遗传算法和蚁群算法的比较

遗传算法和蚁群算法的比较
遗传算法和蚁群算法的比较

全局优化报告

——遗传算法和蚁群算法的比较

姓名:郑玄玄

学号:3112054023

班级:硕2041

1遗传算法

1.1遗传算法的发展历史

遗传算法是一种模拟自然选择和遗传机制的寻优方法。20世纪60年代初期,Holland教授开始认识到生物的自然遗传现象与人工自适应系统行为的相似性。他认为不仅要研究自适应系统自身,也要研究与之相关的环境。因此,他提出在研究和设计人工自适应系统时,可以借鉴生物自然遗传的基本原理,模仿生物自然遗传的基本方法。1967年,他的学生Bagley在博士论文中首次提出了“遗传算法”一词。到70年代初,Holland教授提出了“模式定理”,一般认为是遗传算法的基本定理,从而奠定了遗传算法的基本理论。1975年,Holland出版了著名的《自然系统和人工系统的自适应性》,这是第一本系统论述遗传算法的专著。因此,也有人把1975年作为遗传算法的诞生年。

1985年,在美国召开了第一届两年一次的遗传算法国际会议,并且成立了国际遗传算法协会。1989年,Holland的学生Goldberg出版了《搜索、优化和机器学习中的遗传算法》,总结了遗传算法研究的主要成果,对遗传算法作了全面而系统的论述。一般认为,这个时期的遗传算法从古典时期发展了现代阶段,这本书则奠定了现代遗传算法的基础。

遗传算法是建立在达尔文的生物进化论和孟德尔的遗传学说基

础上的算法。在进化论中,每一个物种在不断发展的过程中都是越来越适应环境,物种每个个体的基本特征被后代所继承,但后代又不完全同于父代,这些新的变化,若适应环境,则被保留下来;否则,就将被淘汰。在遗传学中认为,遗传是作为一种指令遗传码封装在每个细胞中,并以基因的形式包含在染色体中,每个基因有特殊的位置并控制某个特殊的性质。每个基因产生的个体对环境有一定的适应性。基因杂交和基因突变可能产生对环境适应性强的后代,通过优胜劣汰的自然选择,适应值高的基因结构就保存下来。遗传算法就是模仿了生物的遗传、进化原理,并引用了随机统计原理而形成的。在求解过程中,遗传算法从一个初始变量群体开始,一代一代地寻找问题的最优解,直到满足收敛判据或预先假定的迭代次数为止。

遗传算法的应用研究比理论研究更为丰富,已渗透到许多学科,并且几乎在所有的科学和工程问题中都具有应用前景。一些典型的应用领域如下:

(1)复杂的非线性最优化问题。对具体多个局部极值的非线性最优化问题,传统的优化方法一般难于找到全局最优解;而遗传算法可以克服这一缺点,找到全局最优解。

(2)复杂的组合优化或整数规划问题。大多数组合优化或整数规划问题属于NP难问题,很难找到有效的求解方法;而遗传算法即特别适合解决这一类问题,能够在可以接受的计算时间内求得满意的近似最优解,如著名的旅行商问题、装箱问题等都可以用遗传算法得到满意的解。

(3)工程应用方面。工程方法的应用是遗传算法的一个主要应用领域,如管道优化设计、通风网络的优化设计、飞机外型设计、超大规模集成电路的布线等。

(4)计算机科学。遗传算法广泛应用于计算机科学的研究,如用于图像处理和自动识别、文档自动处理、VLSI设计等。

(5)生物学。遗传算法起源于对生物和自然现象的模拟,现在又反过来用于生物领域的研究,如利用遗传算法进行生物信息学的研究等。(6)社会科学。遗传算法在社会科学的许多领域也有广泛应用,如人类行为规范进化过程的模拟、人口迁移模型的建立等

(7)经济领域。经济学领域也用到遗传算法。例如,国民经济预测模型、市场预测模型和期货贸易模型等。遗传算法与神经网络相结合正成功地被应用于从时间序列分析来进行财政预算等。

1.2遗传算法的基本原理

遗传算法是一种基于自然选择和群体遗传机制的搜索算法,它模拟了自然选择和自然遗传过程中的繁殖、杂交和突变现象。在利用遗传算法求解问题时,问题的每个可能的解都被编码成一个“染色体”,即个体,若干个个体构成了群体(所有可能解)。在遗传算法开始时,总是随机地产生一些个体(即初始解)。根据预定的目标函数对每个个体进行评估,给出了一个适应度值。基于此适应度值,选择个体用来复制下一代。选择操作体现了“适者生存”的原理,“好”的个体被选择用来复制,而“坏”的个体则被淘汰。然后选择出来的个体经

过交叉和变异算子进行再结合生成新的一代。这一群新个体由于继承了上一代的一些优良性状,因而在性能上要优于上一代,这样逐步朝着更优解的方向进化。因此,遗传算法可以看成是一个由可行解组成的群体逐步进化的过程。图给出了简单遗传算法的基本过程。下面介绍遗传算法的编码及基本遗传操作过程。

