信号的主要频谱成分所在的带宽,验证为何电话可以对语音信号采用8KHz 的采样速率。

对声音信号)(t x 的频谱图进行分析,使用Matlab 绘制该语音信号的频谱图,观察频谱图,读出声音信号的频率范围,由采样定理可知,如果需要重建声音信号)(t x ,需产生一个周期冲激串,其冲激幅度就是采样得到的样本值,将该冲激串通过一个增益为T ,截止频率为M ω,而小于()M s ωω-的理想低通滤波器,该低通滤波器的输出就是)(t x 。

使用Matlab 中的快速傅里叶变换(fft),绘制出声音文件)(t x 的时域图和频域图,对频域图进行分析,观察可得声音信号)(t x 的主要频率范围为200Hz~1 800Hz ,根据采样定理可得,采样频率应不小于3 600Hz ,故电话使用8kHz 的采样频率能保证声音无失真采样及恢复。

程序代码:

[x,fs,bits]=wavread('相声.wav'); %将原声音信号转化为字符串%

subplot(211);

plot(x); %绘制声音信号的时域图%

title('时域分析图');

subplot(212);

y=fft(x,fs);

df=fs/length(y);

fx=df*(0:length(y)-1); %将横坐标转化为频率值%

plot(fx,abs(y)); %绘制声音信号的频谱图%

axis([0 8000 0 500]);

title('频域分析图');

3.2、分析男声和女声的差别。我们知道男声和女声在频域上是有些差别的,一般大家都会认为女声有更多高频的成分,验证这种差别。同时,提出一种方法,能够对一段音频信号是男声信号、还是女声信号进行自动的判断。

首先,我们选择了普通的男生和女生分别演唱同一首歌,用matlab分别绘出

两段声音信号的频谱图, 从图中可以看出,男生的声音频率主要分布在200Hz~800Hz,女生的声音频率主要分布在300Hz~1800Hz,女生的声音高频成分较多。这是因为,声波是由物体振动产生的机械波,男人声带宽而厚,振动频率低;女人声带窄而薄,振动频率高。而我们平时所感受得男生声音低沉,女生声音尖细,则是由于发声时男女声带的振动频率的高低不同,所以男女音调的高低不同。

使用Matlab对男声女声的声音信号在不同频率的分布比例进行分析,运行程序后可得出,在低频范围(150Hz~1000Hz)内

男声低频比例n1=9.5343e-006 女声低频比例n2= 8.6394e-006

在高频范围(1000Hz~1800Hz)内

男声高频比例m1=7.5965e-006 女声高频比例m2=8.2355e-006

以上的数据计算进一步验证了女声频率较高的假设,我们可以通过这种计算来分辨男声女声。

程序代码:

%画男生声音、女生声音的频谱图

y1=wavread('lu_ll.wav');

Fs=44100; %采样频率%

yt1=fft(y1); %傅里叶变换%

df=Fs/length(yt1);

Fx=df*(0:length(yt1)-1); %将横轴变为频率轴%

figure(1)

subplot(211); %subplot将图像画在一张图上%

plot(y1);title('男声时域波形'); %画语音信号的时域波形%

subplot(212);

plot(Fx,abs(yt1)); axis([0 10000 0 10000]);

title('男声频谱图');xlabel('频率/Hz');

y2= wavread('lu_ksl.wav');

Fs=44100; %采样频率%

yt2=fft(y2); %傅里叶变换%

df=Fs/length(yt2);

Fx=df*(0:length(yt2)-1); %将横轴变为频率轴%

figure(2)

subplot(211); %subplot将图像画在一张图上% plot(y2);title('女声时域波形'); %画语音信号的时域波形% subplot(212);

plot(Fx,abs(yt2)); axis([0 10000 0 5000]);

title('女声频谱图');xlabel('频率/Hz');

%计算男生和女生信号中高频和低频信号所占的比例:

[y1 Fs]=wavread('lu_ll.wav');y1=y1(:,1);

yt1=fft(y1);

[y2 Fs]=wavread('lu_ksl.wav');y2=y2(:,1);

yt2=fft(y2);

sum1=0;

for i=200:1000 %计算男声的低频比例% sum1=sum1+abs(yt1(i));

end

sum=0;

for i=1:length(yt1)

sum=sum+abs(yt1(i));

end

n1=sum1/sum;

sum1%低频信号量

sum%总信号量

n1%比例

sum1=0;

for i=200:1000 %计算女声的低频比例% sum1=sum1+abs(yt2(i));

end

sum=0;

for i=1:length(yt2)

sum=sum+abs(yt2(i));

end

n2=sum1/sum;

sum1

sum

n2

%高频%

sum1=0;

for i=3000:3800 %计算男声的高频比例% sum1=sum1+abs(yt1(i));

end

sum=0;

for i=1:length(yt1)

sum=sum+abs(yt1(i));

end

m1=sum1/sum;

sum1

sum

m1

sum1=0;

for i=3000:3800 %计算女声的高频比例%

sum1=sum1+abs(yt2(i));

end

sum=0;

for i=1:length(yt2)

sum=sum+abs(yt2(i));

end

m2=sum1/sum;

sum1

sum

m2

3.3、语音与乐器音频的差别。比较语音信号与乐器音频信号的差别,尤其是在频域上的差别。

我们找了五种不同的乐器演奏的《梁祝》,试图不仅分析语音信号和乐器音频信号的差别,还要分析不同乐器音频信号的差别。使用狸窝软件进行时间截取和格式转换,分析得到频谱如下:

对于乐器来说,低频段表示音色的丰满度,高频段表示音色的明亮度。从图中可以看出,古筝的泛音较强,这印证了我们听觉的感受,钢琴和笛子的频谱主要集中在500~1 000Hz的低频范围内,音色最为丰满,它们的主要区别在于钢琴泛音较多。

相比于前面所绘制的语音信号的频谱,乐器在某些频率点的小范围内会形成一个冲击,所以声音会比较有冲击力。并且,乐器有基音和泛音,而人声没有泛音,所以会产生乐器声悠扬的效果。

程序代码:

y1=wavread('笛子_0.wav');

y2=wavread('钢琴_0.wav');

y3=wavread('小提琴_0.wav');

y4=wavread('萨克斯_0.wav');

y5=wavread('古筝_0.wav');

Fs=44100; %采样频率%

yt1=fft(y1); %傅里叶变换% yt2=fft(y2);

yt3=fft(y3);

yt4=fft(y4);

yt5=fft(y5);

df1=Fs/length(yt1);

Fx1=df1*(0:length(yt1)-1);

df2=Fs/length(yt2);