1.2.1 编码

利用遗传算法求解问题时,首先要确定问题的目标函数和变量,然后对变量进行编码。这样做主要是因为在遗传算法中,问题的解是用数字串来表示的,而且遗传算子也是直接对串进行操作的。编码方式可以分为二进制编码和实数编码。若用二进制数表示个体,则将二进制数转化为十进制数的解码公式可以为

∑=---+=l j j ij l i

i i il i i b R T R b b b F 1121212),...,,(

其中,),...,,(il i i b b b 21为某个个体的第i 段,每段段长都为l ,每个ik b 都是0或者1,i T 和i R 是第i 段分量i X 的定义域的两个端点。

1.2.2 遗传操作

遗传操作是模拟生物基因的操作,它的任务就是根据个体的适应度对其施加一定的操作,从而实现优胜劣汰的进化过程。从优化搜索的角度看,遗传操作可以使问题的解逐代的优化,逼近最优解。遗传操作包括以下三个基本遗传算子:选择、交叉、变异。选择和交叉基本上完成了遗传算法的大部分搜索功能,变异增加了遗传算法找到最接近最优解的能力。

1. 选择

遗传算法与组合优化.

第四章 遗传算法与组合优化 4.1 背包问题(knapsack problem ) 4.1.1 问题描述 0/1背包问题:给出几个尺寸为S 1,S 2,…,S n 的物体和容量为C 的背包,此处S 1,S 2,…,S n 和C 都是正整数;要求找出n 个物件的一个子集使其尽可能多地填满容量为C 的背包。 数学形式: 最大化 ∑=n i i i X S 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 广义背包问题:输入由C 和两个向量C =(S 1,S 2,…,S n )和P =(P 1,P 2,…,P n )组成。设X 为一整数集合,即X =1,2,3,…,n ,T 为X 的子集,则问题就是找出满足约束条件∑∈≤T i i C X ,而使∑∈T i i P 获得最大的子集T ,即求S i 和P i 的下标子集。 在应用问题中,设S 的元素是n 项经营活动各自所需的资源消耗,C 是所能提供的资源总量,P 的元素是人们从每项经营活动中得到的利润或收益,则背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。 广义背包问题可以数学形式更精确地描述如下: 最大化 ∑=n i i i X P 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 背包问题在计算理论中属于NP —完全问题,其计算复杂度为O (2n ),若允许物件可以部分地装入背包,即允许X ,可取从0.00到1.00闭区间上的实数,则背包问题就简化为极简单的P 类问题,此时计算复杂度为O (n )。

4.1.2 遗传编码 采用下标子集T 的二进制编码方案是常用的遗传编码方法。串T 的长度等于n(问题规模),T i (1≤i ≤n )=1表示该物件装入背包,T i =0表示不装入背包。基于背包问题有近似求解知识,以及考虑到遗传算法的特点(适合短定义距的、低阶的、高适应度的模式构成的积木块结构类问题),通常将P i ,S i 按P i /S i 值的大小依次排列,即P 1/S 1≥P 2/S 2≥…≥P n /S n 。 4.1.3 适应度函数 在上述编码情况下,背包问题的目标函数和约束条件可表示如下。 目标函数:∑==n i i i P T T J 1 )( 约束条件:C S T n i i i ≤∑=1 按照利用惩罚函数处理约束条件的方法,我们可构造背包问题的适应度函数f (T )如下式: f (T ) = J (T ) + g (T ) 式中g (T )为对T 超越约束条件的惩罚函数,惩罚函数可构造如下: 式中E m 为P i /S (1≤i ≤n )i 的最大值,β为合适的惩罚系数。 4.2 货郎担问题(Traveling Salesman Problem ——TSP ) 在遗传其法研究中,TSP 问题已被广泛地用于评价不同的遗传操作及选择机制的性能。之所以如此,主要有以下几个方面的原因: (1) TSP 问题是一个典型的、易于描述却难以处理的NP 完全(NP-complete )问题。有效地 解决TSP 问题在可计算理论上有着重要的理论价值。 (2) TSP 问题是诸多领域内出现的多种复杂问题的集中概括和简化形式。因此,快速、有效 地解决TSP 问题有着极高的实际应用价值。 (3) TSP 问题因其典型性已成为各种启发式的搜索、优化算法的间接比较标准,而遗传算法 就其本质来说,主要是处理复杂问题的一种鲁棒性强的启发式随机搜索算法。因此遗传算法在TSP 问题求解方面的应用研究,对于构造合适的遗传算法框架、建立有效的遗传操作以及有效地解决TSP 问题等有着多方面的重要意义。

动态蚁群遗传混合算法1

动态蚁群遗传混合算法的研究及应用 (河北工程学院,河北邯郸056038) 摘要:蚁群算法是一种源于大自然生物世界的仿生类算法,该算法采用分布式并行计算和正反馈机制。易于与其他方法结合,具有很强的鲁棒性和适应性,但存在搜素时间长、易陷入局部最优解的缺点。为了克服这一缺点, 文中给出一种新的蚁群算法——动态蚂蚁遗传混合算法。在基本蚁群算法中引入变异机制, 采用最佳融合点评估策略来交叉地调用两种算法。动态地控制遗传算法与蚂蚁算法的调用时机,并设计了相应的信息素更新方法,有效减少了算法的冗余迭代次数,提高了搜索速度,同时引入迭代调整阈值控制算法后期的遗传操作和蚂蚁规模,加快了种群进化速度,从而更快地找到最优解。该法具有较快的收敛速度,节省计算时间,实验结果表明该方法是行之有效的。 关键词:蚁群算法; TSP问题; 遗传算法; 动态蚂蚁遗传混合算法 1 引言 蚁群算法 (Ant Colony Algorithms,ACO)又称蚂蚁算法。是一种用来在图中寻找优化路径的机率型技术。蚂蚁在寻找食物时,总是能找到较短的路径。受到蚁群系统信息共享机制的启发,意大利学者Macro Dorigo于1992年在他的博士论文中首次系统提出了蚁群算法,并成功地将该算法应用到求解旅行商问题(TSP)和二次分配问题(QAP)中。取得了一系列较好的实验结果。解决一些实际问题也有很好的效果。但蚁群算法同其它生物进化算法一样存在过早收敛易陷入局部极小值等问题。结合其它优化算法形成混合蚁群算法是克服这些缺点的有效手段。遗传算法(genetic algorithm,GA)以决策变量的编码作为运算对象,在优化过程中借鉴生物学中染色体和基因的概念,模拟自然界中生物和遗传进化等机理,通过个体适应度来进行概率选择操作,通过交叉变异产生新的个体,从而遗传算法具有较强的全局性。 为克服蚁群算法搜索速度慢、易陷入局部最优等缺点。本文提出了一种新的动态蚁群遗传混合算法(Dynamic Ant Algorithm -Genetic Algorithm,DAAGA)。该算法采用最佳融合点评估策略来交叉地调用两种算法,其框架是用蚂蚁算法的解作为遗传操作的种子,每当种

遗传算法在多目标优化的应用:公式,讨论,概述总括

遗传算法在多目标优化的应用:公式,讨论,概述/总括 概述 本文主要以适合度函数为基础的分配方法来阐述多目标遗传算法。传统的群落形成方法(niche formation method)在此也有适当的延伸,并提供了群落大小界定的理论根据。适合度分配方法可将外部决策者直接纳入问题研究范围,最终通过多目标遗传算法进行进一步总结:遗传算法在多目标优化圈中为是最优的解决方法,而且它还将决策者纳入在问题讨论范围内。适合度分配方法通过遗传算法和外部决策者的相互作用以找到问题最优的解决方案,并且详细解释遗传算法和外部决策者如何通过相互作用以得出最终结果。 1.简介 求非劣解集是多目标决策的基本手段。已有成熟的非劣解生成技术本质上都是以标量优化的手段通过多次计算得到非劣解集。目前遗传算法在多目标问题中的应用方法多数是根据决策偏好信息,先将多目标问题标量化处理为单目标问题后再以遗传算法求解,仍然没有脱离传统的多目标问题分步解决的方式。在没有偏好信息条件下直接使用遗传算法推求多目标非劣解的解集的研究尚不多见。 本文根据遗传算法每代均产生大量可行解和隐含的并行性这一特点,设计了一种基于排序的表现矩阵测度可行解对所有目标总体表现好坏的向量比较方法,并通过在个体适应度定标中引入该方法,控制优解替换和保持种群多样性,采用自适应变化的方式确定交叉和变异概率,设计了多目标遗传算法(Multi Objective Genetic Algorithm, MOGA)。该算法通过一次计算就可以得到问题的非劣解集, 简化了多目标问题的优化求解步骤。 多目标问题中在没有给出决策偏好信息的前提下,难以直接衡量解的优劣,这是遗传算法应用到多目标问题中的最大困难。根据遗传算法中每一代都有大量的可行解产生这一特点,我们考虑通过可行解之间相互比较淘汰劣解的办法来达到最 后对非劣解集的逼近。 考虑一个n维的多目标规划问题,且均为目标函数最大化, 其劣解可以定义为: f i (x * )≤f i (x t ) i=1,2,??,n (1) 且式(1)至少对一个i取“<”。即至少劣于一个可行解的x必为劣解。 对于遗传算法中产生大量的可行解,我们考虑对同一代中的个体基于目标函数相互比较,淘汰掉确定的劣解,并以生成的新解予以替换。经过数量足够大的种群一定次数的进化计算,可以得到一个接近非劣解集前沿面的解集,在一定精度要求下,可以近似的将其作为非劣解集。 个体的适应度计算方法确定后,为保证能得到非劣解集,算法设计中必须处理好以下问题:(1)保持种群的多样性及进化方向的控制。算法需要求出的是一组不同的非劣解,所以计算中要防止种群收敛到某一个解。与一般遗传算法进化到