Fx2=df2*(0:length(yt2)-1);

df3=Fs/length(yt3);

Fx3=df3*(0:length(yt3)-1);

df4=Fs/length(yt4);

Fx4=df4*(0:length(yt4)-1);

df5=Fs/length(yt5);

Fx5=df5*(0:length(yt5)-1);

figure(1)

plot(Fx1,abs(yt1)); axis([0 8000 0 10000]);

title('笛子频谱图');xlabel('频率/Hz');

figure(2)

plot(Fx2,abs(yt2)); axis([0 8000 0 10000]);

title('钢琴频谱图');xlabel('频率/Hz');

figure(3)

plot(Fx3,abs(yt3)); axis([0 8000 0 10000]);

title('小提琴频谱图');xlabel('频率/Hz');

figure(4)

plot(Fx4,abs(yt4)); axis([0 8000 0 10000]);

title('萨克斯频谱图');xlabel('频率/Hz');

figure(5)

plot(Fx5,abs(yt5)); axis([0 8000 0 10000]);

title('古筝频谱图');xlabel('频率/Hz');

3.4、.wav文件的采样速率为4

4.1KHz,仍然远远高于我们通常说的语音信号需要的频谱宽度,例如在电话对语音信号的采样中,我们仅仅使用8KHz的采样速率。对读入的音频数据进行不同速率的降采样,使用wavplay()命令播放降采样后的序列,验证是否会对信号的质量产生影响。

使用Matlab对声音信号进行降采样,分别把声音信号的采样频率将为原采样频率的1/2,1/5,1/10。当采样频率为原信号采样频率的1/2时,声音与原声

音无明显变化,观察频谱图,亦无明显变化;当采样频率为原信号采样频率的1/5时,声音与原声音相比有差别,观察频谱图,发现频谱图变化很大;当采样频率为原信号采样频率的1/10时,声音与原声音相比已明显失真,信号内容不可辨别,观察频谱图,频谱图已完全不一致,降采样后的信号失真严重。

结论:当采样频率越低时,采样得到的声音信号的音质将降低。

程序如下:

[x,fs,bits]=wavread('星空的旋律.wav'); %将声音信号采样称字符串% fs %声音x(t)信号频率%

x1=x(1:2:length(x)); %对原声音信号进行1/2降采样% x2=x(1:5:length(x)); %对原声音信号进行1/5降采样% x3=x(1:10:length(x)); %对原声音信号进行1/10降采样% subplot(411);

%wavplay(x,fs); %播放原声音信号%

y=fft(x,fs);

df=fs/length(y);

fx=df*(0:length(y)-1);

plot(fx,abs(y)); %绘制原声音信号的频谱分析图% axis([0 8000 0 500]);

title('原声音频谱分析图');

subplot(412);

%wavplay(x1,fs/2); %播放1/2降采样声音信号%

y1=fft(x1,fs/2);

df=fs/length(y1);

fx=df*(0:length(y1)-1);

plot(fx,abs(y1)); %绘制1/2降采样后信号的频谱分析图% axis([0 8000 0 500]);

title('采样频率为原信号的1/2频谱分析图');

subplot(413);

%wavplay(x2,fs/5); %播放1/10降采样声音信号%

y2=fft(x2,fs/5);

df=fs/length(y2);

fx=df*(0:length(y2)-1);

plot(fx,abs(y2)); %绘制1/5降采样后信号的频谱分析图% axis([0 8000 0 500]);

title('采样频率为原信号的1/5频谱分析图');

subplot(414);

%wavplay(x3,fs/10); %播放1/10降采样声音信号%

y3=fft(x3,fs/10);

df=fs/length(y3);

fx=df*(0:length(y3)-1);

plot(fx,abs(y3)); %绘制1/10降采样后信号的频谱分析图% axis([0 8000 0 500]);

title('采样频率为原信号的1/10频谱分析图');

四、实验结论

在实验开始的时候,使用录音软件(Adobe Audition)录制所需的男声女声,同时,在各大音乐网站下载所需的音频文件,但是一般下载到的只有.mp3格式的音频文件,故使用狸窝全能视频转换器将.mp3文件或其他格式的音频文件转化为.wav格式的音频文件。

使用Matlab对下载到的音频文件(相声.wav)进行时域分析和频域分析,并绘制相应的时域图和频域图,时域图可以显示幅值与时间的关系,频域图可以显示幅值与频率的关系。对绘制频域图进行解读,该文件的主要频率范围为200Hz~1800Hz,通过查阅文献得知,人声的主要范围为200Hz~3400Hz,根据采样定理可得,电话使用8kHz的采样频率,能保证人声无失真恢复。

在对男声女声的差异分析中,使用自己录制的男声(lu_ll.wav)和女声(lu_ksl.wav),分别绘制男声女声的频谱图,再分别计算男声女声在低频范围和高频范围内的比重。分析男声的频谱图可以发现,男声的主要频率范围为200Hz~800Hz,女声的主要频率范围为300Hz~1800Hz,对实验数据分析发现,男声的频率要普遍低于女声。

将人声与乐器的声音进行比较发现,乐器在某些频率点的小范围内会形成一个冲击,所以声音会比较有冲击力。并且,乐器有基音和泛音,而人声没有泛音,所以会产生乐器声悠扬的效果。

对原声音信号分别进行1/2,1/5,1/10降采样,发现采样频率越低,采样得到的声音信号的音质越差。

五、参考文献

[1] Alan.V.Oppenheim,Signal and System,电子工业出版社,2009.

[2] 数学实验讲义,电子科技大学出版社,2010.

[3] 刘树棠,《信号与系统》计算机练习——利用MATLAB,西安交通大学出版社,2006.

[4] 谢云荪,数学实验,科学出版社,1999.

[5] 苏金明,MATLAB实用教程,电子工业出版社,2005.

[6] 徐全智,概率论与数理统计,高等教育出版社,2004.

[7] 杨克昌,计算机程序设计典型例题精解,国防科技大学出版社,1999.

(2)

(3)

【结果分析】

男声频谱高于女声频谱。【自主学习内容】

基频改变方法,频谱线性插值的实现,时间长度的归整。

【阅读文献】

[1].陈后金.信号与系统[M].高等教育出版社,2010:245-250。

[2].百度文库。https://www.360docs.net/doc/9214068841.html,/view/9db5d37d5acfa1c7aa00ccfb.html

【发现问题】

只通过改变频率来实现男女声转换是否可以?【问题探究】

若只改变频率,可以在一定程度上实现男女声的转换,但是改变频率后,音频的播放时长也会发生改变,听起来播放速度会有所不同,频率改变越大,速度越大。我们可以通过在中间改变频率,同时对时长进行归整,保证播放速度和原音频基本一致。

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

信号处理实验七音频频谱分析仪设计与实现

哈尔滨工程大学 实验报告 实验名称:离散时间滤波器设计 班级:电子信息工程4班 学号: 姓名: 实验时间:2016年10月31日18:30 成绩:________________________________ 指导教师:栾晓明 实验室名称:数字信号处理实验室哈尔滨工程大学实验室与资产管理处制

实验七音频频谱分析仪设计与实现 一、 实验原理 MATLAB 是一个数据分析和处理功能十分强大的工程实用软件,其数据采集工具箱为实现数据的输入和输出提供了十分方便的函数命令。本实验要求基于声卡和MTLAB 实现音频信号频谱分析仪的设计原理与实现,功能包括: (1)音频信号输入,从声卡输入、从WAV 文件输入、从标准信号发生器输入; (2)信号波形分析,包括幅值、频率、周期、相位的估计、以及统计量峰值、均值、均方值和方差的计算。 (3)信号频谱分析,频率、周期的统计,同行显示幅值谱、相位谱、实频谱、虚频谱和功率谱的曲线。 1、频率(周期)检测 对周期信号来说,可以用时域波形分析来确定信号的周期,也就是计算相邻的两个信号波峰的时间差、或过零点的时间差。这里采用过零点(ti)的时间差T(周期)。频率即为f = 1/T ,由于能够求得多个T 值(ti 有多个),故采用它们的平均值作为周期的估计值。 2、幅值检测 在一个周期内,求出信号最大值ymax 与最小值ymin 的差的一半,即A = (ymax - ymin)/2,同样,也会求出多个A 值,但第1个A 值对应的ymax 和ymin 不是在一个周期内搜索得到的,故以除第1个以外的A 值的平均作为幅值的估计值。 3、相位检测 采用过零法,即通过判断与同频零相位信号过零点时刻,计算其时间差,然后换成相应的相位差。φ=2π(1-ti/T),{x}表示x 的小数部分,同样,以φ的平均值作为相位的估计值。 频率、幅值和相位估计的流程如图1所示。 4、数字信号统计量估计 (1) 峰值P 的估计 在样本数据x 中找出最大值与最小值,其差值为双峰值,双峰值的一半即为峰值。 P=0.5[max(yi)-min(yi)] (2)均值估计 i N i y N y E ∑== 1 )( 式中,N 为样本容量,下同。 (3) 均方值估计 () 20 2 1 ∑== N i i y N y E (4) 方差估计 ∑=-=N i i Y E y N y D 0 2))((1)(

声音信号的获取与处理

实验一声音信号的获取与处理 声音媒体是较早引入计算机系统的多媒体信息之一,从早期的利用PC机内置喇叭发声,发展到利用声卡在网上实现可视电话,声音一直是多媒体计算机中重要的媒体信息。在软件或多媒体作品中使用数字化声音是多媒体应用最基本、最常用的手段。通常所讲的数字化声音是数字化语音、声响和音乐的总称。在多媒体作品中可以通过声音直接表达信息、制造某种效果和气氛、演奏音乐等。逼真的数字声音和悦耳的音乐,拉近了计算机与人的距离,使计算机不仅能播放声音,而且能“听懂”人的声音是实现人机自然交流的重要方面之一。 采集(录音)、编辑、播放声音文件是声卡的基本功能,利用声卡及控制软件可实现对多种音源的采集工作。在本实验中,我们将利用声卡及几种声音处理软件,实现对声音信号的采集、编辑和处理。 实验所需软件: Windows录音机(Windows98内含) Creative WaveStudio(Creative Sound Blaster系列声卡自带) Syntrillium Cool Edit 2000(下载网址:https://www.360docs.net/doc/9214068841.html,) 进行实验的基本配置: Intel Pentium 120 CPU或同级100%的兼容处理器 大于16MB的内存 8位以上的DirectX兼容声卡 1.1 实验目的和要求 本实验通过麦克风录制一段语音信号作为解说词并保存,通过线性输入录制一段音乐信号作为背景音乐并保存。为录制的解说词配背景音乐并作相应处理,制作出一段完整的带背景音乐的解说词。 1.2 预备知识 1.数字音频和模拟音频 模拟音频和数字音频在声音的录制和播放方面有很大不同。模拟声音的录制是将代表声音波形的电信号转换到适当的媒体上,如磁带或唱片。播放时将纪录在媒体上的信号还原为波形。模拟音频技术应用广泛,使用方便。但模拟的声音信号在多次重复转录后,会使模拟信号衰弱,造成失真。 数字音频就是将模拟的(连续的)声音波形数字化(离散化),以便利用数字计算机进行处理,主要包括采样和量化两个方面。 2.数字音频的质量 数字音频的质量取决于采样频率和量化位数这两个重要参数。采样频率是对声音波形每秒钟进行采样的次数。人耳听觉的频率上限在2OkHz左右,根据采样理论,为了保证声音

matlab频谱分析仪

频谱分析仪 摘要频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,是一种多用途的电子测量仪器。随着软硬件技术的发展,仪器的智能化与虚拟化已成为未来实验室及研究机构的发展方向。虚拟仪器技术的优势在于可由用户定义自己的专用仪器系统,且功能灵活,很容易构建,所以应用面极为广泛。本文介绍了一种使用GUI工具箱用matlab实现的简易虚拟频谱分析仪的设计方法。 关键词matlab,频谱分析仪,时域分析,频域分析

目录 1概述 (3) 2技术路线 (4) 3实现方法 (5) 3.1搭建GUI界面 (5) 3.2信号输入 (6) 3.2.1选择信号输入 (6) 3.2.2声卡输入 (7) 3.2.3读取wav文件 (7) 3.2.4信号发生器输入 (7) 3.3时域分析 (8) 3.4频域分析 (9) 3.5仿真 (10) 3.5.1声卡输入 (10) 3.5.2读取wav文件 (10) 3.5.3信号发生器 (11) 4存在的问题 (15) 5致谢...................................................................................................... 错误!未定义书签。参考文献 (15)