遗传算法和蚁群算法的比较

全局优化报告 ——遗传算法和蚁群算法的比较 某:X玄玄 学号:3112054023 班级:硕2041

1遗传算法 1.1遗传算法的发展历史 遗传算法是一种模拟自然选择和遗传机制的寻优方法。20世纪60年代初期,Holland教授开始认识到生物的自然遗传现象与人工自适应系统行为的相似性。他认为不仅要研究自适应系统自身,也要研究与之相关的环境。因此,他提出在研究和设计人工自适应系统时,可以借鉴生物自然遗传的基本原理,模仿生物自然遗传的基本方法。1967年,他的学生Bagley在博士论文中首次提出了“遗传算法”一词。到70年代初,Holland教授提出了“模式定理”,一般认为是遗传算法的基本定理,从而奠定了遗传算法的基本理论。1975年,Holland出版了著名的《自然系统和人工系统的自适应性》,这是第一本系统论述遗传算法的专著。因此,也有人把1975年作为遗传算法的诞生年。 1985年,在美国召开了第一届两年一次的遗传算法国际会议,并且成立了国际遗传算法协会。1989年,Holland的学生Goldberg出版了《搜索、优化和机器学习中的遗传算法》,总结了遗传算法研究的主要成果,对遗传算法作了全面而系统的论述。一般认为,这个时期的遗传算法从古典时期发展了现代阶段,这本书则奠定了现代遗传算法的基础。 遗传算法是建立在达尔文的生物进化论和孟德尔的遗传学说基

础上的算法。在进化论中,每一个物种在不断发展的过程中都是越来越适应环境,物种每个个体的基本特征被后代所继承,但后代又不完全同于父代,这些新的变化,若适应环境,则被保留下来;否则,就将被淘汰。在遗传学中认为,遗传是作为一种指令遗传码封装在每个细胞中,并以基因的形式包含在染色体中,每个基因有特殊的位置并控制某个特殊的性质。每个基因产生的个体对环境有一定的适应性。基因杂交和基因突变可能产生对环境适应性强的后代,通过优胜劣汰的自然选择,适应值高的基因结构就保存下来。遗传算法就是模仿了生物的遗传、进化原理,并引用了随机统计原理而形成的。在求解过程中,遗传算法从一个初始变量群体开始,一代一代地寻找问题的最优解,直到满足收敛判据或预先假定的迭代次数为止。 遗传算法的应用研究比理论研究更为丰富,已渗透到许多学科,并且几乎在所有的科学和工程问题中都具有应用前景。一些典型的应用领域如下: (1)复杂的非线性最优化问题。对具体多个局部极值的非线性最优化问题,传统的优化方法一般难于找到全局最优解;而遗传算法可以克服这一缺点,找到全局最优解。 (2)复杂的组合优化或整数规划问题。大多数组合优化或整数规划问题属于NP难问题,很难找到有效的求解方法;而遗传算法即特别适合解决这一类问题,能够在可以接受的计算时间内求得满意的近似最优解,如著名的旅行商问题、装箱问题等都可以用遗传算法得到满意的解。

基于遗传算法的多式联运组合优化

第四章基于遗传算法的集装箱多式联运运输组合优化模型 的求解 4.1 遗传算法简介 4.1.1 遗传算法 遗传算法(Genetic Algorithm,GA)是在20世纪六七十年代由美国密歇根大学的Holland J.H.教授及其学生和同事在研究人工自适应系统中发展起来的一种随机搜索方法,通过进一步的研究逐渐形成了一个完整的理论和方法体系取名为基本遗传算法(Simple Genetic Algorithm)。在接下来几年的研究过程中Holland在研究自然和人工系统的自适应行为的过程中采用了这个算法,并在他的著作《自然系统和人工系统的适配》中对基本遗传算法的理论和方法进行了系统的阐述与描写,同时提出了在遗传算法的理论研究和发展中具有极为重要的作用的模式理论,它的编码技术和遗传操作成为了遗传算法被广泛并成功的应用的基础,经过许多学者多年来的研究,遗传算法逐渐成熟起来,到现在已经成为了一个非常大的体系,广泛的应用于组合优化、系统优化、过程控制、经济预测、模式识别以及智能控制等多个领域。De Jong于1975年在他的博士论文中设计了一系列针对于各种函数优化问题的遗传算法的执行策略,详细分析了各项性能的评价指标。在此基础上,美国伊利诺大学的Goldberg于1989年系统全面的阐述了遗传算法理论,并通过例证对遗传算法的多领域应用进行了分析,为现代遗传算法的研究和发展奠定了基础。 遗传算法是一种模仿基于自然选择的生物进化过程的随机方法,它以类似于基因的编码作为种群的个体,首先,随机的产生初始种群的个体,从这个群体开始进行搜索,根据类似于生物适应能力的适应度函数值的大小,按照不同问题各自的特点,在当前的种群中运用适当的选择策略选择适应能力大的个体,其中所选择出来的个体经过遗传操作、交叉操作以及变异操作产生下一代种群个体。如此反复,像生物的进化过程一样逐代进化,直到满足期望的终止条件为止。

比较专家系统、模糊方法、遗传算法、神经网络、蚁群算法的特点及其适合解决的实际问题

比较专家系统、模糊方法、遗传算法、神经网络、蚁群算法的特点及其适合解决的实际问题 一、专家系统(Expert System) 1,什么是专家系统? 在日常生活中大家所认知的“专家”一般都拥有某一特定领域的大量专业知识,以及丰富的实际经验。在解决问题时,专家们通常拥有一套独特的思维方式,能较圆满地解决一类困难问题,或向用户提出一些建设性的建议等。 专家系统一般定义为一个具有智能特点的计算机程序。 它的智能化主要表现为能够在特定的领域内模仿人类专家思维来求解复杂问题。因此,专家系统必须包含领域专家的大量知识,拥有类似人类专家思维的推理能力,并能用这些知识来解决实际问题。 专家系统的基本结构如图1所示,其中箭头方向为数据流动的方向。 图1 专家系统的基本组成 专家系统通常由知识库和推理机两个主要组成要素。 知识库存放着作为专家经验的判断性知识,例如表达建议、 推断、 命令、 策略的产生式规则等, 用于某种结论的推理、 问题的求解,以及对于推理、 求解知识的各种控制知识。 知识库中还包括另一类叙述性知识, 也称作数据,用于说明问题的状态,有关的事实和概念,当前的条件以及常识等。