1概述 MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件。可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。图形用户界面(Graphical User Interface,简称GUI,又称图形用户接口)是指采用图形方式显示的计算机操作用户界面。与早期计算机使用的命令行界面相比,图形界面对于用户来说在视觉上更易于接受。MATLAB自带了强大的GUl工具[1]。在本文中,将利用MATLAB的GUI工具,设计出数字频谱分析仪。 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫兹以下的甚低频到亚毫米波段的全部无线电频段的电信号[2]。目前已经有许多较成熟的频谱分析软件,如SpectraLAB、RSAVu、dBFA等[3]。本文将给出的则是通过MATLAB软件实现的基于FFT的数字频谱分析仪。 FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步[4]。 通过此次设计,能进一步掌握MATLAB软件开发过程的基本理论、基本知识和基本技能,熟悉基于MATLAB平台的若干信号处理系统开发及调试方法,且成本低,易于实现,容易修改,并可以进行仿真。该设计的进行可以为我们以后的学习工作奠定一定的基础。

城市轨道交通信号与通信系统基础知识

城市轨道交通信号与通信系统基础知识 填空题 城市轨道交通信号系统通常包括两大部分,分别为联锁装置和列车自动运行控制系统。 列车自动运行控制系统ATC包括ATO(列车自动驾驶)、ATP(列车自动超速防护)、ATS(列车自动监控系统)。 信号机是由机柱、机构、托架、梯子、基础组成。(此一般指高柱信号机,若矮型信号机则无梯子。) 机构是由透镜组(聚焦的作用)、灯座(安放灯泡)、灯泡(光源)、机箱(安装诸零件)、遮檐(避免其它光线射入)、背板(增大色灯信号与周围背景的亮度)等组成。 透镜式信号机是指用信号的颜色和数目来组成的设备,并且采用光学材料的透镜组。 通过色灯的显示,提供列车运营的条件,拥有一系列显示的设备称为信号机。 信号机按高矮可分为高柱信号机与矮型信号机。 信号机按作用的不同可分为:防护信号机、阻挡信号机、出段信号机、入段信号机、调车信号机。 道岔区段设置的信号机称为防护信号机。 10、控制列车的进入与速度的设备称为信号。传送各种信息(图像、信息等)称为通信。 11、继电器是由电磁系统和接点系统组成。电磁系统是由线圈和铁芯组成,即输入系统。接点系统是由前接点和后接点组成,即输出系统。 12、转辙机的功能有:转换道岔、锁闭道岔、给出表示。 13、转辙机按用电性质,可分为直流电动转辙机和三相交流电动转辙机。 14、转辙机按道岔锁闭位置,可分为内锁闭和外锁闭。 15、转辙机按动力,可分为电动和液压。 16、50Hz微电子相敏轨道电路应用于车辆段内,其作用是接受来自轨道上列车占用的情况。 17、音频数字编码无绝缘轨道电路应用于正线上和试车线上,其作用是接受和发送各种信息。

语音信号处理实验一采集和预处理

实验一语音信号的采集及预处理 一、实验目的 在理论学习的基础上,进一步地理解和掌握语音信号预处理及短时加窗的意义及基于matlab的实现方法。 二、实验原理 1.语音信号的录音、读入、放音等:练习matlab中几个音频处理函数,利用函数wavread 对语音信号进行采样,记住采样频率和采样点数,给出以下语音的波形图(2.wav)。利用wavplay或soundview放音。也可以利用wavrecord自己录制一段语音,并进行以上操作(需要话筒)。 2.语音信号的分帧:对语音信号进行分帧,可以利用voicebox工具箱中的函数enframe。 voicebox工具箱是基于GNU协议的自由软件,其中包含了很多语音信号相关的函数。3.语音信号的加窗:本步要求利用window函数设计窗口长度为256(N=256)的矩形窗(rectwin)、汉明窗(hamming)及汉宁窗(hann)),利用wvtool函数观察其时域波形图及频谱特性,比较得出结论。观察整个信号加矩形窗及汉明窗后的波形,利用subplot与reshape函数将分帧后波形、加矩形窗波形及加汉明窗波形画在一张图上比较。取出其中一帧,利用subplot与reshape函数将一帧语音的波形、加矩形窗波形及加汉明窗波形画在一张图上比较将得出结论。 4.预加重:即语音信号通过一个一阶高通滤波器1 9375 1- -z。 .0 三、实验步骤、实验程序、图形及结论 1.语音信号的录音、读入、放音等 程序: [x,fs,nbit]=wavread('D:\2.wav'); %fs=10000,nbit=16 y=soundview('D:\2.wav') 2.语音信号的分帧 程序: [x,fs,nbit]=wavread('D:\2.wav'); len=256; inc=128; y=enframe(x,len,inc); figure; subplot(2,1,1),plot(x) subplot(2,1,2),plot(y)

学习“声音素材的获取与处理”心得体会

学习“声音素材的获取与处理”心得体会 东风中学祁聪2014年11月6、13、20、27日,我学习了“声音素材的获取与处理”的课程,通过学习我的到了一些心得体会。 首先,学习了声音素材的的获取: 一、声音素材主要包括背景音乐、解说词、郎诵、效果声及评语分析等等。 二、多媒体课件中的声音主要包括人声、音乐和音响效果三大类。 三、恰当的使用音乐和音响效果的作用 四、设计声音素材时的注意事项 五、数字声音、声音文件的采集和制作可以有以下7种方式、音频素材的获取方法、利用属性查找音频素材资源地址方法、利用属性查找音频素材资源地址方法、利用话筒录制声音的步骤、录音音量列表名词解释 通过这些学习我知道了声音的获取、录制、格式、编辑等方法。 其次、学习了MP3、WAV格式的区别。 1——MP3(MPEG AUDIO LAYER 3)是一种具有高压缩率的音响信号文件。虽然它音乐信号的压缩比例较高,但依然可以与CD/MD 的音质媲美。MP3高达10比1的压缩比例。使一张CD-R/RW上可以容纳10张普通CD的音乐。达到可以长时间播放音乐。您可以从互联网或其它渠道获取MP3格式的音乐。 2——WMA(WINDOW MEDIA AUDIO)是微软公司所开发的。引

导示来音乐的声音压缩技术。其音质可以与MP3媲美,有较高的压缩。有部分歌曲制成WMA格式音乐的大小可以达到MP3的三分之一!只要通过WINDOW MEDIA PLAYER 7.0以上的版本,就能将您喜爱的音乐编辑成WMA档案。 3——WAV(Waveform)格式是微软公司开发的一种声音文件格式,也叫波形声音文件,是最早的数字音频格式,被Windows平台及其应用程序广泛支持。WAV格式支持许多压缩算法,支持多种音频位数、采样频率和声道,采用44.1kHz的采样频率,16位量化位数,因此WAV的音质与CD相差无几,但WAV格式对存储空间需求太大不便于交流和传播。 总之,学习了这个课程,我学会了很多的东西,特别是在计算机信息处理得到了很大的提升。对声音的处理也学到了很多的东西。

Adobe-Audition-系列教程(二):频谱分析仪

Adobe Audition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真!? 1. 频谱显示模式? Adobe Audition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spectral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。 图4

声音的获取与处理

声音的获取与处理(初中信息技术八年级)【教学设计学科名称】 声音的获取与处理是甘肃教育、甘肃声像出版社出版的初中信息技术八年级教材全一册模块一《多媒体素材的获取与处理》第三节教学内容。0 【学情分析】 授课对象是八年级学生。八年级学生经过前两节内容的学习,已基本具备多渠道获取信息的能力,对电脑的操作使用,文字信息、数据信息、多媒体信息均具备了一定的处理能力。而本节课的内容《声音的获取与处理》对学生来说应该是新奇、好玩的,且“学会了是有用的”。从内容上比较容易使学生主动注意,激发他们的求学欲。 【教材内容分析】 本节内容是甘肃教育、甘肃声像出版社出版的初中信息技术八年级教材全一册模块一《多媒体素材的获取与处理》第三节教学内容。本节主要让学生学会使用“录音机”录音,学会使用“豪杰超级解霸”抓取cd唱片中的声音,掌握使用“录音机”处理声音效果的方法。要求学生通过本节课的学习能了解声音文件的获取途径与方法,能正确选择适合的声音文件格式,并初步掌握声音文件的播放、转换和编辑。 【教学目标】

知识与技能:学会使用“录音机”录音,学会使用“豪杰超级解霸”抓取cd唱片中的声音,掌握使用“录音机”处理声音效果的方法。 过程与方法:采用创设情景、任务驱动的教学法,将知识技能融合于生活任务中,创设能激发学生兴趣的任务情境。采用简单合适的分组方法,在任务操作过程中融入合作交流的因子,倡导合作探究学习。 情感态度与价值观:培养学生根据实际需要主动运用多媒体处理工具加工和表达信息的能力关,并关注声音文件的版权问题,尊重知识产权。 【教学重难点分析】 教学重点:“录音机”录音方法,“豪杰超级解霸”抓取cd唱片中的声音 教学难点:使用“录音机”处理声音效果方法的掌握 【教学课时】 2课时 【教学过程】

Adobe-Audition-系列教程(二):频谱分析仪

AdobeAudition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真! 1. 频谱显示模式 AdobeAudition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spe ctral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。

计算机网络通信基础知识试题

计算机网络通信基础知识试题 4. 3.5英寸的软盘,写保护窗口上有一个滑块,将滑块推向一侧,使其写保护窗口暴露出来,此时_____。( B ) A. 只能写盘,不能读盘 B. 只能读盘,不能写盘 C. 既可写盘,又可读盘 D. 不能写盘,也不能读盘 5. 3.5英寸盘的右下角有一塑料滑片,当移动它盖住缺口时_____。( B ) A. 不能读出原有信息,不能写入新的信息 B. 既能读出原有信息,也能写入新的信息 C. 不能读出原有信息,可以写入新的信息 D. 可以读出原有信息,不能写入新的信息 9. 微机系统的开机顺序是_____。( D ) A. 先开主机再开外设 B. 先开显示器再开打印机 C. 先开主机再打开显示器 D. 先开外部设备再开主机 13. 在微机中外存储器通常使用软盘作为存储介质,软磁盘中存储的信息,在断电后_____。( A ) A. 不会丢失 B. 完全丢失 C. 少量丢失 D. 大部分丢失 19. 硬盘连同驱动器是一种_____。( B ) A. 内存储器 B. 外存储器 C. 只读存储器 D. 半导体存储器 20. 在内存中,每个基本单位都被赋予一个唯一的序号,这个序号称之为_____。( C ) A. 字节 B. 编号 C. 地址 D. 容量 21. 在下列存储器中,访问速度最快的是_____。( C ) A. 硬盘存储器 B. 软盘存储器 C. 半导体RAM(内存储器) D. 磁带存储器 27. 在微机中的“DOS”,从软件归类来看,应属于_____。( C ) A. 应用软件 B. 工具软件 C. 系统软件 D. 编辑系统 28. 反映计算机存储容量的基本单位是_____。( B ) A. 二进制位 B. 字节 C. 字 D. 双字 31. 当前,在计算机应用方面已进入以什么为特征的时代_____。( D ) A. 并行处理技术 B. 分布式系统 C. 微型计算机 D. 计算机网络 35. 操作系统是。( C ) A. 软件与硬件的接口 B. 主机与外设的接口 C. 计算机与用户的接口 D. 高级语言与机器语言的接口 5.在资源管理器窗口中,被选中的文件或文件夹会____B___。 A.加框显示B.反像显示 C.加亮显示D.闪烁显示 11.当前个人计算机的繁体汉字系统多数采用___C______所收集的汉字为准进行编码。A.GB码B.五笔字型码

第三讲 声音的采集与处理

第三讲声音的采集与处理 教学目标: 1.了解常见声音文件的格式。 2.掌握制作声音文件的一般流程。 3.会用Sound Forge等录音软件录制声音。 4.掌握用Sound Forge编辑声音的基本方法,能熟练地对声音文件进行剪辑与合成。 5.掌握熔炼五音,用Sound Forge对声音进行特殊效果处理的方法。 重点: 录音及对声音进行基本编辑的方法。 难点:声音的剪辑、合成及特殊效果处理方法。 一、常用声音文件格式 常用的声音文件格式有:WAV格式、MIDI格式、MP3格式、CDA格式。 WAV格式:WAV格式是多媒体教学软件中常用的声音文件格式,它的兼容性非常好,但文件较大。WAV格式的声音属性,如采样频率、采样位数、声道数直接影响到WAV格式文件的大小。 MIDI格式:是电子乐器声音文件格式, MIDI文件本身只是一些数字信号,占用磁盘空间较小,常作为多媒体教学软件的背景音乐文件。 MP3格式:是一种经过压缩的文件格式,播放时需要专门的MP3播放器。占用磁盘空间较小。 CDA格式:CD唱片中的音乐文件常用CDA格式保存,一般为44kHz,16bits立体声音频质量。 二、声音文件的制作流程 我们在制作多媒体教学软件时,需要各种各样的声音文件,对声音的制作一般分为两个基本阶段:声音的获取阶段,声音的加工处理阶段。声音的获 取有三种方法来源:剥离视频中的声音,录音,使用已有的声音文件。 声音的处理流程是:首先打开声音文件,然后对声音进行基本剪辑,进一