专家系统的问题求解过程是通过知识库中的知识来模拟专家的思维方式的,因此,知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。 推理机实际上是一个运用知识库中提供的两类知识,基于木某种通用的问题求解模型,进行自动推理、 求解问题的计算机软件系统。 它包括一个解释程序, 用于决定如何使用判断性知识推导新的知识, 还包括一个调度程序, 用于决定判断性知识的使用次序。 推理机的具体构造取决于问题领域的特点,及专家系统中知识表示和组织的方法。 推理机针对当前问题的条件或已知信息,反复匹配知识库中的规则,获得新的结论,以得到问题求解结果。在这里,推理方式可以有正向和反向推理两种。正向推理是从前件匹配到结论,反向推理则先假设一个结论成立,看它的条件有没有得到满足。由此可见,推理机就如同专家解决问题的思维方式,知识库就是通过推理机来实现其价值的。 人机界面是系统与用户进行交流时的界面。通过该界面,用户输入基本信息、回答系统提出的相关问题,并输出推理结果及相关的解释等。 综合数据库专门用于存储推理过程中所需的原始数据、中间结果和最终结论,往往是作为暂时的存储区。解释器能够根据用户的提问,对结论、求解过程做出说明,因而使专家系统更具有人情味。 知识获取是专家系统知识库是否优越的关键,也是专家系统设计的“瓶颈”问题,通过知识获取,可以扩充和修改知识库中的内容,也可以实现自动学习功能。 2,专家系统的特点 在功能上, 专家系统是一种知识信息处理系统, 而不是数值信息计算系统。在结构上, 专家系统的两个主要组成部分 – 知识库和推理机是独立构造、分离组织, 但又相互作用的。在性能上, 专家系统具有启发性, 它能够运用专家的经验知识对不确定的或不精确的问题进行启发式推理, 运用排除多余步骤或减少不必要计算的思维捷径和策略;专家系统具有透明性, 它能够向用户显示为得出某一结论而形成的推理链, 运用有关推理的知识(元知识)检查导出结论的精度、一致性和合理性, 甚至提出一些证据来解释或证明它的推理;专家系统具有灵活性, 它能够通过知识库的扩充和更新提高求解专门问题的水平或适应环境对象的某些变化,通过与系统用户的交互使自身的性能得到评价和监护。 3,专家系统适合解决的实际问题 专家系统是人工智能的一个应用,但由于其重要性及相关应用系统之迅速发展,它已是信息系统的一种特定类型。专家系统一词系由以知识为基础的专家系统(knowledge-based expert system)而来,此种系统应用计算机中储存的人类知识,解决一般需要用到专家才能处理的问题,它能模仿人类专家解决特定问题时的推理过程,因而可供非专家们用来增进问题解决的能力,同时专家们也可把它视为具备专业知识的助理。由于在人类社会中,专家资源确实相当稀少,有了专家系统,则可使此珍贵的专家知识获得普遍的应用。 专家系统技术广泛应用在工程、科学、医药、军事、商业等方面,而且成果相当丰硕,甚至在某些应用领域,还超过人类专家的智能与判断。其功能应用领

遗传算法和蚁群算法的比较

全局优化报告——遗传算法和蚁群算法的比较 姓名:玄玄 学号:3112054023 班级:硕2041

1遗传算法 1.1遗传算法的发展历史 遗传算法是一种模拟自然选择和遗传机制的寻优方法。20世纪60年代初期,Holland教授开始认识到生物的自然遗传现象与人工自适应系统行为的相似性。他认为不仅要研究自适应系统自身,也要研究与之相关的环境。因此,他提出在研究和设计人工自适应系统时,可以借鉴生物自然遗传的基本原理,模仿生物自然遗传的基本方法。1967年,他的学生Bagley在博士论文中首次提出了“遗传算法”一词。到70年代初,Holland教授提出了“模式定理”,一般认为是遗传算法的基本定理,从而奠定了遗传算法的基本理论。1975年,Holland出版了著名的《自然系统和人工系统的自适应性》,这是第一本系统论述遗传算法的专著。因此,也有人把1975年作为遗传算法的诞生年。 1985年,在美国召开了第一届两年一次的遗传算法国际会议,并且成立了国际遗传算法协会。1989年,Holland的学生Goldberg 出版了《搜索、优化和机器学习中的遗传算法》,总结了遗传算法研究的主要成果,对遗传算法作了全面而系统的论述。一般认为,这个