第一节走进Sound Forge 三、走进Sound Forge 我们可以把Sound Forge视为熔炼声音的熔炉,它能够对音频文件(.wav 文件)、视频文件(.avi文件)中的声音进行各种处理,打造出我们需要 的声音效果。在制作多媒体教学软件时,你想对获得的原始声音素材进行灵 活的处理吗?那么走进Sound Forge,让我们来领略它神气强大的功能吧! 好了,下面就让大家轻松亲身体验一下,为一多媒体教学软件制作声音。 首选来欣赏:我为一年级小学语文课文《一次比一次有进步》教学软件制作的声音文件。 下面就让我们用Sound Forge7.0一步步试着为课文录音、配音吧!要完成上面教学软件中的声音,要经过如下步骤: (一)录制声音 1.建立新的声音文件 选择“File”菜单下的“New”命令,新建一声音文件。在弹出的对话框中,设置新建声音文件的格式,即采样位数,声道数(立体声/单声道),采样频率,然后单击“OK”。 2.开始录音 2.1启动录音功能: 你可以用三种方法启动录音功能:按快捷键Ctrl+R; 单击工具栏上的录音按钮——红色圆点键; 选择菜单“Special”\“Transport”\下的“Record(录音)”命令; 2.2设置录音模式: 当你按下录音键后,会弹出一个录音设置对话框。你可以设置:录音模式(Mode),录音起始(start)、停止(End)时间位置。录音时的采 样率(samplerate)、采样位数(sample size)、立体声/单声道(stereo/mono) 的选择。 2.3开始录音:设置完毕后,单击录音设置对话框中的红色录音按钮,即 可用麦克风开始录音。 4.停止录音:按“End”停止按钮即可结束录音。 5.保存声音文件:选择菜单“File”下的“Save as”命令,保存文件。 这样一个自己录制的声音文件已经录制好了。(听听我录制的声音吧) 你想知道吗?(补充材料) (一).声音文件的三个基本属性

频谱分析

标题:基于MATLAB的声音信号频谱分析仪设计 2009-05-17 13:49:14 基于MATLAB的声音信号频谱分析仪设计 1.概述 随着软硬件技术的发展,仪器的智能化与虚拟化已成为未来实验室及研究机构的发展方向[1]。虚拟仪器技术的优势在于可由用户定义自己的专用仪器系统,且功能灵活,很容易构建,所以应用面极为广泛。基于计算机软硬件平台的虚拟仪器可代替传统的测量仪器,如示波器、逻辑分析仪、信号发生器、频谱分析仪等[2]。从发展史看,电子测量仪器经历了由模拟仪器、智能仪器到虚拟仪器,由于计算机性能的飞速发展,已把传统仪器远远抛到后面,并给虚拟仪器生产厂家不断带来连锅端的技术更新速率。目前已经有许多较成熟的频谱分析软件,如S pectraLAB、RSAVu、dBFA等。 声卡是多媒体计算机最基本的配置硬件之一,价格便宜,使用方便。MATLAB是一个数据分析和处理功能十分强大的工程实用软件,他的数据采集工具箱为实现数据的输入和输出提供了十分方便的函数和命令[3]。本文将给出基于声卡与MATLAB的声音信号频谱分析仪的设计原理与实现方法,功能包括: (1) 音频信号信号输入,从声卡输入、从WAV文件输入、从标准信号发生器输入; (2) 信号波形分析,包括幅值、频率、周期、相位的估计,以及统计量峰值、均值、均方值和方差的计算; (3) 信号频谱分析,频率、周期的估计,图形显示幅值谱、相位谱、实频谱、虚频谱和功率谱的曲线。 2.设计原理2.1波形分析原理2.1.1 信号频率、幅值和相位估计 (1)频率(周期)检测 对周期信号来说,可以用时域波形分析来确定信号的周期,也就是计算相邻的两个信号波峰的时间差、或过零点的时间差。这里采用过零点(ti)的时间差T(周期)。频率即为f = 1/T,由于能够求得多个T值(ti有多个),故采用它们的平均值作为周期的估计值。 (2)幅值检测 在一个周期内,求出信号最大值y max与最小值y min的差的一半,即A = (y max- y min)/2,同样,也会求出多个A值,但第1个A值对应的y max和y min不是在一个周期内搜索得到的,故以除第1个以外的A值的平均作为幅值的估计值。 (3)相位检测 采用过零法,即通过判断与同频零相位信号过零点时刻,计算其时间差,然后换成相应的相位差。φ=2π(1-t i/T),{x}表示x的小数部分,同样,以φ的平均值作为相位的估计值。 频率、幅值和相位估计的流程如图1所示。

第二章 语音信号处理基础知识

第二章语音信号处理基础知识 1、语音信号处理? 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。 2、语音信号处理的目的? 1)如何有效地,精确地表示、存储、传递语音信号及其特征信息;2)如何用机器来模仿人类,通过处理某种运算以达到某种用途的要求,例如人工合成出语音,辨识出说话人、识别出说话内容等。 因此,在研究各种语音信号处理技术之前,需要了解语音信号的基本特性,同时,要根据语音的产生过程建立实用及便于分析的语音信号模型。 本章主要包括三方面内容:语音的产生过程、语音信号的特性分析以及语音信号生成的数学模型。 第一部分内容语音的产生过程,我们要弄清两个问题:1)什么是语音?2)语音的产生过程? 3、什么是语音? 语音是带有语言的声音。人们讲话时发出的话语叫语音,它是一种声音,由人的发音器官发出且具有一定的语法和意义。语音是声音和语言的组合体,所以对于语音的研究包括:1)语音中各个音的排列由一些规则控制,对这些规则及其含义的研究成为语言学;2)对语音中各个音的物理特征和分类的研究称为语音学。 4、语音的产生 语音的产生依赖于人类的发声器官。人的发音器官包括:肺、气管、喉、咽、鼻、口等。 ◆喉以上的部分称为声道,其形状随发出声音的不同而变化; ◆喉的部分称为声门。 ◆喉部的声带是对发音影响很大的器官。声带振动产生声音。 ◆声带开启和闭合使气流形成一系列脉冲。