时期的遗传算法从古典时期发展了现代阶段,这本书则奠定了现代遗传算法的基础。 遗传算法是建立在达尔文的生物进化论和孟德尔的遗传学说基础上的算法。在进化论中,每一个物种在不断发展的过程中都是越来越适应环境,物种每个个体的基本特征被后代所继承,但后代又不完全同于父代,这些新的变化,若适应环境,则被保留下来;否则,就将被淘汰。在遗传学中认为,遗传是作为一种指令遗传码封装在每个细胞中,并以基因的形式包含在染色体中,每个基因有特殊的位置并控制某个特殊的性质。每个基因产生的个体对环境有一定的适应性。基因杂交和基因突变可能产生对环境适应性强的后代,通过优胜劣汰的自然选择,适应值高的基因结构就保存下来。遗传算法就是模仿了生物的遗传、进化原理,并引用了随机统计原理而形成的。在求解过程中,遗传算法从一个初始变量群体开始,一代一代地寻找问题的最优解,直到满足收敛判据或预先假定的迭代次数为止。 遗传算法的应用研究比理论研究更为丰富,已渗透到许多学科,并且几乎在所有的科学和工程问题中都具有应用前景。一些典型的应用领域如下: (1)复杂的非线性最优化问题。对具体多个局部极值的非线性最优化问题,传统的优化方法一般难于找到全局最优解;而遗传算法可以克服这一缺点,找到全局最优解。 (2)复杂的组合优化或整数规划问题。大多数组合优化或整数规划问题属于NP难问题,很难找到有效的求解方法;而遗传算法即特别

遗传算法及其在TSP问题中的应用

遗传算法及其在TSP问题中的应用 摘要:本文首先介绍了遗传算法的基本理论与方法,从应用的角度对遗传算法做了认真的分析和研究,总结了用遗传算法提出求解组合优化问题中的典型问题——TSP问题的最优近似解的算法。其次,本文在深入分析和研究了遗传算法基本理论与方法的基础上,针对旅行商问题的具体问题,设计了基于TSP的遗传算法的选择、交叉和变异算子等遗传算子,提出了求解旅行商问题的一种遗传算法,并用Matlab语言编程实现其算法,最后绘出算法的仿真结果,并对不同结果作出相应的分析。然后,本文还针对遗传算法求解TSP时存在的一些问题对该算法进行了适当的改进。如针对初始群体、遗传算子作出适当改进,或者将遗传算法与其他方法相结合,以及在编程过程中对算法流程的改进。本人在用计算机模拟遗传算法求解TSP问题时,首先分析了用Matlab语言设计遗传算法程序的优越性,接着以遗传算法求解TSP问题为例,深入讨论了各个遗传算子的程序实现,并通过分析实验数据,得到各个遗传算子在搜索寻优过程中所起的作用,最后指出了用Matlab语言编程同用其它高级程序语言编程的差异所在,以及运用Matlab编写遗传算法程序的一些注意事项。最后,本文提出将遗传算法与其它算法相结合来求解一般问题的想法;并将遗传算法的应用范围扩展,提出可以运用遗传算法求解由TSP衍生出的各类TSP扩展问题,如求解配送/收集旅行商问题的遗传算法(TSPD)、遗传算法在货物配送问题中的应用(ST-TSP)、多旅行商问题(MTSP)等。 引言:优化问题可以自然地分为两类:一类是连续变量的优化问题;另一类是离散变量的优化问题,即所谓组合优化问题。对于连续变量的优化问题,一般是求一组实数或一个函数;而在组合优化问题中,一般是从一个无限集或有限的几个无限集中寻找一个对象——它可以是一个整数,一个集合,一个排列或者一个图,也即是从可行解中求出最优解的问题。TSP问题就是其中的典型例子,就本质上而言它可抽象为数学上的组合优化,它描述的是旅行商经N个城市的最短路径问题,因而对TSP问题的求解是数学上,同时也是优化问题中普遍关注的。旅行商问题(Traveling Salesman Problem,简称TSP)也称为货担郎问题,是一个较古的问题,最早可以追溯到1759年Euler提出的骑士旅行问题[9]。旅行商问题可以解释为,一位推销员从自己所在城市出发,必须邀访所有城市且每个城市只能访问一次之后又返回到原来的城市,求使其旅行费用最小(和旅行距离最短)的路径。 TSP是一个典型的组合优化问题,并且是一个NP难题,所以一般很难精确地求出其最优解,因而寻找出其有效的近似求解算法就具有重要的理论意义。另一方面,很多实际应用问题,如公安执勤人员的最优巡回路线、流水作业生产线的顺序问题、车辆调度问题、网络问题、切割问题以至机组人员的轮班安排、教师任课班级负荷分配等问题,经过简化处理后,都可建模为TSP问题,因而对旅行商问题求解方法的研究也具有重要的应用价值。再者,在各种遗传算法应用实例中,其个体编码方法大多都是采用二进制编码方法或浮点数编码方法,而TSP问题是一种典型的需要使用符号编码方法的实际问题,所以,研究求解TSP问题的遗传算法,对促进遗传算法本身的发展也具有重要意义。在过去的20年里,在求解旅行商问题的最优解方面取得了极大的进展。尽管有这些成就,但旅行商问题还远未解决,问题的许多方面还要研究,很多问题还在期待满意的回答。 另外,遗传算法就其本质来说,主要是解决复杂问题的一种鲁棒性强的启发式随机

多目标遗传算法中文【精品毕业设计】(完整版)