每开启和闭合一次的时间即振动周期称为基音周期,其倒数为基音频率,简称基频。基频决定了声音频率的高低,频率快则音调高,频率慢则音调低。 基音的范围约为70 -- 350Hz,与说话人的性别、年龄等情况有关。 人的说话过程可以分为五个阶段:(1)想说阶段(2)说出阶段(3)传送阶段(4)理解阶段(5)接收阶段。 人的说话的过程: 1)想说阶段:人的说话首先是客观事实在大脑中的反映,经大脑的决策产生了说话的动机; 接着说话神经中枢选择适当的单词、短语以及按照语法规则的组合,以表达想说的内容和情感。 2)说出阶段:由想说阶段大脑中枢的决策,以脉冲形式向发音器官发出指令,使得舌、唇、鄂、声带、肺等部分的肌肉协调地动作,发出声音。与此同时,大脑也发出一些指令给其他有关器官,使之产生各种动作来配合言语的效果,如表情、手势、身体姿态等。经常有些人说话时会手舞足蹈。另外,还会开动“反馈”系统来帮助修正语音。 3)传送阶段:说出的话语是一连串声波,凭借空气为媒介传送到听者的耳朵。有时遇到某种阻碍或其他声响的干扰,使声音产生损耗或失真。 4)接收阶段:从外耳收集的声波信息,经过中耳的放大作用,达到内耳。经过内耳基底膜的振动,激发器官内的神经元使之产生脉冲,将信息以脉冲形式传送给大脑。 5)理解阶段:听觉神经中枢收到脉冲信息后,经过一种至今尚未完全了解的方式,辨认说话人及听到的信息,从而听懂说话人的话。 再开始介绍语音信号的特性之前,我们先了解一下语音和语言的定义。 5、语言 是从人们的话语中概括总结出来的规律性的符号系统。包括构成语言的语素、词、短语和句子等不同层次的单位,以及词法、句法、文脉等语法和语义内容。语言学是语音信号处理的基础。例如,可以利用句法和语义信息减少语音识别中搜索匹配范围,提高正确识别率。 6、语音学 Phonetics是研究言语过程的一门科学。它考虑的是语音产生、语音感知等的过程以及语音中各个音的特征和分类问题。现代语音学发展成为三个分支:发音语音学、声学语音学以

音频频谱分析仪设计

信号处理实验 实验八:音频频谱分析仪设计与实现

一、实验名称:音频频谱分析仪设计与实现 二、实验原理: MATLAB是一个数据信息和处理功能十分强大的工程实用软件,其数据采集工具箱为实现数据的输入和输出提供了十分方便的函数和命令。本实验可以用MATLAB进行音频信号频谱分析仪的设计与实现。 1、信号频率、幅值和相位估计 (1)频率(周期)检测 对周期信号来说,可以用时域波形分析来确定信号的周期,也就是计算相邻的两个信号波峰的时间差、或过零点的时间差。这里采用过零点(ti)的时间差T(周期)。频率即为f = 1/T,由于能够求得多个T值(ti有多个),故采用它们的平均值作为周期的估计值。 (2)幅值检测 在一个周期内,求出信号最大值ymax与最小值ymin的差的一半,即A = (ymax - ymin)/2,同样,也会求出多个A值,但第1个A值对应的ymax和ymin不是在一个周期内搜索得到的,故以除第1个以外的A值的平均作为幅值的估计值。 (3)相位检测 采用过零法,即通过判断与同频零相位信号过零点时刻,计算其时间差,然后换成相应的相位差。φ=2π(1-ti/T),{x}表示x的小数部分,同样,以φ的平均值作为相位的估计值。 频率、幅值和相位估计的流程如图所示。

其中tin表示第n个过零点,yi为第i个采样点的值,Fs为采样频率。 2、数字信号统计量估计 (1) 峰值P的估计 在样本数据x中找出最大值与最小值,其差值为双峰值,双峰值的一半即为峰值。P=0.5[max(yi)-min(yi)] (2)均值估计 式中,N为样本容量,下同。 (3) 均方值估计

经典matlab信号处理基础知识

常用函数 1 图形化信号处理工具,fdatool(滤波器设计),fvtool(图形化滤波器参数查看)sptool (信号处理),fvtool(b,a),wintool窗函数设计.或者使用工具箱filter design设计。 当使用离散的福利叶变换方法分析频域中的信号时,傅里叶变换时可能引起漏谱,因此需要采用平滑窗, 2数字滤波器和采样频率的关系。 如果一个数字滤波器的采样率为FS,那么这个滤波器的分析带宽为Fs/2。也就是说这个滤波器只可以分析[0,Fs/2]的信号.举个例字: 有两个信号,S1频率为20KHz,S2频率为40KHz,要通过数字方法滤除S2。 你的滤波器的采样率至少要为Fs=80HKz,否则就分析不到S2了,更不可能将它滤掉了!(当然根据采样定理,你的采样率F0也必须大于80HK,,Fs和F0之间没关系不大,可以任取,只要满足上述关系就行。) 3两组数据的相关性分析r=corrcoef(x,y) 4 expm 求矩阵的整体的exp 4离散快速傅里叶fft信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。Ft为连续傅里叶变换。反傅里叶ifft 5 ztrans(),Z变换是把离散的数字信号从时域转为频率 6 laplace()拉普拉斯变换是把连续的的信号从时域转为频域 7 sound(x)会在音响里产生x所对应的声音 8 norm求范数,det行列式,rank求秩 9 模拟频率,数字频率,模拟角频率关系 模拟频率f:每秒经历多少个周期,单位Hz,即1/s; 模拟角频率Ω是指每秒经历多少弧度,单位rad/s; 数字频率w:每个采样点间隔之间的弧度,单位rad。 Ω=2pi*f; w = Ω*T 10 RMS求法 Rms = sqrt(sum(P.^2))或者norm(x)/sqrt(length(x)var方差的开方是std标准差,RMS应该是norm(x)/sqrt(length(x))吧. 求矩阵的RMS:std(A(:)) 11ftshift 作用:将零频点移到频谱的中间 12 filtfilt零相位滤波, 采用两次滤波消除系统的非线性相位, y = filtfilt(b,a,x);注意x的长度必须是滤波器阶数的3倍以上,滤波器的阶数由max(length(b)-1,length(a)-1)确定。