一种在复杂网络中发现社区的多目标遗传算法 Clara Pizzuti 摘要——本文提出了一种揭示复杂网络社区结构的多目标遗传算法。该算法优化了两个目标函数,这些函数能够识别出组内节点密集连接,而组间连接稀疏。该方法能产生一系列不同等级的网络社区,其中解的等级越高,由更多的社区组成,被包含在社区较少的解中。社区的数量是通过目标函数更佳的折衷值自动确定的。对合成和真实网络的实验,结果表明算法成功地检测到了网络结构,并且能与最先进的方法相比较。 关键词:复杂网络,多目标聚类,多目标进化算法 1、简介 复杂网络构成了表示组成许多真实世界系统的对象之间关系的有效形式。协作网络、因特网、万维网、生物网络、通信传输网络,社交网络只是一些例子。将网络建模为图,节点代表个体,边代表这些个体之间的联系。 复杂网络研究中的一个重要问题是社区结构[25]的检测,也被称作为聚类[21],即将一个网络划分为节点组,称作社区或簇或模块,组内连接紧密,组间连接稀疏。这个问题,如[21]指出,只有在建模网络的图是稀疏的时候才有意义,即边的数量远低于可能的边数,否则就类似于数据簇[31]。图的聚类不同于数据聚类,因为图中的簇是基于边的密度,而在数据聚类中,它们是与距离或相似度量紧密相关的组点。然而,网络中社区的概念并未严格定义,因为它的定义受应用领域的影响。因此,直观的理解是同一社区内部边的数量应该远多于连接图中剩余节点的边的数量,这构成了社区定义的一般建议。这个直观定义追求两个不同的目标:最大化内部连接和最小化外部连接。 多目标优化是一种解决问题的技术,当多个相互冲突的目标被优化时,成功地找到一组解。通过利用帕累托最优理论[15]获得这些解,构成了尽可能满足所有目标的全局最优解。解决多目标优化问题的进化算法取得成功,是因为它们基于种群的特性,同时产生多个最优解和一个帕累托前沿[5]的优良近似。 因此,社区检测能够被表述为多目标优化问题,并且帕累托最优性的框架可以提供一组解对应于目标之间的最佳妥协以达到最优化。事实上,在上述两个目标之间有一个折衷,因为当整个网络社区结构的外部连接数量为空时,那它就是最小的,然而簇密度不够高。 在过去的几年里,已经提出了许多方法采用多目标技术进行数据聚类。这些方法大部分在度量空间[14], [17],[18], [28], [38], [39], [49], [51]聚集目标,虽然[8]中给出了分割图的一个方法,并且在[12]中描述了网络用户会议的一个图聚类算法。 本文中,一个多目标方法,名为用于网络的多目标遗传算法(MOGA-Net),通过利用提出的遗传算法发现网络中的社区。该方法优化了[32]和[44]中介绍的两个目标函数,它们已被证实在检测复杂网络中模块的有效性。第一个目标函数利用了community score的概念来衡量对一个网络进行社区划分的质量。community score值越高,聚类密度越高。第二个目标函数定义了模块中节点fitness的概念,并且反复迭代找到节点fitness总和最大的模块,以下将这个目标函数称为community fitness。当总和达到最大时,外部连接是最小。两个目标函数都有一个正实数参数控制社区的规模。参数值越大,找到的社区规模越小。MOGA-Net利用这两个函数的优点,通过有选择地探索搜寻空间获得网络中存在的社区,而不需要提前知道确切的社区数目。这个数目是通过两个目标之间的最佳折衷自动确定的。 多目标方法的一个有趣结果是它提供的不是一个单独的网络划分,而是一组解。这些解中的每一个都对应两个目标之间不同的折衷,并对应多种网络划分方式,即由许多不同簇组成。对合成网络和真实网络的实验表明,这一系列帕累托最优解揭示了网络的分层结构,其中簇的数目较多的解包含在社区数目较少的解中。多目标方法的这个特性提供了一个很好的机会分析不同层级

简单对比遗传算法与蚁群算法求解旅行商问题

简单对比遗传算法与蚁群算法求解旅行商问题

简单对比遗传算法与蚁群算法求解旅行商问题 1、旅行商 1.1 旅行商问题简介 旅行商问题(Traveling Saleman Problem)又称作旅行推销员问题、货郎担问题等,简称为TSP问题,是最基本的路线问题,该问题是在寻求单一旅行者由起点出发,通过所有给定的需求点之后,最后再回到原点的最小路径成本。最早的旅行商问题的数学规划是由Dantzig(1959)等人提出,规则虽然简单,但在地点数目增多后求解却极为复杂。 TSP问题最简单的求解方法是枚举法。它的解是多维的、多局部极值的、趋于无穷大的复杂解的空间,搜索空间是n个点的所有排列的集合,大小为(n-1)!。有研究者形象地把解空间比喻为一个无穷大的丘陵地带,各山峰或山谷的高度即是问题的极值。求解TSP,则是在此不能穷尽的丘陵地带中攀登以达到山顶或谷底的过程。 1.2 求解TSP方法简介 旅行推销员的问题属于NP-Complete的问题,所以旅行商问题大多集中在启发式解法。Bodin(1983)等人将旅行推销员问题的启发式解法分成三种: 1.2.1 途程建构法(Tour Construction Procedures) 从距离矩阵中产生一个近似最佳解的途径,有以下几种解法: (1)最近邻点法(Nearest Neighbor Procedure):一开始以寻找离场站最近的需求点为起始路线的第一个顾客,此后寻找离最后加入路线的顾客最近的需求点,直到最后。 (2)节省法(Clark and Wright Saving):以服务每一个节点为起始解,根据三角不等式两边之和大于第三边之性质,其起始状况为每服务一个顾客后便回场站,而后计算路线间合并节省量,将节省量以降序排序而依次合并路线,直到最后。 (3)插入法(Insertion procedures):如最近插入法、最省插入法、随意插入法、最远插入法、最大角度插入法等。 1.2.2 途程改善法(Tour Improvement Procedure) 先给定一个可行途程,然后进行改善,一直到不能改善为止。有以下几种解法: (1)K-Opt(2/3 Opt):把尚未加入路径的K条节线暂时取代目前路径中K条节线,并计算其成本(或距离),如果成本降低(距离减少),则取代之,直到无法改善为止,K通常为2或3。 (2)Or-Opt:在相同路径上相邻的需求点,将之和本身或其它路径交换且仍保持路径方向性,并计算其成本(或距离),如果成本降低(距离减少),则取代之,直到无法改善为止。 1.2.3 合成启发法(Composite Procedure) 先由途程建构法产生起始途程,然后再使用途程改善法去寻求最佳解,又称为两段解法(two phase method)。有以下几种解法: (1)起始解求解+2-Opt:以途程建构法建立一个起始的解,再用2-Opt的方式改善途程,直到不能改善为止。

遗传算法

遗传算法 开放分类:编程、程序、数学、计算机、算法 目录 ? 遗传算法定义 ? 遗传算法特点 ? 遗传算法的应用 ? 遗传算法的现状 ? 遗传算法的一般算法 ? 遗传算法实例 遗传算法定义 [编辑本段] 遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它是有美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Hilland教授所提出的GA通常为简单遗传算法(SGA)。 遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小挑选(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。 遗传算法特点 [编辑本段] 遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1、遗传算法以决策变量的编码作为运算对象。传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子。 2、遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。 3、遗传算法使用多个点的搜索信息,具有隐含并行性。 4、遗传算法使用概率搜索技术,而非确定性规则。 遗传算法的应用 [编辑本段] 由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响

遗传算法及蚂蚁算法作业

(1)用遗传算法来做: 第一步:确定决策变量及其约束条件 s.t. -5<=x<=5 第二步:建立优化模型 第三步:确定编码方法,用长度为50位的二进制编码串来表示决策 变量x 第四步:确定解码方法 第五步:确定个体评价方法 个体的适应度取为每次迭代的最小值的绝对值加上目标函数值,即 第六步:确定参数 本题种群规模n=30,迭代次数ger=200,交叉概率pc=0.65,变异概率 pm=0.05 代码: clear all; close all; clc; tic; n=30; ger=200; pc=0.65; pm=0.05; % 生成初始种群

v=init_population(n,50); [N,L]=size(v); disp(sprintf('Number of generations:%d',ger)); disp(sprintf('Population size:%d',N)); disp(sprintf('Crossover probability:%.3f',pc)); disp(sprintf('Mutation probability:%.3f',pm)); % 待优化问题 xmin=-5; xmax=5; ymin=-5; ymax=5; f='-(2-exp(-(x.^2+y.^2)))'; [x,y]=meshgrid(xmin:0.1:xmax,ymin:0.1:ymax); vxp=x; vyp=y; vzp=eval(f); figure(1); mesh(vxp,vyp,-vzp); hold on; grid on; % 计算适应度,并画出初始种群图形x=decode(v(:,1:25),xmin,xmax);

5遗传算法与组合优化

第五章 遗传算法与组合优化 5.1 背包问题(knapsack problem ) 5.1.1 问题描述 0/1背包问题:给出几个尺寸为S 1,S 2,…,S n 的物体和容量为C 的背包,此处S 1,S 2,…,S n 和C 都是正整数;要求找出n 个物件的一个子集使其尽可能多地填满容量为C 的背包。 数学形式: 最大化 ∑=n i i i X S 1 满足 ,1 C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 广义背包问题:输入由C 和两个向量C =(S 1,S 2,…,S n )和P =(P 1,P 2,…,P n )组成。设X 为一整数集合,即X =1,2,3,…,n ,T 为X 的子集,则问题就是找出满足约束条件 ∑∈≤T i i C X ,而使∑∈T i i P 获得最大的子集T ,即求S i 和P i 的下标子集。 在应用问题中,设S 的元素是n 项经营活动各自所需的资源消耗,C 是所能提供的资源总量,P 的元素是人们从每项经营活动中得到的利润或收益,则背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。 广义背包问题可以数学形式更精确地描述如下: 最大化 ∑=n i i i X P 1 满足 ,1 C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 背包问题在计算理论中属于NP —完全问题,其计算复杂度为O (2n ),若允许物件可以部分地装入背包,即允许X ,可取从0.00到1.00闭区间上的实数,则背包问题就简化为极简单的P 类问题,此时计算复杂度为O (n )。

相关文档
最新文档