matlab gui 频谱分析仪

频谱分析仪实验报告 一:频谱分析仪的功能: (1) 音频信号信号输入。输入的途径包括从声卡、从WAV文件输入、从信号发生器输入; (2) 信号波形分析。包括幅值、频率、周期、相位的估计,并计算统计量的峰值、均值、均方值和方差等信息;GUI界面见附页 (3) 信号频谱分析。频率、周期的估计,图形显示幅值谱、相位谱和功率谱等信息的曲线。二:实验原理 1. 时域抽样 时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率大于等于2倍的信号最高频率。时域抽样是把连续信号变成适于数字系统处理的离散信号。 2.快速傅里叶变换(FFT) 对有限长序列可以利用离散傅立叶变换(DFT)进行分析。DFT不但可以很好的反映序列的频谱特性,而且易于用快速算法(FFT)在计算机上进行分析。MATLAB为计算数据的离散快速傅立叶变换,提供了一系列丰富的数学函数,本设计用的为FFT 3.波形分析原理 (1)频率(周期)检测 对周期信号来说,可以用时域波形分析来确定信号的周期,也就是计算相邻的两个信号波峰的时间差、或过零点的时间差。这里采用过零点(ti)的时间差T(周期)。频率即为f = 1/T,由于能够求得多个T值(ti有多个),故采用它们的平均值作为周期的估计值。 (2)幅值检测 在一个周期内,求出信号最大值ymax与最小值ymin的差的一半,即A = (ymax - ymin)/2,同样,也会求出多个A值,但第1个A值对应的ymax和ymin不是在一个周期内搜索得到的,故以除第1个以外的A值的平均作为幅值的估计值。 (3)相位检测 采用过零法,即通过判断与同频零相位信号过零点时刻,计算其时间差,然后换成相应的相位差。φ=2π(1-ti/T),{x}表示x的小数部分,同样,以φ的平均值作为相位的估计值。(4)峰值P的估计在样本数据x中找出最大值与最小值,其差值为双峰值,双峰值的一半即为峰值。P=[max(yi)-min(yi)]/2 (5)均值,均方值,方差,均有计算所得 4,频谱图 为了直观地表示信号的频率特性,工程上常常将Fourier变换的结果用图形的方式表示,即频谱图 三:程序设计 1、三种信号的输入方式 (1)声卡的输入 这里声卡输入是指由麦克风录音得到的声音信号的输入,MATLAB提供了wavrecord函数,该函数能够实现读取麦克风录音信号。以下是“开始录音”按钮的回调函数内容。 获得FS的值 Fs=str2double(get(findobj('Tag','samplerate'),'String')); 根据设定的时间长度进行录音,保存在handles中,保存为double型 handles.y=wavrecord(str2double(get(findobj('Tag','recordtime'),'Strin

通信工程勘察设计基础知识

通信工程勘察设计基础知识 一、通信设计的概念 通信设计是对现有通信网络的装备进行优化与整合,是在通信网络规划的基础上,根据通信网络发展目标,综合运用工程技术和经济方法,依照技术标准、规范、规程,对工程项目进行勘察和技术、经济分析,编制最为工程建设依据的设计文件和配合工程建设的活动。 设计的定义:设计是一项重要的生产活动,包括规划、设计、勘察、可行性研究、编制技术规范暨询价书等; 设计文本是指按照合同、委托书要求完成的文本,包括设计文本、勘察文本、规划文本、可行性研究报告、技术规范暨询价书等。 通信设计往往要综合运用多学科知识和丰富的实践经验、现代的科学技术和管理方法,为通信工程项目的投资决策与实施,规划、选址、可行性研究、融资和招投标咨询、项目管理、施工监理等过程提供技术与咨询服务。 通信设计主要含设计前期工作,编制各阶段设计文件,配合施工安装试生产,参加竣工验收和回访总结等工作。 通信设计是在遵守法律、法规的前提下,贯彻执行国家经济建设的方针、政策,并要符合国民经济和社会发展规划;在严格执行通信设计标准、规范和规程的基础上,积极采用先进科学技术和设计方法,保证工程项目的先进性。通信设计重视工程经济,要做到技术和经济的统一,使得工程项目在建设、营运和发展过程中均有较高的投资效益;要实现资源的综合利用,节约能源、节约用水、节约用地,并符合国家颁布的

环保标准。 在通信工程建设中,科技要素首先是要通过规划设计注入通信工程的,通信设计要考虑通信网络的全程全网性,建设的连续性以及通信网络的高可靠性要求。通信设计单位是通信主管部门和建设部门的参谋和技术顾问。通信设计是通信工程建设的基础与先导,是提高通信工程建设质量,提高通信网络全程全网技术含量的关键环节。 二、通信设计的实施 1.成立项目组 由设计部门负责人组织项目组,任命项目负责人。当项目涉及到其它专业,需要其它设计部门配合时,由本设计部门负责人负责,与其他设计部门负责人协商,明确配合方式和核算方式。 2.编制项目计划 项目负责人对设计任务进行分解,必要时可成立单项设计组,指定单项负责人。项目负责人要对每一单项任务填写“项目计划书”(附件4)。如指定了单项负责人,则“项目计划书”要下发到每一单项负责人。项目计划书内容(但不限于): (1)项目名称、设计编号、项目负责人、单项负责人、审核人、校对人、设计人; (2)提供配合项目的衔接日期(内部、外部)、计划完成设计日期; (3)工程内容说明。 设计部门负责组织设计的实施,详见通信工程的设计工作流程(图二)

声音信号的获取与处理

声音信号的获取与处理 一、实验目的和要求 本实验通过麦克风录制一段语音信号作为解说词并保存,通过线性输入录制一段音乐信号作为背景音乐并保存。为录制的解说词配背景音乐并作相应处理,制作出一段完整的带背景音乐的解说词。 二、实验内容和步骤 1、软件与硬件的准备 目前,多媒体计算机中的音频处理工作主要借助声卡,从对声音信息的采集、编辑加工,直到声音媒体文件的回放这一整个过程都离不开声卡。声卡在计算机系统中的主要作用是声音文件的处理、音调的控制、语音处理和提供MIDI接口功能等。 进行录制音频信号所需的硬件除了声卡,还有麦克风、音箱以及外界的音源信号设备(如CD唱机、录音机等),把麦克风、音箱、外界音源信号设备与声卡正确连接完成硬件准备工作。在Windows的【控制面板】/【多媒体】中选择正确的录音和回放设备,并对其进行调试。 2、用Windows录音机录制解说词 使用Windows录音机录制任意一段语音信号作为解说词,录制完毕后把文件存为Wav 格式,文件名为【示例1_1】。 3、使用Cool Edit录制背景音乐 使用Cool Edit 2000录制任意一段语音信号作为背景音乐,要求录制的声音文件 采样频率为44100Hz,立体声,量化位数为16位,保存文件的为Wav格式,文件名【示例1_2】。

4、使用WaveStuido编辑和处理背景音乐 使用WaveStuido对【示例1_2】先进行回声处理,【幅度】值为100%,【回声延迟】为300毫秒。然后进行【淡入】和【淡出】处理,【幅度】值各为50%。 5、使用Cool Edit进行混音处理 使用Cool Edit的【Mix paste】功能对【示例1_1】和【示例1_2】进行混音处理。把【示例1_2】加入【示例1_1】中去,编辑成为一个完整的带背景音乐的解说词,保存为【示 例1_3】

相关文档
最新文档